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FOR HAUSDORFF SPACES,

H-CLOSED = D-PSEUDOCOMPACT FOR ALL

ULTRAFILTERS D

PAOLO LIPPARINI

Abstract. We prove that, for an arbitrary topological space X ,
the following two conditions are equivalent: (a) Every open cover of
X has a finite subset with dense union (b) X is D-pseudocompact,
for every ultrafilter D.

Locally, our result asserts that ifX is weakly initially λ-compact,
and 2µ ≤ λ, then X is D-pseudocompact, for every ultrafilter D

over any set of cardinality ≤ µ. As a consequence, if 2µ ≤ λ, then
the product of any family of weakly initially λ-compact spaces is
weakly initially µ-compact.

Throughout this note λ and µ are infinite cardinals. No separation
axiom is assumed, if not otherwise specified. By a product of topolog-
ical spaces we shall always mean the Tychonoff product.
The notion of weak initial λ-compactness has been introduced by Z.

Froĺık [F] under a different name and subsequently studied by various
authors. See, e. g., Stephenson and Vaughan [SV]. See [L, Remark 3]
for further references about this and related notions.
For Tychonoff spaces, and for D an ultrafilter over ω, the notion

of D-pseudocompactness has been introduced by Ginsburg and Saks
[GS]. Their paper contains also significant applications. The notion has
been extensively studied by many authors in the setting of Tychonoff
spaces, especially in connection with various orders on ω∗. See, e. g.,
[GF1, HST, ST] and further references there for results and related
notions. In the case of an ultrafilter over an arbitrary cardinal, the
notion of D-pseudocompactness has been introduced and studied in
Garćıa-Ferreira [GF2].
In this note we show that weak initial λ-compactness and D-pseudo-

compactness are tightly connected. In fact, D-pseudocompactness for
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Tamariz-Mascarúa for stimulating discussions and correspondence.

1

http://arxiv.org/submit/0343012/pdf


2 PAOLO LIPPARINI

every ultrafilter D is equivalent to weak initial λ-compactness for every
infinite cardinal λ. No separation axiom is needed to prove the equiv-
alence. As mentioned in the abstract, our result has a local version
(Theorem 1 below).
The situation described in this note has some resemblance with the

connections between initial λ-compactness and D-compactness. See,
e. g., the survey by R. Stephenson [S] for definitions and results, in
particular, Section 3 therein. However, Remark 7 here points out a
significant difference.

We now recall the relevant definitions. A topological space is said
to be weakly initially λ-compact if and only if every open cover of
cardinality at most λ has a finite subset with dense union. Notice that,
for Tychonoff spaces, weak initial ω-compactness is well known to be
equivalent to pseudocompactness.
If D is an ultrafilter over some set I, a topological space X is said

to be D-pseudocompact if and only if every I-indexed sequence of
nonempty open sets of X has some D-limit point, where x is called
a D-limit point of the sequence (Oi)i∈I if and only if, for every neigh-
borhood U of x in X , {i ∈ I | U ∩ Oi 6= ∅} ∈ D.

Theorem 1. If X is a weakly initially λ-compact topological space, and
2µ ≤ λ, then X is D-pseudocompact, for every ultrafilter D over any
set of cardinality ≤ µ.

Proof. Suppose by contradiction that X is weakly initially λ-compact,
D is an ultrafilter over I, 2|I| ≤ λ, and X is not D-pseudocompact.
Thus, there is a sequence (Oi)i∈I of nonempty open sets of X which
has no D-limit point in X . This means that, for every x ∈ X , there is
an open neighborhood Ux of x such that {i ∈ I | Ux ∩ Oi 6= ∅} 6∈ D,
that is, {i ∈ I | Ux ∩ Oi = ∅} ∈ D, since D is an ultrafilter. For each
x ∈ X , choose some Ux as above, and let Zx = {i ∈ I | Ux ∩ Oi = ∅}.
Thus, Zx ∈ D.
For each Z ∈ D, let VZ =

⋃
{Ux | x is such that Zx = Z}. Notice

that if i ∈ Z ∈ D, then VZ ∩ Oi = ∅. Notice also that (VZ)Z∈D is
an open cover of X . Since |D| ≤ 2|I| ≤ λ, then, by weak initial λ-
compactness, there is a finite number Z1, . . . , Zn of elements of D such
that VZ1

∪· · ·∪VZn
is dense in X . Since D is a filter, Z = Z1∩· · ·∩Zn ∈

D, hence Z1∩· · ·∩Zn 6= ∅. Choose i ∈ Z1∩· · ·∩Zn. Then Oi∩VZ1
= ∅,

. . . , Oi ∩ VZn
= ∅, hence Oi ∩ (VZ1

∪ · · · ∪ VZn
) = ∅, contradicting the

conclusion that VZ1
∪ · · · ∪ VZn

is dense in X , since, by assumption, Oi

is nonempty. �
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Theorem 1 shows that weak initial λ-compactness implies D-pseudo-
compactness, for ultrafilters over sets of sufficiently small cardinality.
The next proposition presents an easy result in the other direction.
Recall that an ultrafilter over µ is regular if and only if there is

a family of µ elements of D such that the intersection of any infinite
subset of the family is empty. As a consequence of the Axiom of Choice
(actually, the Prime Ideal Theorem suffices), for every infinite cardinal
µ there is a regular ultrafilter over µ.

Proposition 2. If the topological space X is D-pseudocompact, for
some regular ultrafilter D over µ, then X is weakly initially µ-compact.
Actually, every power of X is weakly initially µ-compact.

Proof. E. g., by [L, Corollary 15]. �

Corollary 3. If 2µ ≤ λ, then the product of any family of weakly
initially λ-compact spaces is weakly initially µ-compact.

Proof. Choose some regular ultrafilter D over µ. Given any family of
weakly initially λ-compact spaces, then, by Theorem 1, each member
of the family is D-pseudocompact. Since D-pseudocompactness is pro-
ductive [GS], the product is D-pseudocompact, hence weakly initially
µ-compact, because of the choice of D, and by Proposition 2. �

Let us say that a topological space is weakly initially < ν-compact
if and only if every open cover of cardinality < ν has a finite subset
with dense union. That is, weak initial < ν-compactness means weak
initially λ-compactness for all λ < ν. Recall that a topological space
is said to be initially λ-compact if and only if every open cover of
cardinality at most λ has a finite subcover.

Corollary 4. Suppose that ν is a strong limit cardinal.

(1) Any product of a family of weakly initially < ν-compact topo-
logical spaces is weakly initially < ν-compact.

(2) If ν is singular, then a product of a family of topological spaces
is weakly initially ν-compact, provided that each factor is both
weakly initially ν-compact and initially 2cf ν-compact.

Proof. (1) is immediate from Corollary 3, and the assumption that ν

is a strong limit cardinal.
(2) Suppose that we have a product as in the assumption. By (1),

the product is weakly initially < ν-compact. By known results, or by
a variation on the proof of Theorem 1 (see Remark 7 or Theorem 8),
any product of initially 2cf ν-compact spaces is initially cf ν-compact.
(2) now follows from the easy fact that a weakly initially < ν-compact
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and initially cf ν-compact space is weakly initially ν-compact (actually,
a weakly initially < ν-compact and [cf ν, cf ν]-compact space is weakly
initially ν-compact.) �

We now give the characterization of Hausdorff-closed spaces an-
nounced in the title. Recall that a topological space X is said to be
H(i) if and only if every open filter base on X has nonvoid adherence.
Equivalently, a topological space is H(i) if and only if every open cover
has a finite subset with dense union. A Hausdorff space is H-closed
(or Hausdorff-closed, or absolutely closed) if and only if it is closed in
every Hausdorff space in which it is embedded. It is well known that
a Hausdorff topological space is H-closed if and only if it is H(i). A
regular Hausdorff space is H-closed if and only if it is compact. See,
e. g., [SS] for references.

Theorem 5. For every topological space X, the following conditions
are equivalent.

(1) X is H(i).
(2) X is weakly initially λ-compact, for every infinite cardinal λ.
(3) X is D-pseudocompact, for every ultrafilter D.
(4) For every infinite cardinal λ, there exists some regular ultrafilter

D over λ such that X is D-pseudocompact.

If X is Hausdorff (respectively, Hausdorff and regular) then the pre-
ceding conditions are also equivalent to, respectively:

(5) X is H-closed.
(6) X is compact.

Proof. (1) and (2) are equivalent, because of the above mentioned char-
acterization of H(i) spaces.
(2) ⇒ (3) is immediate from Theorem 1.
(3) ⇒ (4) follows from the fact that, as we mentioned right before

Proposition 2, for every infinite cardinal λ, there does exist some regular
ultrafilter over λ.
(4) ⇒ (2) follows from Proposition 2.
The equivalences of (1) and (5), and of (1) and (6), under the re-

spective assumptions, follow from the remarks before the statement of
the theorem. �

As a consequence of Theorem 5, we get another proof of some clas-
sical results.

Corollary 6. Any product of a family of H(i) spaces is an H(i) space.
Any product of a family of H-closed Hausdorff spaces is H-closed.
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Proof. By Theorem 5, and the mentioned result by Ginsburg and Saks
[GS] that D-pseudocompactness is productive. �

Remark 7. In conclusion, a few remarks are in order. The situation
described in this note is almost entirely similar to the case dealing
with initial λ-compactness and D-compactness. Indeed, the proof of
Theorem 1 can be easily modified in order to show directly that if
2µ ≤ λ, then every initially λ-compact topological space is D-compact,
for every ultrafilter D over any cardinal ≤ µ (see also Theorem 8 and
the remark thereafter). This result, however, is already an immediate
consequence of implications (8) and (5) in [S, Diagram 3.6]. Since
D-compactness, too, is productive, we get that if 2µ ≤ λ, then any
product of initially λ-compact spaces is initially µ-compact, the result
analogue to Corollary 3. The above arguments furnish also a proof
of the well known result that a space is compact if and only if it is
D-compact, for every ultrafilter D, a theorem which, in turn, has the
Tychonoff theorem that every product of compact spaces is compact
as an immediate consequence. This is entirely parallel to Theorem 5
and Corollary 6.
However, a subtle difference exists between the two cases. A suf-

ficient condition for a topological space X to be initially λ-compact
is that, for every λ′ with ω ≤ λ′ ≤ λ, there exists some ultrafilter
D uniform over λ′ such that X is D-compact (see [S, Theorem 5.13]
or, again, [S, Diagram 3.6]). The parallel statement fails, in general,
for weak initial λ-compactness and D-pseudocompactness. Indeed, un-
der some set theoretical hypothesis, [GF2, Example 1.9] constructed
a space X which is D-pseudocompact, for some ultrafilter uniform D

over ω1, hence necessarily D′-pseudocompact, for some ultrafilter D′

uniform over ω, but X is not weakly initially ω1-compact, actually, not
even ω1-pseudocompact. Cf. also [L, Remark 30].
The above counterexample shows that, in our arguments, and, in par-

ticular, in Proposition 2, we do need the notion of a regular ultrafilter;
on the contrary, in the corresponding theory for initial compactness, (a
sufficient number of) uniform ultrafilters are enough.

Theorem 1 can be generalized to the abstract framework of [L, Sec-
tion 5]. We recall here only the definitions, and refer to [L] for motiva-
tions and further references.
Suppose that X is a topological space, F is a family of subsets of

X , and λ is an infinite cardinals. We say that X is F-[ω, λ]-compact
if and only if, for every open cover (Oα)α∈λ of X , there exists some
finite W ⊆ λ such that F ∩

⋃
α∈W Oα 6= ∅, for every F ∈ F . If D is an

ultrafilter over some set I, we say that X is F -D-compact if and only
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if every sequence (Fi)i∈I of members of F has some D-limit point in
X .

Theorem 8. If X is an F-[ω, λ]-compact topological space, and 2µ ≤
λ, then X is F-D-compact, for every ultrafilter D over any set of
cardinality ≤ µ.

Theorem 8 is proved in a way similar to Theorem 1, by replacing
everywhere the family (Oi)i∈I by an appropriate family (Fi)i∈I of mem-
bers of F .
Notice that Theorem 1 is the particular case of Theorem 8 when

F is the family of all nonempty open sets of X . By considering the
particular case of Theorem 8 in which F is the family of all singletons
of X we obtain the parallel result mentioned in Remark 7, asserting
that if 2µ ≤ λ, then initial λ-compactness implies D-compactness, for
every ultrafilter over a set of cardinality ≤ µ.

Corollary 9. Suppose that X is a topological space, and F is a family
of subsets of X. Then the following conditions are equivalent.

(1) X is F-[ω, λ]-compact, for every infinite cardinal λ.
(2) X is F-D-compact, for every ultrafilter D.
(3) For every infinite cardinal λ, there exists some regular ultrafilter

D over λ such that X is F-D-compact.

Proof. Same as the proof of Theorem 5. The implication (3) ⇒ (1)
follows from [L, Theorem 35(2) ⇒ (4)] with |T | = 1. �

As a concluding observation, we expect that Corollary 3 gives an
optimal result, but we have not checked it.

Problem 10. Characterize those pairs of cardinals λ and µ such that
the product of any family of (weakly) initially λ-compact spaces is
(weakly) initially µ-compact.
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