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ABSTRACT Radar sensing technologies now offer new opportunities for gesturally interacting with a
smart environment by capturing microgestures via a chip that is embedded in a wearable device, such as
a smartwatch, a finger or a ring. Such microgestures are issued at a very small distance from the device,
regardless of whether they are contact-based, such as on the skin, or contactless. As this category of
microgestures remains largely unexplored, this paper reports the results of a gesture elicitation study that was
conducted with twenty-five participants who expressed their preferred user-defined gestures for interacting
with a radar-based sensor on nineteen referents that represented frequent Internet-of-things tasks. This study
clustered the 25× 19 = 475 initially elicited gestures into four categories of microgestures, namely, micro,
motion, combined, and hybrid, and thirty-one classes of distinct gesture types and produced a consensus
set of the nineteen most preferred microgestures. In a confirmatory study, twenty new participants selected
gestures from this classification for thirty referents that represented tasks of various orders; they reached
a high rate of agreement and did not identify any new gestures. This classification of radar-based gestures
provides researchers and practitioners with a larger basis for exploring gestural interactions with radar-based
sensors, such as for hand gesture recognition.

INDEX TERMS Contact-based gesture, contactless gesture, gesture classification, gesture elicitation study,
gestural interaction, microgesture, radar sensing.

I. INTRODUCTION
The increasing presence of electronic devices in our daily
lives extends their field of application, thereby driving
researchers to investigate new interaction modalities for mak-
ing our lives easier. Major progress has been made in research
on interactions via whole body or hand gestures in recent
years. Contactless user interfaces enable end users to view,
to control, and to manipulate any digital content, such as an
object, an item, or a scene, without physically touching the
user interface or the device. These interfaces are explored in a
wide range of application scenarios, frommedical surgery for
hygiene to car dashboard controllers for safety. Vision-based
recognition has achieved a high level of accuracy in stationary
frameworks but remains challenging in mobile contexts of
use, which are demanding in terms of illumination conditions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hadi Heidari .

Contactless interfaces now benefit from a new source of
input, namely, radar sensing [1]–[4].

Radio frequency overcomes some issues, but low spatial
resolution remains a barrier. Technical options have become
available for making dynamic finger/hand recognition feasi-
ble; these options include ultrawide bandwidth (UWB) for
digital millimeter-wave radars, which combine a compact
physical form-factor with high accuracy at short ranges with
high frequency [1], low frequency [5], or a micro-Doppler
signatures [6].

Although these techniques have reached a new level
of operationalization, our knowledge about microgestures,
namely, gestures that are issued at a very small distance from
the radar, is still in its infancy; only a few gestures have been
studied. This paper investigates this issue by exploring user-
defined microgestures based on radar sensing for Internet
of Things (IoT) tasks by eliciting these microgestures from
participants via the classical research method of a gesture
elicitation study [7], which is augmented with additional
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variables. A second study with new participants, in which
gestures are selected from the previously described gesture
set for more diverse tasks, confirms this classification.

II. RELATED WORK
This section is divided into three subsections: a presentation
of the most significant radar sensing technologies for gestural
input, an introduction to gesture elicitation studies with a brief
overview of their scope, and an overview of previous studies
on microgestures and related work. Amicrogesture is defined
here as a gesture that has small articulation variations [8], [9],
e.g., small movements such as translations and rotations
(micro-motions), low speed, low acceleration, low pressure,
small size, and short time.

A. RADAR-SENSING TECHNOLOGIES
Several systems support contactless interaction by gesture
recognition. LLAP [10] tracks and localizes the end user by
ultrasound to enable contactless gesture inputs. LLAP utilizes
speakers and microphones that are embedded in smartphones
to play and record sound waves that are inaudible to humans.
By measuring the phase of the sound signal that is reflected
by the hands or fingers of the user, LLAP measures gesture
movements with an accuracy of up to 3.5 mm.

Strata [11] consists of a smartphone that transmits known
audio signals at inaudible frequencies, and the received signal
that is reflected by a moving finger is analyzed to track the
finger location. Strata selects the channel tap that corresponds
to the finger movement and extracts the phase change of the
selected tap to accurately estimate the distance change of the
finger. Strata estimates the absolute distance of the finger,
thereby realizing high accuracy and low latency.

GestureDrawer [12] introduces a novel one-handed inter-
action technique that enables users to place imaginary user
interface controls in 3D empty space without receiving any
kind of feedback (completely eye-free and device-free) and
without fixed landmarks.

RadarCat [2] is a small, versatile radar-based system for
material and object classification that enables new forms
of everyday proximate interaction with digital devices. The
system is trained to recognize and classify various types of
materials and objects in real time.

The sense of agency (SoA) [13] refers to the subjective
experience of voluntary control over actions in the external
world. This SoA is tested on contactless systems using the
intentional binding paradigm by comparing contactless sys-
tems with physical interactions. The haptic feedback enables
the exploration of how modalities influence intentional
binding.

Google ATAP (Advanced Technology and Projects) has
launched Soli (Fig. 1a), which is a new sensing technology
that uses miniature radar to detect contactless gesture inter-
actions1. This radar operates according to the principles of
reflection and detection of radio-frequency electromagnetic

1http://atap.google.com/soli/

FIGURE 1. Google Soli sensor (a), coming with five system-defined
gestures [15]: a virtual button (b), a virtual dial (c), a virtual slider (d),
a horizontal (e) and a vertical (f) swipe.

waves [14]. This radar was initially used for various tasks,
e.g., tracking large objects, such as cars and planes, but
engineers wanted to track micro motions from twitches of
human hands. The Soli sensor is manufactured as a compact
semiconductor device, which requires low energy [3]. This
microsystem is used for ubiquitous gesture interaction for a
large variety of applications, which include Internet of Things
(IoT), virtual reality (VR) [15], object selection and manipu-
lation [2], material recognition [16], and creative musical and
audio-visual contexts [17]. Soli is the first millimeter-wave
radar system that is designed end-to-end for ubiquitous and
intuitive fine gesture interaction. Soli was officially released
to be incorporated in the forthcoming Google Pixel 4 smart-
phone for gesture recognition2. Despite these advances, only
five system-defined gestures are investigated [3], [16]: single-
tapping to press a virtual button (Fig. 1b), rubbing a finger to
turn a virtual dial (Fig. 1c), moving the index finger to the
left/right to move a virtual slider (Fig. 1d), and horizontal/
vertical swiping for navigation (Fig. 1e-f).

Ens et al. [18] explore a multidimensional design space
that combines microgestures that are captured by a Google
Soli that is attached to a LeapMotion device with other
types of gestures, which are detected by a belt sensor and
a Microsoft HoloLens, within the greater lexicon of ges-
tures. Via this approach, these authors expect to combine
large-scale movements for gross-grained navigation with
small-scale gestures for fine-grained interaction. Dynamic
continuous hand gesture recognition that is based on a
frequency-modulated continuouswave (FMCW) radar sensor
has also been proven to be successful, especially because the
radar system does not depend on lighting, noise, or atmo-
spheric conditions [6], such as in Latern [19]. Dynamic hand
gesture recognition is proved feasible with four dynamic
gestures [5]: hand rotation, beckoning, snapping fingers, and
flipping fingers.

Although the aforementioned technologies have become
affordable for trackingmicrogestures in everyday objects, our
knowledge of what kind of microgestures would be preferred
and used by end users in various contexts of use remains
limited.

B. GESTURE ELICITATION STUDIES
Understanding users’ preferences and behaviors with a
new interactive technology from the early stages of design
empowers designers with valuable information for shaping
a product’s characteristics to realize more effective and effi-
cient use. Gesture Elicitation Studies (GESs) [7], [20], [21]

2See https://9to5google.com/2019/06/11/google-pixel-4-project-soli/
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are popular for investigating users’ preferences for gesture
input in a variety of contexts of use [7], [22]–[24].

The result consists of a characterization of users’ ges-
ture input behaviors with valuable information for designers,
practitioners, and end users regarding the consensus among
participants (which is computed as an agreement or coagree-
ment rates [7], [20], [21]), most frequent (thus, generalizable
across users) gestures for a specified task, and insights into
users’ conceptual models for performing tasks.

C. OVERVIEW OF GESTURE ELICITATION STUDIES
GESs are conducted along the three traditional dimensions
of the context of use [25]: users and their tasks, devices and
platforms they use, and physical environments [26].

1) ON VARIOUS DEVICES AND PLATFORMS
Since their inception, gesture elicitation studies have focused
primarily on specified platform or device, such as tabletops
in surface computing [7], [27], mobile interactions [22], and
smart televisions [24], [28], where the entire device or a
component, such as the trackpad, is considered [29]. In [28],
the authors conduct user-elicited studies with hand gestures,
in which the natural attitudes, preferences and memorability
are considered, with the objective of generating and imple-
menting a set of TV control commands. Chattopadhyay and
Bolchini [30] propose the concept of motor-intuitive, which is
a touchless interaction primitive (mid-air, directional strokes)
that is based on the up-down and left-right space schemas for
facilitating the support of intuitive touchless interactions and
large-display touchless interactions. Gheran et al. [31] study
small gestures that are issued while wearing a LogBar Zero
ring device, some of which are mid-air gestures and others
are microgestures with or without contact. However, despite
these studies, radar-based sensors have not been subjected to
any GESs.

2) IN DIFFERENT ENVIRONMENTS
Gestures are typically elicited in an environment in which
devices are situated, such as the steering wheel in a car [32]
or public displays, where social acceptance must be con-
sidered [33]. In these public displays, the tasks also vary;
examples include selecting and buying a good in a store [34]
and opt-in/out [33]. Space and place affect the engagement of
participants [35].

3) FOR MULTIPLE USERS
A GES is said to be user-independent if it does not target any
specified user profile or category. In contrast, a GES is user-
dependent if a user profile, such as children who are issuing
whole-body gestures, is devised. A GES can target any popu-
lation of end users instead of a platform or environment. Dif-
ferent types of users may play different roles, which are also
influenced by their culture [36]. [37] studied hand gestures,
while [38] compared freehand gestures with gestures that are
issued on the skin. Any limb, physical capability or deficiency
thereof may also become the subject of a GES.

Only two studies are similar to our study. Chan et al. [9]
introduced the notion of a single-handmicrogesture (SHMG),
which is issued with only one hand. That study involved
34 referents, which covered six categories: transform, sim-
ulation, browsing, editing, menu, and selection. This paper
will investigate other categories of referents with only the
simulation in common: volume up/down, mute, play, pause,
and stop. Four categories emerge: tap, swipe, circle, and draw.

Bostan et al. [37] collected 957 microgestures from
19 participants for 26 referents that correspond to frequent
smartphone tasks, such as select, navigate, open/close, min-
imize/maximize, zoom in/out, next/previous, switch task,
scroll up/down, and accept/reject call. The results from that
study demonstrate that end users tend to prefer one hand for
holding an object, assign different meanings to different parts
of the hand, and place higher importance on hand properties
than on skin properties.

III. EXPERIMENT
A. PARTICIPANTS
Twenty-five voluntary participants (15 females and 10 males;
aged 12 to 68 years; M = 27.92, SD = 13.30, and
Mdn = 23) were recruited for the study via a contact
list for various organizations. Twenty-three participants were
right-handed, and 2 participants were left-handed. The occu-
pations of the participants included secretary, teacher, direc-
tor, psychologist, retired, and students in engineering, law,
economics, physiotherapy, management, and criminology.
All participants reported frequent use of computers and
smartphones and no dexterity problems.

B. APPARATUS
The experiment for a radar-based sensor was conducted in
a quiet office meeting room. A simple computer screen was
used to display the referents to the participants. All the ges-
tures were recorded by a camera that was placed in front of
the participants to capture their hands and fingers without
capturing their faces. To keep the study centered on the topic,
the participants were asked to limit their movements to their
hands and fingers without any other constraint.

C. PROCEDURE
1) PRE-TEST PHASE
The participants were welcomed to the setup by a researcher
and were asked to sign a GDPR-compliant informed consent
form. Then, the participants were given information about
the study and the general process of the experiment. The
participants were also asked to complete a sociodemographic
questionnaire (e.g., age, gender, handedness, use of technolo-
gies based on a 7-point Likert scale ranging from 1= strongly
disagree to 7 = strongly agree) and to perform a creativity
test and a motor-skill test. The participants answered a series
of questions on the ‘‘Test My Creativity’’3 and received an
assessment of their level of creativity.

3http://www.testmycreativity.com/ is a web-based application that pro-
poses a collection of hands-on tools and a systematic method that are
designed to systematize the space of creativity, innovation and value creation.
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Agreement rates that were computed by AGATe [20] for
referents, which are sorted in decreasing order, with 95.

The motor-skill test [39] consisted of pinching each finger
with the thumb several times. The questionnaire and the tests
are intended to determine whether the participants satisfied
minimal ability requirements for conducting the experiment
and for future data analysis.

2) TEST PHASE
The participants watched a short video that explained the
principle of radar-based sensing without showing any ges-
tures; some participants were asked about gestures, and the
tasks to perform were described to them. Each session imple-
mented the original GES protocol [7]; participants were pre-
sented with 19 referents (Table 2, first column), namely,
actions for controlling various objects in an IoT environment,
for which the participants proposed suitable gestures for exe-
cuting those referents, namely, gestures that fit the referents
well. Microgestures are not frequent in gesture elicitation
studies. Therefore, we believed that the legacy bias [40]
would not substantially affect the gestures that were proposed
by the participants. We applied visual priming, which is
part of framed guessability [41], to provide the participants
guidance regarding the scenario before and after the gesture
should be proposed.

The Participants were instructed to remain as natural as
possible. The global order of the referents was randomized
per participant. When a member of a pair of related gestures,
such as ‘‘Turn TV On/Off’’, was randomly selected, the other
member came just afterwards so that participants could con-
sider the relation.

The Thinking time between the first showing of the item
and the moment when the participant knew which gesture
she would perform was measured in seconds with a stop-
watch. After performing each gesture, the researcher asked
the participants to provide aGoodness-of-fit rating from 1 to
10 to express the extent to which they thought their gesture
was suitable for the presented referent. Each session took
approximately 45 minutes per participant. One researcher
welcomed participants and facilitated the completion of the
form, another presented the referents, and another supervised,
thereby ensuring minimal interference from the researchers.

3) POST-TEST PHASE
Participants completed the IBM PSSUQ (post-study system
usability questionnaire) [42], which enabled them to express
their levels of satisfactionwith the usability of this new device
and the testing process. There is a high correlation (ρ = .89)
between the results of this questionnaire and the perceived
usability of any interactive system [43].

IV. RESULTS AND DISCUSSIONS
A. DESCRIPTION
Each elicited gesture is identified with its corresponding
video, is subjected to descriptive labeling [44] based on

Nielsen’s procedure [45] and is assigned to a gesture category.
An example of this process is presented in Table 2. We col-
lected a total of 475 gesture proposals from 25 participants for
19 referents, from which 2 samples were removed as outliers
because they were interrupted. We clustered the gestures into
4 groups and 2 subgroups of similar gestures according to
the criteria that are presented below (as presented in Table 1).
A classification was obtained according to the taxonomy that
is presented in [30].

Microgesture: A microgesture falls into one of the two
groups: (i) bimanual: bimanual microtap gestures (fingertips
tapping on the surface of the hand, fingers and fingertips)
and bimanual microslide gestures (fingertips sliding on the
projected surface plane of the hand), and (ii) finger rubs:
microgestures that involve at least two fingers rubbing against
each other.

Motion gesture: A motion gesture is any gesture that uses
a 3D object, pose, and motion to interact. This category
includes any gesture change or motion. We focus mainly
on spatial 3D motion gestures, which use a defined hand
pose or property to define a cluster configuration. Hand poses
define the state of the hand, palm, thumb, and individual
fingers based on the simple hand model [24], which considers
the 5 fingertips and the palm point.

Combination of gestures: Two gestures are combined to
produce a new gestures.

Others: This category consists of recurring gestures that
did not fit in any other categories but that were worth
considering.

We also added another category of gestures (99): nonre-
curring combinations of gestures that could not be linked to
any existing category. In the end, we identified 31 distinct
gesture categories. In the next section, we assign the ges-
tures to meaningful categories and conduct a general analysis
of the results, gesture types and consensus among gesture
proposals.

B. CONSENSUS BETWEEN ELICITED GESTURES
Fig. 2 presents the agreement rates that are obtained for each
referent in decreasing order, along with the corresponding
most frequently elicited gestures. Overall, the agreement
rates, as computed byAGATe [20], range from low tomedium
agreement, namely, from .05 to .19 (M = .107, SD = .042).
The three highest agreement rates corresponded to the fol-
lowing actions: ‘‘turn the light on’’, (ref. 10) with an agree-
ment rate of 19.30%; ‘‘turn the light off’’ (ref. 11), with an
agreement rate of 17.70%; and ‘‘go to the previous item in a
list’’ (ref. 7), with an agreement rate of 13%. The three lowest
agreement rates corresponded to ‘‘turn AC off’’ (ref. 9), with
an agreement rate of 4.3%; and to the pair ‘‘turn alarm on/off’’
(ref. 16 and 17), which both had an agreement rate of 5%.
These were considered the least familiar and least frequent
tasks.

These results are very similar to the lowest-ever-reported
agreement rates in the literature on gesture elicitation
( [20], p. 1332), according to a summary of the agreement
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TABLE 1. Classification of gestures for radar-based sensors.
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FIGURE 2. Agreement rates that were computed by AGATe [20] for referents, which are sorted in decreasing order, with 95% confidence intervals
(α = .05).

rates of 18 studies, for which the smallest value (.108) was
reached by Seyed et al. [44] for multidisplay gestures. These
low values are due to two factors: (i) the design space of
possible gestures with a sensor such as Google Soli is large
and contains many possibilities in 0D, 1D, 2D, and 3D;
hence, participants tried many gestures; and (ii) legacy
bias [27] is not strongly present in this case due to the
recency and the novelty of the system. AGATe [20] also
enables us to conduct a statistical test to determine whether
their rates are correlated. Since our sampling contains sev-
eral pairs of related referents, we computed the rates; how-
ever, only three pairs were significant: ‘‘Turn TV On/Off’’
(Vrd (1, n = 50) = 5.556, p∗≤.05), ‘‘Increase/decrease
volume’’ (Vrd (1, n = 50) = 4.000, p∗≤.05), ‘‘Go to
next/previous item’’ (Vrd (1, n = 50) = .667, p>.05, n.s.),
‘‘Turn AC On/Off’’ (Vrd (1, n = 50) = 1.190, p>.05, n.s.),
‘‘Turn light On/Off’’ (Vrd (1, n = 50) = 2.283, p>.05, n.s.),
‘‘Increase/decrease light’’ (Vrd (1, n = 50) = 2.455,
p>.05, n.s.), ‘‘Turn heat On/Off’’ (Vrd (1, n = 50) = .053,
p>.05, n.s.), ‘‘Turn alarm On/Off’’ (Vrd (1, n = 50) = 0.0,
p>.05, n.s.), ‘‘Answer/hang up call’’ (Vrd (1, n = 50) = 6.0,
p∗≤.05). Only a few pairs had correlated gestures.

C. DESIGN SPACE OF RADAR-BASED MICROGESTURES
To better evaluate our participants’ gesture proposals,
six dimensions of analysis were considered, which were
informed by the hand and finger gestures (Fig. 4):

• Dimensionality: This dimension expresses the dimen-
sion of a gesture and ranges from 1D (a line),
2D (a plane), 2D1/2 (a spatial 3D gesture that is pro-
jected onto a 2D surface) to 3D (in space). Surprisingly,
69% of the elicited gestures were issued in space and
subsequently projected (20%), thereby suggesting that
participants fully exploited the space around the device
even if it was limited.

• Range of motion: This dimension relates the distance
between the position of the human body that is produc-
ing the gesture and the location of the gesture. In our
classification, gestures have been regarded as small for
microgestures that only involve fingers, as medium if
the distance is moderate (e.g., performed using a smart-
phone or a similar device), and as large if the ges-
ture requires full-arm movements. Participants issued
medium gestures inmost cases (73%), followed by small
(24 %), and large gestures (3%). Large gestures were
almost nonexistent, since they are contrary to the nature
of microinteractions. Medium gestures had a range of
approximately 1-3 cm; therefore, they could be called
centi-gestures, since they are on the order of centimeters.
Small gestures were below this threshold, with a range
of 5-9 mm; therefore, they could be called milligestures.
These distances are critical for two reasons: the ges-
ture location is required for differentiating the locus of
action, e.g., the closest pinch gesture is related to a ‘‘On’’
command, while the farthest pinch gesture triggers a
corresponding ‘‘Off’’ command; and the same gesture
that is performed close to or far from the source will be
perceived differently, as the level of the signal weakens
as the target is moved away from the radar.

• Body part:Agesturewas categorized differently if it was
performed with the whole hand versus the fingers. For
instance, a gesture made with the hands moving, includ-
ing the wrist, or a gesture that is performed with fingers
moving while the hand remains fixed, were consid-
ered different. Participants largely favored gestures that
made with one-hand gestures (47%) and neglected two-
handed gestures (3%). With one hand, there is a slight
difference between using only one finger (28%) or more
fingers (22%).

• Gesture nature: This dimension describes the
underlying meaning of a gesture, with four categories.
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FIGURE 3. Average thinking time (left) and goodness of fit (right) per referent. The error bars correspond to 95% confidence intervals.

Symbolic gestures (23%) depict commonly accepted
symbols employed to convey information, such as
emblems and cultural gestures. This category thus rep-
resents a meaningful symbol. Metaphorical gestures
(15%) are employed to shape an idea or concept, such
as turning an invisible knob. Physical gestures (31%) are
made when the gesture is produced as if it is physically
acting on a real object. Abstract gestures (31%) are not
aimed at conveying any meaning.

• Laterality: This dimension characterizes how the two
hands are used to produce gestures, with two categories,
as in many previous studies (e.g., [23], [45], [46]):
(a) dominant unimanual (48%), (b) nondominant
unimanual (6%), (c) symmetric bimanual (39%),
and (d) asymmetric bimanual (1%). In other words,
gestures performed with the left hand are considered
different from the same type of gestures performed with
the right hand. However, hands moving, the difference
was not large. While most of the gestures made by the
participants were unimanual, those that were bimanual
were typically symmetric.

• Gesture form: This dimension specifies which form of
gesture is elicited. Four categories have been distin-
guished: ‘stroke’ (when the gesture only consists of
taps and flicks), ‘static’ (when the gesture is performed
in only one location), ‘static with motion’ (when the
gesture is performed with a static pose while the rest
is moving) and ‘dynamic’ (when the gesture does cap-
ture any change or motion). Participants slightly favored
dynamic gestures (30%) over static gestures with a
micromotion (27%) and purely static gestures (22%).
Strokes were almost similarly appreciated (21%), but
physical strokes remain insignificant (1%).

• Scale invariance: This dimension determines whether
gestures that are performed depend on the size, ampli-
tude, or intensity. Overall, 64% of gestures were inde-
pendent of their scale; changing their scale does not
affect their meaning.

D. GENERAL ANALYSIS AND DISCUSSION
Four age groups have been formed, namely, X<22,
22≤X≤24, 24<X≤67, and X>67, where X = age, based
on statistics of early adopters of recent technologies. Since
we had a population with various age ranges, we also tried
to identify any potential correlation between age and other
experimental data. The analysis focuses on potential links
among the thinking time, the goodness of fit, and the creativ-
ity score that are granted to gestures and familiarity with other
electronic devices, with the age variable. The implications of
these findings will be further discussed in the next sections.

1) THINKING TIME
The thinking time (tt) has been averaged for all participants
for each referent (Fig. 3); the thinking time ranges from
tt = 5.38 sec for ‘‘Decrease Volume’’ to tt = 13.42 sec for
‘‘Turn AC On’’. Then, the elicited gestures were clustered
according to dimension (Fig. 5): 1D (M = 10.42, SD =
8.277), 2D (M = 10.43, SD = 8.45), 2D1/2 (M = 9.40,
SD = 7.72), and 3D (M = 9.73, SD = 9.69). To evaluate the
potential normality of their respective distributions, we con-
ducted a normality plot test; 1D (Kurtosis = 1.00 and Skew-
ness = 1.33) and 2D1/2 (Kurtosis = 1.23 and Skewness =
1.35) satisfy the test with values within the [−2,+2] range,
whereas 2D and 3D do not. A Levene test was further con-
ducted to determine whether the thinking times are normally
distributed in at least one of the clusters: by means (p = .95),
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FIGURE 4. Distribution of gestures along dimensions.

FIGURE 5. Thinking time (left) and goodness of fit (right) per gesture
dimension. The error bars correspond to 95% CIs.

by medians (p = .96), and trimmed (p = .98). A single-
factor ANOVA did not return any significance: SS= 34.27,
df = 3, F = .13, p > .1, n.s. This result suggested that
the gesture dimension did not influence the thinking time.
Participants did not spend more time thinking about a spatial
gesture than about a surface gesture, for instance. In terms
of absolute thinking time, people took on average between
3 and 20 seconds to choose a gesture. According to Fig. 6
(green bars), younger participants chose gestures faster than
older participants. The difference is quite distinct, since older
participants almost took twice as much time as younger par-
ticipants, namely, 8.27 seconds on average for the youngest
age group and 15.40 for the oldest age group. The difference
between the two first groups is subtle, however. A larger
sample would be needed to confirm these results, especially
for the two last categories.

2) GOODNESS OF FIT
The goodness of fit (G) has been averaged for all participants
by referent (Fig. 3); it ranges from G = 6.04 for ‘‘Turn
AC Off’’ to G = 8.52 for ‘‘Decrease Volume’’. Then,
the elicited gestures were clustered by dimension ((Fig. 5):
1D (M = 7.77, SD = 1.19), 2D (M = 7.71, SD = 1.92),

FIGURE 6. Thinking time, goodness of fit, and creativity by age group. The
error bars correspond to the standard deviation.

FIGURE 7. Goodness of fit per participant with 95% CI.

2D1/2 (M = 7.88, SD = 1.56), and 3D (M = 7.70,
SD = 1.86). To evaluate the potential normality of their
respective distributions, we conducted a normality plot test;
all dimensions satisfy the test, with kurtosis and skewness
falling within the [−2,+2] range. However, a Levene test
confirmed that the goodness of fit was normally distributed in
all clusters: by means (p = .10), by medians ((p = .15), and
trimmed (p = .14). A single-factor ANOVA did not return
any significance: SS= 1.81, df = 3, F = .20, p > .1, n.s.
This result suggests that the gesture dimension did not influ-
ence the goodness of fit. Participants were not happier when
a gesture was elicited with a higher or a lower dimension.
However, we discover that the goodness of the fit and the
thinking time were always weakly correlated: 1D was weak
(Spearman’s rs = −.11), 2D was moderate (Spearman’s
rs = −.43), 2D1/2 was very weak (Spearman’s rs = −.11),
and 3D was weak as well (Spearman’s rs = −.27).

During the experiment, the participants were asked to
rate each gesture that they performed with a score between
0 and 10. Five intervals have been defined: very bad
(for scores between 0 and 1), poor (between 1 and 3), average
(between 3 and 6), good (between 6 and 8) and excellent
(between 8 and 10). The average goodness of fit is graphically
depicted by participant in Fig. 7 and by gesture in Fig. 8;
the results indicate that people are satisfied with their
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FIGURE 8. Goodness of fit per referent with 95% confidence interval.

gestures most of the time. Only 41 of the 475 gestures were
individually assigned a goodness of fit of less than 5 (not on
average). The intervals ‘very bad’ and ‘poor’ correspond to
very few gestures. The gesture that is assigned the highest
number of low scores (6) refers to the ‘‘TurnAC off’’ referent,
followed by the ‘‘Turn AC on’’ referent (4). This result might
be explained by this action being less common than answer-
ing a phone call, for example; therefore, people not easily
associating a gesture with it. The ‘‘Turn TV off’’ and the
‘‘Start Player’’ referents are also assigned scores of 4. From
these results, it is concluded that most gestures appeared to
be natural to the participants, who regarded their choices as
logical with respect to the referent.

3) SUBJECTIVE SATISFACTION
The distribution of participants’ answers to the 16 questions
of the IBM PSSUQ is plotted in Fig. 9, while the average
score per question is plotted with a 95% confidence interval.

Beyond the neutral value of 3 for these 7-point scales,
a score of 5 is the threshold beyond which the corresponding
question or factor is typically considered [43]. The system
usefulness (Q1-Q6: M = 5.28, SD = 1.37) has an overall
score that satisfies this factor, with Q3 (effectiveness) raising

no concern (all answers are positive) and Q5 (learning curve)
raising concern. Almost all participants completed this part
by answering the six questions. This was not at all the case
for the second factor, namely, information quality (Q7-Q12:
M = 5.53, SD = 1.47), for which several participants
either scored the corresponding questions with disagree-
ment or considered them not applicable (which explains why
some bars are not complete in Fig. 9). The worst-scored ques-
tion was Q7, which was about error messages and guidance;
indeed, a device that is embedded in a smartwatch does not
provide any feedback on the locus of control itself (such as the
fingers and the hand) but on the device that is equipped with
the radar sensor. Q8, which was about how to recover errors,
elicited similar responses; it was not clear to participants
how to recover an error if it occurs. Surprisingly, overall,
this factor still received a score that exceeded the threshold
but with the largest standard deviation, which may suggest
that participants do not all agree. The third factor, namely,
interaction quality (Q13-Q15: M = 5.73, SD = 1.09),
is the most consistently assessed factor, since its score is the
highest, and its deviation is the lowest among all factors. This
is still reflected in the overall satisfaction (All: M = 5.41,
SD = 1.40), which is still ranked above 5. These results may
suggest that a contactless interaction is most appreciated with
respect to its interaction capabilities but less appreciated with
respect to its effectiveness and efficiency, even with the user-
defined gestures.

4) EDUCATION AND CREATIVITY SCORE VARIABLES
A test was conducted to determine whether the creativity
score and education are related in the experience. The edu-
cation data were grouped into three categories: participants
with secondary school degrees, participants with bachelor’s
degrees and participants with master’s degrees. Participants
with higher educational degrees seem to have lower creativity
scores (M = 56.68).
However, the participants with a secondary diploma scored

better on the creativity test (M = 62.11). We can directly
link this result with the age of the participants; the younger

FIGURE 9. Distribution of participants’ answers to IBM PSSUQ.
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the participants are, the more creative they are regarding the
use of this type of technology. We remain cautious about the
results, which should be tested on a larger sample.

5) FAMILIARITY WITH OTHER DEVICES AND AGE VARIABLES
First, we focused on the correlation between the familiarity
with other devices (e.g., computer, smartphone, tablet, game
player, and Kinect) and the age variables. Based on 4-range
means, the participants from the first group have the high-
est familiarity score with technological devices, and people
under 22 years of age also have satisfactory scores. Based on
7-range means, the older participants have a lower familiarity
rate, and people over 50 years seem to constitute the break-
even point regarding the use of technologies. These results
should still be tested on a larger sample of the population for
generalization.

6) OTHER VARIABLES
The agreement rates of six other variables were also calcu-
lated: the body parts that are used, the laterality of the gesture,
the gesture form and motion, the range of motion and the
scale invariance. We selected these variables based on our
appreciation of their utilities for the exploitation of radar-
based sensors, such as the Google Soli [3]. The agreement
rate of the range of motion that is used to perform the gesture
is high, with an average value of 55.80% and a standard
deviation of 11.36%. The scale invariance of the gestures also
corresponded to a high agreement rate, with an average value
of 52.90% and a standard deviation of 8.91%.

E. DISCUSSION OF SOME GESTURES
In this section, we will formulate hypotheses regarding the
results that were presented in the previous section. The high-
est gesture category agreement rates were obtained for the
action of turning on/off the lights.

Ten participants opened their fist (15: splay) to turn the
light on and most of them chose to close their fist (14: fist)
to turn the light off, which represent two symmetric gestures
for two symmetric tasks. The representation of the lighting
diffusion or concentration through the fingers is considered
the most obvious gesture metaphor. We can also observe
the use of a finger snap to turn the light on and to turn
it off by 4 participants. Two of the lowest agreement rates
were obtained for the action of turning on/off the phone
alarm. The gesture that occurred the most often was swiping
(category 10): 4 participants used this gesture to turn the
alarm on and 3 to turn the alarm off. The lowest agreement
rate was obtained with the ‘‘Turn AC off’’ action. This low
agreement rate is mainly because the vast majority of our
participants do not own an air conditioning system at home
and, thus, have difficulty finding an appropriate gesture for
an unfamiliar action.

We also calculated the agreement rates of other variables.
For the range of motion, we obtained a high agreement rate
of 55.8%. This high agreement rate is influenced by the
small response possibility (3). However, the vast majority

FIGURE 10. Wave gesture.

FIGURE 11. The air gesture.

of the participants chose to perform medium-sized gestures
(72.8%). Almost all of the remaining participants chose to use
small-sized gestures (24.0%), and only a very limited number
of participants chose to use large-sized gestures (2.7%).

We found that participants typically rely on gestures that
are used in daily life, for example, those that are related to the
touch screens of smartphones, such as hanging up, picking
up,, and browsing a list, which is another manifestation of
the legacy bias [27]. We also had gestures that were inspired
by ordinary movements, such as turning up or down the
volume, turning on/off the heating and activating/deactivating
the alarm. Another example of a gesture that was often used
by the participants during the experiment was ‘‘Press a button
of the remote control’’ as if they had a remote control in
hand, mainly for the referent ‘‘Turn TV on/off’’. All of those
examples seem natural, since they have become intuitive with
the increasing use of current technologies in our daily lives.
Nevertheless, we noticed that some participants made very
special gestures, for example, the ‘‘wave’’ movement with the
hand (Fig. 10) or with the fingers rotating in the air (Fig. 11)
to turn on the air conditioning, which is a typical example of
a metaphoric gesture.

F. LIMITATIONS
Although this study on radar-based sensing technologies,
such as Google Soli, provide us with interesting insights,
we have identified several limitations. First, the introductory
video about Google Soli can influence the participants by
showing how it could work for various referents. If this intro-
duction is avoided, it can become misleading for participants
who tend to issue unsupported gestures. If this introduction
is included, it can become guiding but subject to a bias,
even if some gestures are not directly demonstrated. Second,
the pictures that are used for the referents can sway users’
gestures by presenting a shape to the referent, which could
vary in daily life. The representation of a referent always
induces a particular behavior, since it is a single example.
Changing this representation to other content (another pic-
ture) or another medium (e.g., an animation or a video) may

VOLUME 7, 2019 176991



N. Magrofuoco et al.: Eliciting Contact-Based and Contactless Gestures With Radar-Based Sensors

FIGURE 12. Set of thirty actions that are used in the confirmatory study and some of their corresponding referents.

influence the results. Third, the participants tend to transfer
their habits with other interfaces – the most relevant example
is the smartphone – without being able to think without this
kind of interface. Fourth, we should reconsider the results of
the creativity test. Some people scored poorly but were highly
creativewith the gestures, whereas others with high scores did
not propose unusual gestures. Finally, in the post-study sys-
tem usability questionnaire (PSSUQ), several questions were
considered irrelevant in our study because gestural interaction
does not provide end users with immediate feedback, guid-
ance, or error management, unless another display is added.
We remain cautious about the responses of the participants to
the nonrelevant questions, which explains why several bars
in Fig. 9 are incomplete.

V. CONFIRMATORY STUDY
Now that a classification of radar-based gestures is available,
we would like to investigate whether participants select the
correct gestures from this gesture set for a broader set of tasks.
Therefore, instead of asking participants to elicit completely
new gestures for referents, we asked a new sample of partic-
ipants to assign a gesture from the consensus set to an action
from a broader set to determine whether our consensus set is
complete and correct.

A. PARTICIPANTS
Twenty voluntary participants (11 females and 9 males; aged
18 to 58 years; M = 27.35, SD = 9.88, Mdn = 24) were

FIGURE 13. Two examples of visual priming [41]: referents from the
elicitation study and from the confirmatory study.

recruited for the study via a contact list for various depart-
ments of our organization. None of these volunteers partici-
pated in the previous study. Eighteen participants were right-
handed, and 2 participants were left-handed. The occupations
of the participants included administrative clerk, accoun-
tant, finance specialist, teacher, psychologist, typesetter, and
students in economics, law, management, and engineering.
All participants reported frequent use of computers and
smartphones and no dexterity problems.
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FIGURE 14. Palette of gestures from the gesture elicitation study that were presented in the confirmatory study.

FIGURE 15. Confirmatory analysis: The agreement rates for referents, which are sorted in decreasing order with 95% confidence intervals (α = .05).

For our study, we selected a set of 30 commands for
common interactions from the current literature, which were
divided into four groups, along with their referents, which
were presented with a stimulus before and after the com-
mand (Fig. 12): a group of 4 basic commands (‘‘Turn light
on/off’’ and ‘‘Brighten/dim light’’) [23], [47], a group of
13 selection commands (e.g., ‘‘Select a date in digital/analog
format’’) [48], a group of 9 commands that are based on
sets (e.g., ‘‘Expand/collapse a set of menu items’’, ‘‘Select
an item from the full set of data’’, and ‘‘Select (again) from
the selected subset’’) [48], [49], and a group of 4 referents for
specification (‘‘Specify a position, a direction, a translation,
and a rotation’’) [50]. These tasks have been chosen to cover
an increasing number of dimensions, from 0D (e.g., ‘‘Turn
light on’’), 1D (e.g., ‘‘Dim light’’), and 2D (e.g., ‘‘Specify a
position’’), to 2D1/2 (e.g., ‘‘Specify a translation’’).

B. APPARATUS AND PROCEDURE
The experiment for this confirmatory study followed exactly
the same procedure as was defined for the elicitation study
(see Section III-C). The pretest and the posttest were simi-
lar, except that the procedure for the main test differed; the
participants were again presented with referents that were
randomly selected from the stimuli and asked to select a
gesture from our classification, which was presented to them

as a palette (Fig. 14). The participants were instructed to
behave naturally,, to select from the palette the gesture that
they thought was the most appropriate for the referent that
was being presented and to specify ‘‘another gesture’’ if
no appropriate gesture was identified. A gesture could be
selected one or many times according to the participant’s
preference without any restrictions. Visual priming was used
to convey the referents [41]; a simple computer screen was
used to display a presentation in which the referents were
randomly shown to the participants (Fig. 13 shows one ref-
erent that is being presented in the elicitation study and one
in the confirmatory step with the statuses before the action
and after). All gestures were recorded by a camera that was
placed in front of the participants to capture their hands and
fingers without capturing their faces. The measures that were
computed for the gesture elicitation study were computed
again for this study.

C. RESULTS AND DISCUSSION
Fig. 12 presents the agreement rates that were obtained for
each referent in decreasing order, along with the correspond-
ing most frequently elicited gesture, category, and frequency
(the number of participants who selected this gesture out
of 20 – if a participant selects the same gesture multiple times,
it is counted as only one occurrence). All the participants
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TABLE 2. Example of gesture classifications of gestures that where elicited by participant #1.

completed the test, but none selected ‘‘another gesture’’. This
suggests that the participants always found an appropriate
choice in the classification, which was presented as a palette,
thereby fostering the completeness of the classification.

Overall, the agreement rates, which were again com-
puted by AGATe [20], are much higher in magnitude in this
confirmatory study than in the elicitation study: the ref-
erents were ranked between .079 and .721 (M = .284,
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SD = .016). We conducted a one-tailed Mann-Whitney test
for the two independent samples. There is a very highly
significant difference in the rates between the elicitation
and confirmatory studies (U = 67, M = 315, SD =
52.23, Z = 4.74, p∗∗∗<.001) with a significant effect of
r = .66, which suggests that higher agreement or conver-
gence across participants is realized when they select gestures
from the classification than when they elicit gestures for
themselves.

Three referents realized very high agreement rates:
‘‘Specify a position’’ (AR = .721), ‘‘Give a rating score’’
(AR = .632), and ‘‘Simple choice two’’ (AR = .563).
Nine referents out of the set of thirty achieved high agree-
ment rates (.5<AR<.3), the vast majority achieved mod-
erate agreement rates (N =

17
30 = 57%, .3≤AR<.1),

and only one referent, which is a difficult opera-
tion, had a low agreement rate (‘‘Add a different
subset’’). Participants correctly selected the ‘‘3:Button’’
category for 0D tasks (e.g., ‘‘Turn light On/Off’’).
In 1D tasks, participants tend to prefer the ‘‘3:Point’’ cate-
gory, followed by uni- and multipinch gestures, which cor-
respond to the ‘‘28:Dimmer’’ category. ‘‘7: Horizontal rub’’
was also suitably selected for specifying a translation and
‘‘9:Scale’’ for specifying a range of values.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented a gesture elicitation study
that explores the contactless gestures that are preferred by
end users with a radar sensing technology (Google Soli).
We created our own design space from participants’ ges-
tures and analyzed the results of each subjective evalua-
tion. We identified gestures that refer to daily activities
in a home. By describing a procedure for classifying ges-
tures, there was consensus among participants for com-
mon gestures, such as ‘‘Dimmer’’, ‘‘Virtual remote control’’
and ‘‘Phone’’, while many gestures are based on users’
classical preferences that we classified. The other ges-
tures utilized more innovative interactions techniques, which
also caught our attention. We believe that hand gesture
recognition is a promising approach for facilitating the
lives of people with reduced mobility and people with
a busy lifestyle. However, we observed that the partici-
pants were noticeably biased by pictures of the referents.
Based on these results, it seems that the participants chose
the point or swipe gestures more frequently than other
gestures.

Furthermore, most participants have some digital knowl-
edge due to their smartphone or their laptop. In the future,
it could be interesting to determine whether these users’
preferences are observed among a larger sample of people.
Interestingly, we observed some older participants transmit-
ting gestures from old-fashioned lamps or phones. It seems
that this generation is transferring their gestures from older
devices. A more advanced study could analyze individuals
in their own daily environments and evaluate the correlation
with our results. We carried out our study in a quiet and

controlled environment; however, participants are supposed
to use this prototype in their daily lives in various contexts of
use. For example, a ‘standard’ living room could be a more
suitable setting. Therefore, we plan to conduct another elic-
itation study in vivo as opposed to in vitro and to determine
the extent to which another set of referents may influence the
results. It is likely that the resulting classification (Table 1)
will remain constant over time, as suggested by the confir-
matory study. Although a few gestures may always appear,
it is likely that the agreement scores and their corresponding
preferred gestures may vary depending on users and their
tasks.

Future work should focus on testing various gesture recog-
nition algorithms on this gesture set to determine the con-
fusion matrix and the extent to which the distance between
the sensor and the gesture may affect the signal intensity and
the recognition accuracy, as in [3]. A representative example
of this kind of study is [8], which demonstrates that the
lift microgesture group has lower error rates than the pinch
group. Microgestures were sorted in increasing order of the
error rate: index lift (ε<.05%), middle lift (ε<.1%), ring lift
and index pinch (ε<.15%), and middle and pinky pinches
(ε<.2%).

APPENDIX A
GESTURE CLASSIFICATION
See Table 2 here.
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