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Abstract

We investigate the stochastic processes obtained as the fractional Riemann-Liouville
integral of order α ∈ (0, 1) of Gauss-Markov processes. The general expressions of the
mean, variance and covariance functions are given. Due to the central rule, for the
fractional integral of standard Brownian motion and of the non-stationary/stationary
Ornstein-Uhlenbeck processes, the covariance functions are carried out in closed-form.
In order to clarify how the fractional order parameter α affects these functions, their
numerical evaluations are shown and compared also with those of the corresponding
processes obtained by ordinary Riemann integral. The results are useful for fractional
neuronal models with long range memory dynamics and involving correlated input
processes. The simulation of these fractional integrated processes can be performed
starting from the obtained covariance functions. A suitable neuronal model is proposed.
Graphical comparisons are provided and discussed.
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1 Introduction

Although fractional calculus has the same ancient origins of the classical calculus, it has
become of extreme interest in last decades for the researches, in many and different science
fields. More recently, the theory and applications of fractional derivatives and fractional
integrals ([36]) have been extensively developed by pure and applied mathematicians. Among
a lot of motivations, we can claim that the researcher’s community realized that fractional
differential equations and related fractional integral solutions provide a natural framework
for the description and the study of real phenomena such as, for instance, those occurring in
biology, in ecology and in neuroscience (see, for instance, [9],[18],[25] and references therein).

Firstly, the integrals of stochastic processes constitute a mathematical subject fascinating
especially probability theorists (see, for instance, [14], [39] and references therein); succes-
sively a wide audience was also attracted. Indeed, the need to describe complex phenomena,
whose time evolution is affected by the history of own behavior ([16]) and by several mem-
ory effects of different nature ([20]), requires to design more elaborate mathematical models
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relying on integrals over time of stochastic processes, and some their modifications. Several
aspects, particular cases and specific models can be found in [1]-[4]. In particular, in [4]
we considered Gauss-Markov (GM) processes and their time integrals. Due to their easy
mathematical handling, such kind of processes are suitable for modeling purposes, in a wide
range of applications as, for instance, in computational neuroscience (see e.g. [44] and refer-
ences therein), in finance mathematics (see e.g. [10]), in queueing theory and other applied
sciences (see e.g. the discussion in [1], [2]). Moreover, as a specific example of application
of integrated GM processes, we can refer to the context of neuronal modeling; indeed, some
dynamics have been studied by introducing the so-called colored noise (i.e., a correlated GM
process) in neuronal stochastic models, in place of the classical white noise (see e.g. [11],
[22], [23], [32]). This kind of models rely on stochastic processes which are the integrals over
time of an Ornstein-Uhlenbeck (OU) process, or more generally, of a GM process. Integrated
GM processes and their first-passage times (FPT) were studied first in [1], [2], and then in
[4].

With the aim to specialize this topic, in this paper we consider its extension to the frac-
tional integration. Specifically, we investigate the stochastic processes obtained as Riemann-
Liouville (RL) integral of GM processes. The motivation of this research is not only to shed
light on such processes, investigating their properties, useful to consolidate their mathemat-
ical setting, but also to explore their powerful skills to model all phenomena that preserve
their memory and are resultant of other dynamics evolving on different time-scales. The
fractional integral reveals really suitable to specialize such kind of models; indeed, this
mathematical tool plays the key rule for tuning the scale of the time, in such a way new
features of the dynamical systems emerge and can be studied.

In the framework of neuronal dynamics, in [32], fractional stochastic models are intro-
duced for preserving the memory of the neuronal membrane evolution; in such description,
the parameter that affects the firing activity is the fractional order of the involved derivative.
Simulation procedures are a first step in the investigation of such kind of models (see, for
instance, [6],[32],[43]). The aim of giving a further contribution, that can be useful in the
theoretical and simulation approaches to neuronal modeling, led us to consider this type of
variable range memory process, obtained as the fractional integral over time of GM pro-
cesses. An example of the mathematical extension of a classical model to the fractional one
has been recently done, for instance, in a different context such as that of queueing systems
in [7].

In this article, motivated by all above considerations, we study as replacing the ordinary
Riemann integral with the fractional RL integral of order α ∈ (0, 1) affects the behavior,
when α varies, of an integrated GM process. Due to their importance among GM processes,
we mainly focus the attention on the fractional integral of the Brownian motion and OU
processes. In particular, we consider the cases of stationary and non-stationary OU processes,
because these two processes allow to design different neuronal models in which stimuli of
different nature (exogenous and endogenous stimuli, respectively) can be included ([8]). A
different approach has been considered in [38], where it was studied the power spectral density
of RL fractional BM, in order to establish a fractional power law of the form 1/fα; note that,
for instance, this feature is observed in ordinary BM and its time integral. Moreover, in the
present article, we do not even consider the fractional OU process as in [28], in which it is
defined as the Riemann-Liuoville of a tempered OU process (for some details on tempered
fractional calculus see, e.g., [30] and references therein). Further investigations on such
processes and comparisons with the processes here analyzed will be part of our future work.
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Furthermore, as an example for possible applications, we consider the model for the
neuronal activity based on the following coupled differential equations, for t ≥ 0:

DαV (t) =
gL
Cm

VL +
η(t)

Cm
, V (0) = V0 (1.1)

dη(t) = −η(t)− I(t)

τ
dt+

ς

τ
dB(t), η(0) = η0. (1.2)

In the (1.1) the derivative Dα stands for the Caputo fractional derivative (specified in the
next section); moreover, η(t) is in place of the white noise dB(t) as usual in the stochastic
differential equation (SDE) of a Leaky Integrate-and-Fire (LIF) neuronal model (see, for
example, [12]). The colored noise process η(t) is the correlated process obeying to the SDE
(1.2) and it is the input for the equation (1.1). The stochastic process V (t) represents the
voltage of the neuronal membrane, whereas the other parameters and functions are: Cm the
membrane capacitance, gL the leak conductance, VL the resting (equilibrium) level potential,
I(t) the synaptic current (deterministic function), τ is the correlation time of η(t) and W (t)
the noise (a standard Brownian motion). The initial values V0 and η0 can be specified
constants or random variables, defining the above model as stationary or non-stationary
one, respectively. η(t) is a time-non-homogeneous GM process (OU-type). Finally, the
solution process V (t) of the equation (1.1) belongs to the class of the fractional RL integrals
of the η(t) GM process, that will be studied in this paper.

Note that, beyond the colored noise, the novelty of the above neuronal model, respect to
the classical ones, is in the use of the fractional derivative in place of the integer one. The
biophysical motivation is to describe a neuronal activity (by equation (1.1)) as a perfect inte-
grator (without leakage) of the whole evolution of the input process η(t) from an initial time
until to the current time, but on a (more or less) finer time scale that can be regulated by
choosing the fractional order of integration suitably adherent to the neuro-physiological evi-
dences. Indeed, such a model can be useful, for instance, in the investigation and simulation
of synchronous/asynchronous communications in networks of neurons ([42]).

We remark again that here we study the processes achieved applying the fractional RL
integral to GM processes, and we investigate how the variation of the fractional order pa-
rameter affects the main features of these processes, such as mean, variance, covariance and
paths. Furthermore, the mathematical results are shown, compared and discussed also in
graphical way in figures carried out by numerical and simulation procedures. Finally, some
indications about their usefulness for neuronal modelling are provided.

The paper is organized as follows. Section 2 contains mathematical formulation and
details of the fractional RL integral of the BM (FIBM); plots of variance and covariance
functions are provided by means of numerical evaluations; sample paths are also simulated
for different values of α in order to show the qualitative behavior of the process. Our main
result is in Section 3: the fractional RL integral of a GM process is defined and the covariance
function is evaluated. Then, in Section 4, for the RL fractional integral of OU and stationary
OU processes, the covariance functions are calculated and numerically evaluated carrying
out comparisons between the fractional integral and the ordinary integral of these specific
GM processes. Finally, in Section 5 we report some graphical comparisons and concluding
remarks.
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2 Mathematical formulation and preliminary results

At first, we start recalling some well-known definitions and introducing the object of our
main interest.

Let be α ∈ (0, 1); if f(t) is a real-valued differentiable function on R, we recall that the
Caputo fractional derivative of f of order α is defined by (see [13]):

Dαf(t) =
1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds, (2.1)

where f ′ denotes the ordinary derivative of f.
If f is a continuous function, its fractional RL integral of order α is defined by (see [15]):

Iα(f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, (2.2)

where Γ is the Gamma Euler function, i.e. Γ(z) =
∫ +∞

0
tz−1e−tdt , z > 0. Notice that,

taking the limit for α → 1−, (2.1) provides the ordinary derivative of f, while (2.2) gives
the ordinary Riemann integral of f ; moreover, by convention, D0f(t) = f(t) − f(0) and
I0(f)(t) = f(t) (for properties of Caputo fractional derivative and fractional RL integral, see
e.g. [19],[27],[33],[36]).

Now, we recall the definition of GM process: letm(t), h1(t), h2(t) be continuous functions
of t ≥ 0 which are C1 in (0,+∞) and such that h2(t) 6= 0 ∀t ≥ 0, and let r(t) = h1(t)/h2(t)
be a non-negative, differentiable function, with r′(t) > 0 for t > 0, and r(0) = r0 ≥ 0.
If, for t ≥ 0, B(t) = Bt denotes the standard Brownian motion (BM), such that B(0) = 0
with probability one (w.p.1), then

Y (t) = m(t) + h2(t)B(r(t)), t ≥ 0, (2.3)

is a continuous GM process with mean m(t) and factorizable covariance c(s, t) = h1(s)h2(t),
for 0 ≤ s ≤ t.
By substituting in (2.2) the function f(t) with Y (t) process, our aim is to study the fractional
RL (pathwise) integral of the GM process Y (t), namely the process

Xα(t) = Iα(Y )(t) =
1

Γ(α)

∫ t

0

(t− s)α−1Y (s)ds. (2.4)

Note that, due to the almost surely continuity of paths of the GM process Y (t), the integral
process Xα(t) is well defined and it is adapted in the same probability space of Y (t).

Referring to the neuronal model (1.1)-(1.2), assuming that V (0) = 0 (and, in some cases,
also η(0) = 0), the RL fractional integral Iα is used as the left-inverse of the Caputo derivative
Dα (see, [21],[29]). In this way, we find that the solution V (t) of (1.1)-(1.2) involves the RL
fractional integral process of the GM process η(t), i.e., specifically

Iα(DαV (t)) = Iα
(
gL
Cm

VL

)
+ Iα

(
η(t)

Cm

)
, with V (0) = 0. (2.5)

The investigation of the last term in the right-hand-side of the above equation has to be
done. We proceed in this direction in the following.
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2.1 The fractional Riemann-Liouville integral of BM (FIBM)

As a first case, we consider the icon of the non-stationary GM processes: the standard
Brownian motion. Let us consider the fractional Riemann-Liouville integral of Bt (FIBM),
that is

Iα(B)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1B(s)ds.

It has not an immediate application in the neuronal model (1.1)-(1.2), but it will play a rule
in the construction of fractional integrals of GM processes. Nevertheless, a possible model
that can be suitable designed is that composed by the following coupled equations:

DαV (t) =
gL
Cm

VL +
η(t)

Cm
, V (0) = 0, (2.6)

dη(t) =
ς

τ
dB(t), η(0) = 0, (2.7)

that, for VL = 0, Cm = 1, are solved by the fractional integral process of a Brownian motion
B(t), i.e.

Iα(DαV ) = Iα(η) =
ς

τ
Iα(B).

Note that the SDE (2.7) is a prototype of integrate-and-fire neuronal models ([26]). The
above model describes the neuronal membrane voltage as the fractional integral of a Brow-
nian input process. Abut such kind of processes, the following holds.

Proposition 2.1 For 0 ≤ α ≤ 1, let be Iα(B)(t) the fractional RL integral of Bt of order
α; then, for 0 ≤ u ≤ t, the covariance of Iα(B)(u) and Iα(B)(t) is:

cov(Iα(B)(u), Iα(B)(t)) =
1

Γ2(α)

[
tα+1uα

α2(α + 1)
− tHα(u, t)

α(α + 1)
+

Jα(u, t)

α(α + 1)

]
(2.8)

where

Jα(u, t) =

∫ u

0

s(u− s)α−1(t− s)αds, (2.9)

Hα(u, t) =

∫ u

0

(u− s)α−1(t− s)αds. (2.10)

Taking u = t in (2.8), one gets the variance of Iα(B)(t) :

V ar(Iα(B)(t)) =
1

Γ2(α)
· t2α+1

α2(2α + 1)
=

t2α+1

(2α + 1)Γ2(α + 1)
. (2.11)

Proof. Since E(B(s)B(v)) = min(s, v), we have for u ≤ t :

cov(Iα(B)(u), Iα(B)(t)) =
1

Γ2(α)
E

(∫ u

0

(u− s)α−1B(s)ds ·
∫ t

0

(t− v)α−1B(v)dv

)

=
1

Γ2(α)

∫ u

0

ds

∫ t

0

dv(u− s)α−1(t− v)α−1 min(s, v); (2.12)
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the last integral can be split into three parts:∫ u

0

ds

∫ s

0

dv(u− s)α−1(t− v)α−1v +

∫ u

0

ds

∫ u

s

dv(u− s)α−1(t− v)α−1s

+

∫ u

0

ds

∫ t

u

dv(u− s)α−1(t− v)α−1s = I1 + I2 + I3, (2.13)

where, for simplicity of notations we let drop the dependence of Ii on α.
We have:

I1 =

∫ u

0

(u− s)α−1ds

∫ s

0

(t− v)α−1vdv;

the inner integral is equal to

(t− s)α+1

α + 1
− t(t− s)α

α
+

tα+1

α(α + 1)
.

Then, by straightforward calculation, we obtain

I1 =
tα+1uα

α2(α + 1)
− t

α(α + 1)

∫ u

0

(u− s)α−1(t− s)αds− 1

α + 1

∫ u

0

s(u− s)α−1(t− s)αds

=
tα+1uα

α2(α + 1)
− t

α(α + 1)
Hα(u, t)− 1

α + 1
Jα(u, t),

where Jα(u, t) and Hα(u, t) are given by (2.9) and (2.10). As for the second integral, we
have:

I2 =
1

α

[∫ u

0

s(u− s)α−1(t− s)αds− (t− u)α
∫ u

0

s(u− s)α−1ds

]
=

1

α
Jα(u, t)− 1

α
(t− u)α

uα+1

α(α + 1)
.

The third integral is:

I3 =

(∫ u

0

s(u− s)α−1ds

)(∫ t

u

(t− v)α−1dv

)
=

uα+1

α2(α + 1)
· (t− u)α.

Finally, by summing the three integrals, and inserting in (2.13), we obtain (2.8).
To obtain the variance, it is enough to put u = t in (2.8) and to note that Jα(t, t) =

t2α+1

2α(2α+1)
and Hα(t, t) = t2α

2α
; then, (2.11) follows.

�

Remark 2.2 For α = 1 one has J1(u, t) = tu2/2 − u3/3 and H1(u, t) = t2/2 − (t − u)2/2,
so from (2.8) one gets the well-known covariance function of integrated BM (see e.g [35]):

cov

(∫ u

0

Bsds,

∫ t

0

Bvdv

)
= u2

(
t

2
− u

6

)
; (2.14)

moreover, from (2.11), its variance follows:

var

(∫ t

0

Bsds

)
= t3/3. (2.15)
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Figure 1: Plot of the covariance function of FIBM, cov(Iα(B)(u), Iα(B)(t)), given by (2.8),
as a function of t ≥ u, for u = 1 fixed, and various values of α ∈ (0, 1). The horizontal line
represents the covariance calculated for α = 0; the curve corresponding to α = 1 matches
the straight line of equation y = t/2− 1/6.

2.1.1 Numerical evaluations: the FIBM covariance

We have computed cov(Iα(B)(u), Iα(B)(t)) for various values of α and u ≤ t; since Jα(u, t)
and Hα(u, t) cannot be obtained in closed form for any α, their value has been obtained by
numerical integration.
In the Figure 1, we report the graph of cov(Iα(B)(u), Iα(B)(t)) given by (2.8), as a function
of t ≥ u, for u = 1 fixed, and various values of α ∈ (0, 1).
In the Figures 2 we report the graph of the same covariance as a function of α ∈ (0, 1), for
u = 1 and various values of t ≥ 1.
It appears that, for fixed u and α the covariance function of Iα(B)(t) increases, as a function
of t ≥ u. For fixed u, there exists a value t̄u such that for t < t̄u the covariance function is
decreasing as a function of α, while for t > t̄u it is increasing (for u = 1 one has t̄u ' 1.5,
see Figure 1).
Moreover, for fixed u and t, a value ᾱt exists at which the covariance attains its maximum,
that is, for α ≤ ᾱt the covariance function is increasing, as a function of α, while it is
decreasing for α > ᾱt (see Figure 2).
Of course, since I0(B)(t) = B(t), for 1 = u ≤ t one has

cov(I0(B)(u), I0(B)(t)) = cov(B(u), B(t)) = min(u, t) = 1.

Notice that the value α = 0 cannot be directly substituted in (2.8), because Jα(u, t), Hα(u, t)
and Γ(α) diverge, as α → 0+. Thus, numerical calculation allows only to evaluate the
covariance for small, but positive α (in fact, we have taken α = 0.001).
For α = 1, we recover the covariance of integrated BM; in fact, for u = 1 it is equal to
t/2− 1/6 (see (2.14)) whose graph matches the curve obtained for α = 1.
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Figure 2: Plot of the covariance function of FIBM, given by (2.8), as a function of α ∈ (0, 1),
for u = 1 and t = 1.5, 2, 2.5, 3, 3.5, 4 (left panel); t = 5, 6, 8, 10, 12, 14 (right panel).
The larger t, the higher the curve.

3 The fractional Riemann-Liouville integral of a Gauss-

Markov process

Let us consider the GM process Y (t) given by (2.3); we have

Iα(Y )(t) =
1

Γ(α)

∫ t

0

(t− s)α−1Y (s)ds =
1

Γ(α)

∫ t

0

(t− s)α−1[m(s) + h2(s)B(r(s))]ds

=
1

Γ(α)

∫ t

0

[m̃(s, t) + h̃2(s, t)B(r(s))]ds, (3.1)

where
m̃(s, t) = (t− s)α−1m(s), h̃2(s, t) = (t− s)α−1h2(s) (3.2)

(here, the dependence on α was omitted to avoid an heavy notation). Then, by straightfor-
ward calculations, and applying the linearity in L1 of the fractional RL integral operator,
we obtain:

Proposition 3.1 The fractional RL integral of Y (t),

Iα(Y )(t) =
1

Γ(α)

∫ t

0

(t− s)α−1Y (s)ds, (3.3)

is normally distributed with mean M(t) = 1
Γ(α)

∫ t
0
m̃(s, t)ds and covariance, for 0 ≤ u ≤ t :

cov (Iα(Y )(u), Iα(Y )(t)) =
1

Γ2(α)
cov

(∫ u

0

h̃2(s, t)B(r(s))ds,

∫ t

0

h̃2(v, t)B(r(v))dv

)

=
1

Γ2(α)

∫ u

0

ds

∫ t

0

dv h̃2(s, t)h̃2(v, t) min(r(s), r(v)). (3.4)
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Remark 3.2 The integral in (3.4) can be calculated, by splitting it into three parts, as in
the proof of Proposition 2.1; thus, one obtains:

cov (Iα(Y )(u), Iα(Y )(t)) =
1

Γ2(α)

[ ∫ u

0

ds(u− s)α−1h2(s)

∫ s

0

dv(t− v)α−1r(v)h2(v)

+

∫ u

0

ds(u− s)α−1h2(s)r(s)

∫ u

s

dv(t− v)α−1h2(v)

+

(∫ u

0

ds(u− s)α−1r(s)h2(s)

)(∫ t

u

dv(t− v)α−1h2(v)

)]
:=

1

Γ2(α)

[
Ĩ1 + Ĩ2 + Ĩ3

]
, (3.5)

where, for simplicity of notations we let drop the dependence of Ĩi on α. For u = t, Ĩ3

vanishes and Ĩ2 = Ĩ1, so one has:

V ar (Iα(Y )(t)) =
2

Γ2(α)

∫ t

0

ds(t− s)α−1h2(s)

∫ s

0

dv(t− v)α−1r(v)h2(v). (3.6)

4 Fractional integral of GM processes and comparisons

with the ordinary integral of GM processes

In this section, we study the qualitative behavior of the fractional integral over time of a
GM process, when varying the order α ∈ (0, 1), and we compare it with the corresponding
ordinary integral. Computer simulation is also used to illustrate these behaviors. First, we
recall from [4] the following result, regarding the ordinary integral over time of a GM process.

Theorem 4.1 Let Y be a GM process of the form (2.3) with r(0) = r0 ≥ 0, r′(t) > 0 for t >
0; then X(t) = x+

∫ t
0
Y (s)ds can be written as V(t)+η

∫ t
0
h2(s)ds, in which η = B(r(0)) and

V(t) is normally distributed with mean x+M(t) and variance γ(ρ(t)), where ρ(t) = r(t)−r(0),
M(t) =

∫ t
0
m(s)ds, γ(t) =

∫ t
0
(R(t)−R(s))2ds and R(t) =

∫ t
0
h2(ρ−1(s))/ρ′(ρ−1(s))ds.

�

Note that, generally the V(t) process and the r.v. η are not independent, when r(0) 6= 0
(if r(0) = 0, then the term η vanishes).

4.1 Fractional integrated BM (FIBM)

If Y (t) = Bt, taking m(t) = 0, h2(t) = 1, r(t) = ρ(t) = t in Theorem 4.1, we have for the
ordinary integral of BM: ∫ t

0

Bsds ∼ N(0, t3/3), (4.1)

where N(µ, σ2) denotes a Gaussian r.v. with mean µ and variance σ2.
By using Proposition 2.1, we obtain that the fractional integral of order α, i.e.

Iα(B)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1Bsds ∼ N(0, t2α+1/[α2(2α + 1)Γ2(α)]).

Thus, we have:
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Figure 3: Plot of the variance of FIBM, Iα(B)(t), given by (2.11), as a function of t ∈ [0, 3.5],
for various values of α ∈ (0, 1). The time zone at which an inversion of behavior is observed
goes from t ' 1.73 to t ' 1.77. For α = 0.001 the curve is close to the graph of the function
v(t) = t, since for α = 0 FIBM becomes BM; for α = 1 the curve matches the graph of the
function v(t) = t3/3, since FIBM becomes the ordinary integral of BM.

• for α→ 0+, Iα(B)(t) ∼ N(0, t), because αΓ(α) = Γ(α + 1) and so α2(2α + 1)Γ2(α) tends
to Γ2(1) = 1; therefore, I0(B)(t) has the same distribution as Bt.

• for α = 1/2, one has Iα(B)(t) ∼ N(0, 2t2/π), because Γ(1/2) =
√
π.

• for α → 1−, one has Iα(B)(t) ∼ N(0, t3/3), because the fractional integral coincides with
the ordinary integral.

4.1.1 Numerical evaluations of the FIBM variance and simulation paths

In the Figure 3 we report the shape of the variance of Iα(B)(t), i.e. t2α+1/[(2α+1)Γ2(α+1)],
as a function of t > 0, for various values of α ∈ (0, 1). As we see, for fixed α the variance is
increasing, as a function of t. Moreover, for small enough values of t, the curves become ever
lower, as α increases, that is, the variance decreases as a function of α; for larger enough
values of t this behavior is overturned, because the variance increases with α. The time zone
at which an inversion of behavior is observed goes from t ' 1.73 to t ' 1.77. For α = 0.001
the curve is close to the graph of the function v(t) = t, since for α = 0 FIBM becomes BM;
for α = 1 the curve matches the graph of the function v(t) = t3/3, since FIBM becomes the
ordinary integral of BM.
In the Figure 4 we report the graphs of simulated trajectories of FIBM as function of time
t, for some values of α ∈ (0, 1).
Specifically, the sample paths have been obtained by using the R software, with time dis-
cretization step h = 0.01 and by means of the same sequence of pseudo-random Gaussian
numbers. Our simulation algorithm has been realized as an R script. Referring to algo-
rithms for the generation of pseudo-random numbers (see, for instance, [17]), the main steps
of implementation are the following:
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Figure 4: Simulated trajectories of FIBM as function of time t, for some values of α ∈ (0, 1).
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• calculation of the elements ofN×N covariance matrix C(ti, tj) at times ti, i = 1, . . . , N,
of an equi-spaced temporal grid;

• application of the Cholesky decomposition algorithm to the covariance matrix C to
obtain a lower triangular matrix L(i, j) such that C = LLT ;

• generation of a N-dimensional array z of standard pseudo-Gaussian numbers;

• construction of the sequence of simulated values of the correlated fractional integrated
process as the array x = Lz.

Finally, the array x provides the simulated path (X(t1), . . . , X(tN)), which components
have the assigned covariance.
In particular, in the Figure 5, we compare the density histogram of simulated values of FIBM
at a certain time t, with the Gaussian density with zero mean and variance given by (2.11),
for various values of α. As we see, the matching is very good.

4.2 Fractional integrated OU (FIOU) process

Let be YOU(t) the (non stationary) OU process, given by the solution of the SDE:

dYOU(t) = −µ(YOU(t)− β)dt+ σdBt, YOU(0) = y, (4.2)

where µ, σ > 0 and β ∈ (−∞,+∞). The explicit solution is (see e.g. [5]):

YOU(t) = β + e−µt[y − β + B̃(ρ(t))], (4.3)

where B̃(t) is standard BM and

r(t) = ρ(t) =
σ2

2µ

(
e2µt − 1

)
(4.4)

(notice that r(0) = 0). So, YOU(t) is a GM process with:

m(t) = β + e−µt(y − β), (4.5)

h1(t) =
σ2

2µ

(
eµt − e−µt

)
, h2(t) = e−µt (4.6)

and covariance

c(s, t) = h1(s)h2(t) =
σ2

2µ

(
e−µ(t−s) − e−µ(s+t)

)
, 0 ≤ s ≤ t. (4.7)

Referring to the neuronal model, i.e. to the equations (1.1)-(1.2), the OU process YOU(t)
stands for the process η(t) solution of (1.2) if one takes τ = 1/µ, ς/τ = σ and a constant
input current β in place of the I(t).

By calculating the various quantities in Theorem 4.1, we get (see [2]):

M(t) =

∫ t

0

(
β + e−µs(x− β)

)
ds = βt+

(x− β)

µ

(
1− e−µt

)
, (4.8)
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ρ−1(s) =
1

2µ
ln

(
1 +

2µ

σ2
s

)
, R(t) =

∫ t

0

e−µρ
−1(s)(ρ−1)′(s)ds =

1− e−µρ−1(t)

µ
, (4.9)

γ(t) =
1

µ2

∫ t

0

(
e−µρ

−1(t) − e−µρ−1(s)
)2

ds =
1

µ2

∫ t

0

(
1√

1 + 2µt/σ2
− 1√

1 + 2µs/σ2

)2

ds

=
σ2t

µ2(σ2 + 2µt)
− 2σ2

µ3
√

1 + 2µt/σ2

(√
1 + 2µt/σ2 − 1

)
+

σ2

2µ3
ln
(
1 + 2µt/σ2

)
. (4.10)

Thus, by Theorem 4.1, being η = B(r(0)) = B(0) = 0, we obtain that the integrated OU
(IOU) process (i.e. the ordinary integral over time of the OU process)

XIOU(t) =

∫ t

0

YOU(s)ds = I1(YOU)(t) (4.11)

is normally distributed with mean M(t) and variance γ(ρ(t)). By calculation, one obtains:

var(XIOU(t)) =
σ2

2µ3

[
1− e−2µt − 4(1− e−µt) + 2µt

]
, t ≥ 0. (4.12)

As far as the FIOU, i.e. Iα(YOU)(t), is concerned, by Proposition 3.1 we get that it has normal
distribution with mean M(t) = 1

Γ(α)

∫ t
0
m̃(s, t)ds, and covariance and variance respectively

given by (3.5) and (3.6), where r(t) is as in (4.4), m̃, h̃2 are the corresponding functions
obtained inserting (4.5), (4.6) in (3.2). Precisely, the integrals in (3.5) turn out to be:

Ĩ1 =
σ2

µ

∫ u

0

ds(u− s)α−1e−µs
∫ s

0

dv(t− v)α−1 sinh(µv),

Ĩ2 =
σ2

µ

∫ u

0

ds(u− s)α−1 sinh(µs)

∫ u

s

dv(t− v)α−1e−µv,

Ĩ3 =
σ2

µ

(∫ u

0

ds(u− s)α−1 sinh(µs)

)(∫ t

u

dv(t− v)α−1e−µv
)
. (4.13)

Notice that, for σ = 1 and µ → 0 one obtains again the integrals Ii, i = 1, 2, 3 in (2.13),
since YOU(t) approaches BM.
Taking α = 1 in the expressions above, by (3.5) one obtains the covariance of the ordinary
integral of OU (IOU):

cov(I1(YOU)(u), I1(YOU)(t))

=
σ2

2µ3

(
2µu+ 4e−µu − e−µ(t−u) − e−µ(t+u) + 2e−µt − 2e−µu − 2

)
, 0 ≤ u ≤ t. (4.14)

4.2.1 Numerical evaluations: The FIOU variance and covariance

As we see, for α different from 0 and 1, the calculations required to find the covariance of
FIOU are far more complicated than in the case of FIBM; in fact, Ĩi are double integrals
which cannot be found analytically, so we have calculated them numerically, by using the R
software.
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Figure 6: Plot of the variance of FIOU, Iα(YOU)(t) with σ = µ = 1, as a function of t ∈ [0, 8],
for various values of α ∈ (0, 1). The time zone at which an inversion of behavior is observed
goes from t ' 1.73 to t ' 1.77. For α = 0.1 the curve is close to the graph of the function
V ar(t) = σ2

2µ
(1 − exp(−2µt)) (i.e. the variance of OU), since FIOU for α = 0 becomes OU;

for α = 1 the curve matches the graph of the function γ(ρ(t)) (i.e. the variance of IOU),
given by (4.12), since FIOU becomes the ordinary integral of OU.

With reference to OU process with σ = µ = 1, in the Figure 6, for u = 1 and u ≤ t ≤ 2,
and several values of α, we report the shape of the variance of Iα(YOU)(t).
As we see, for fixed α the variance is increasing, as a function of t. Moreover, for small enough
values of t, the curves become ever lower, as α increases, that is, the variance decreases as a
function of α; for larger enough values of t this behavior is overturned, because the variance
increases with α. In fact, it appears a behavior analogous to that of the variance of the
FIBM (see Figure 3); the time zone at which an inversion of behavior is detected, is the
same observed for the variance of the FIBM. For α = 0.1 the curve is close to the graph
of the function v(t) = σ2

2µ
(1 − exp(−2µt)) (i.e. the variance of OU), since for α = 0 FIOU

becomes OU; for α = 1 the curve matches the graph of the function γ(ρ(t)) (i.e. the variance
of IOU), given by (4.12), since FIOU becomes the ordinary integral of OU.

In the Figure 7 the cov(Iα(YOU)(u), Iα(YOU)(t)), for u = 1 and u ≤ t ≤ 2, for various
values of α. We note that for α = 0.01 the curve is close to the covariance of OU, given by
(4.7) (red curve), for α = 0.99 the curve is close to that of the covariance of the ordinary
integral of OU (IOU), given by (4.14) (green curve).
In the Figures 11 and 12 of the last section, for further comparisons between the considered
processes, we report the three-dimensional plot and two-dimensional color plot, respectively,
of the covariance function of FIOU, c(u, t) = cov(Iα(YOU)(u), Iα(YOU)(t)), for various values
of α. These illustrate globally the behavior of the covariance function of FIOU, for any u
and t; note, for instance, that for u = t they match the behavior shown in the Figure 6.
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Figure 7: Plot of the covariance of FIOU, cov(Iα(YOU)(u), Iα(YOU)(t)), with σ = µ = 1,
for 1 = u ≤ t ≤ 5, and various values of α ∈ (0, 1). For α = 0.01 the curve is close to the
covariance of OU, given by (4.7) (red curve), for α = 0.99 the curve is close to that of the
covariance of the ordinary integral of OU (IOU), given by (4.14) (green curve).

4.3 Fractional integrated stationary OU (FISOU) process

For µ > 0 and σ 6= 0, the stationary OU (SOU) process is defined by

YSOU(t) = e−µtB

(
σ2

2µ
e2µt

)
; (4.15)

therefore, the SOU process is a GM process with

r(t) =
σ2

2µ
e2µt, m(t) = 0, (4.16)

h1(t) =
σ2

2µ
eµt, h2(t) = e−µt, (4.17)

and covariance

c(s, t) =
σ2

2µ
e−µ(t−s), s ≤ t. (4.18)

One has var(YSOU(t)) = σ2

2µ
and YSOU(t) admits a steady-state distribution, which is

N(0, σ2/2µ). Moreover, r(0) = σ2

2µ
> 0, η = B(σ

2

2µ
), ρ(t) = r(t) − r(0) = σ2

2µ
(e2µt − 1) , h1(t)

and h2(t) are the same functions of (non stationary) OU.
Referring to the neuronal model (1.1)-(1.2), the η(t) process solving the equation (1.2),

with η0 r.v., is a stationary OU process as above specified. A specific example of application
can be found in [37]. It is usually used for modeling correlated exogenous inputs.

Then, by Theorem 4.1 the integrated SOU (ISOU) process (i.e. the ordinary integral
over time of the SOU process) is:

XISOU(t) =

∫ t

0

YSOU(s)ds =

∫ t

0

e−µsB(ρ(s))ds+ η

∫ t

0

e−µsds (4.19)
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Figure 8: Plot of the variance of FISOU, Iα(YSOU)(t) with σ = µ = 1, as a function of
t ∈ [0, 8], for various values of α ∈ (0, 1). The time zone at which an inversion of behavior
is observed goes from t ' 1.7 to t ' 1.8 . For α = 0.1 the curve is close to the graph of
the function v(t) = σ2/2µ (i.e. the variance of SOU, red), since FISOU for α = 0 becomes
SOU; for α ≈ 1 the curve matches the graph of the function v(t) = σ2

µ3
(µt + e−µt − 1) (i.e.

the variance of ISOU, green), given by (4.22), since FISOU becomes the ordinary integral of
SOU.
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Figure 9: Plot of the covariance of FISOU, cov(Iα(YSOU)(u), Iα(YSOU)(t)), with σ = µ = 1,
for 1 = u ≤ t ≤ 5, and various values of α ∈ (0, 1). For α = 0.0, the red curve is the
covariance of SOU, given by (4.18), for α = 1 the green curve is the covariance of the
ordinary integral of SOU (ISOU), given by (4.21).
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=

∫ ρ(t)

0

e−µρ
−1(u)

ρ′(ρ−1(u))
B(u)du+

(
1− e−µt

µ

)
η. (4.20)

Thus, for fixed t, XISOU(t) turns out to be the sum of two (correlated) Gaussian r.v. W1 and
W2 with zero mean; the variance of W1 can be calculated by Theorem 4.1, while var(W2) =

σ2 (1−e−µt)2
2µ3

. The covariance function of ISOU XISOU(t) was calculated in [4]; it holds (see

also [41]):

cov(XISOU(t), XISOU(s)) =
σ2

2µ3

(
2µmin(s, t) + e−µs + e−µt − e−µ|t−s| − 1

)
, (4.21)

and so

var(XISOU(t)) =
σ2

µ3

(
µt+ e−µt − 1

)
. (4.22)

As far as the fractional integral Iα(YSOU)(t) (FISOU) is concerned, by using (4.19) one has:

Iα(YSOU)(t) = Iα(g1)(t) + η Iα(g2)(t), (4.23)

with
g1(t) = e−µtB(ρ(t)), g2(t) = e−µt, (4.24)

where the distributions of the two fractional integrals can be obtained by using Proposition
3.1. By using (4.23), we obtain the covariance of FISOU, for u ≤ t :

cov(Iα(YSOU)(u), Iα(YSOU)(t)) = E
[
Iα(e−µuB(ρ(u))) Iα(e−µtB(ρ(t)))

]
+

E
[
Iα(e−µuB(ρ(u))) ηIα(e−µt)

]
+ E

[
ηIα(e−µu) Iα(e−µtB(ρ(t))

]
+

E
[
ηIα(e−µu) ηIα(e−µt)

]
:= J̃1 + J̃2 + J̃3 + J̃4, (4.25)

where for simplicity we let drop the dependence of J̃i on α. By using the definition of
fractional integral, and proceeding as in the case of FIBM and FIOU, one gets:

J̃1 =
J̃11 + J̃12 + J̃13

Γ2(α)
,

where:

J̃11 =
σ2

2µ

∫ u

0

ds(u− s)α−1e−µs
∫ s

0

dv(t− v)α−1e−µv
(
e2µv − 1

)
= Ĩ1,

J̃12 =
σ2

2µ

∫ u

0

ds(u− s)α−1e−µs
(
e2µs − 1

) ∫ u

s

dv(t− v)α−1e−µv = Ĩ2,

J̃13 =
σ2

2µ

(∫ u

0

ds(u− s)α−1e−µs
(
e2µs − 1

))(∫ t

u

dv(t− v)α−1e−µv
)

= Ĩ3,

being Ĩi the integrals concerning FIOU, given by (4.13). Also:

J̃2 =
σ2

2µ

(∫ u

0

ds(u− s)α−1e−µs ·min{1, e2µs − 1}
)(∫ t

0

dv(t− v)α−1e−µv
)
,

J̃3 = J̃2,
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J̃4 =
σ2

2µ

(∫ u

0

ds(u− s)α−1e−µs
)(∫ t

0

dv(t− v)α−1e−µv
)
.

Finally, substituting in (4.25), we obtain for u ≤ t the covariance of FISOU:

cov(Iα(YSOU)(u), Iα(YSOU)(t)) =
1

Γ2(α)

(
J̃11 + J̃12 + J̃13 + 2J̃2 + J̃4

)
=

1

Γ2(α)

(
Ĩ1 + Ĩ2 + Ĩ3 + 2J̃2 + J̃4

)
= cov(Iα(YOU)(u), Iα(YOU)(t)) +

2J̃2 + J̃4

Γ2(α)
. (4.26)

Thus, the covariance function of FISOU turns out to be the sum of the covariance of FIOU

and the quantity 2J̃2+J̃4
Γ2(α)

.

For u = t, one has J̃13 = 0 and J̃11 = J̃12, so:

var(Iα(YSOU(t)) =
1

Γ2(α)

(
2J̃11 + 2J̃2 + J̃4

)
=

1

Γ2(α)

(
2Ĩ1 + 2J̃2 + J̃4

)
, (4.27)

where all the integrals have to be calculated for u = t.
In the Figures 8-9, we report the shape of the variance and covariance function of FISOU,

for various values of α ∈ (0, 1). In the Figure 8, it is observed a time zone (from t ' 1.7 to
t ' 1.8), at which there is an inversion of behavior, as in Figure 6 concerning the variance
of FIOU. Here, however, unlike Figure 6, it is visible a more confused behavior in the time
zone (1.7, 1.8). This is probably due to an higher degree of stochasticity of FISOU with
respect to FIOU (in fact, the starting point of SOU is random). Note that we have not
be able to calculate the variance and covariance of FISOU for α less than 0.1, owing to
numerical problems which arise in computing the integrals J̃ , for α near zero. For α = 0.1
the curve is close to the graph of the function v(t) = σ2/2µ (i.e. the variance of SOU), since
FISOU for α = 0 becomes SOU; for α ≈ 1 the curve matches the graph of the function
v(t) = σ2

µ3
(µt+ e−µt − 1) (i.e. the variance of ISOU), given by (4.22), since FISOU becomes

the ordinary integral of SOU.

5 Some graphical comparisons and concluding remarks

In order to complete our analysis and compare the obtained results for the considered pro-
cesses, we provide the numerical evaluations of the covariance functions in some three and
two dimensional plots.

In the Figure10 we report the two-dimensional color plot of the covariance function
of FIBM, c(u, t) = cov(Iα(B)(u), Iα(B)(t)), given by (2.8) and the graph of the surface
z = c(u, t), for various values of α; in the Figure 11 we report the graphs of the surface
z = c(u, t), for various values of α, in the cases of FIOU and FISOU, respectively. In the
Figure 12, we report the two-dimensional color plots of the covariance function of FIOU and
FISOU, respectively, for various values of α. These figures illustrate globally the behavior of
the covariance function of the three considered processes, for any u and t; note, for instance,
that for u = t they match the behavior shown in the figures concerning the variance of the
processes (compare with Figures 6,8).
Comparing the FIOU and FISOU cases of Figg.11-12, the covariances exhibit a similar
behavior for values of α greater than 0.8. Furthermore, it appears evidente that the FIOU
and FISOU covariances are always lower than those of FIBM in Fig. 10. The behaviors
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of FIOU and FISOU covariance appear more similar each other, but really different from
the behavior of the FIBM covariance. Indeed, in Fig.10 is evident that the covariance of
FIBM, as function of α, and for increasing α, attains rapidly values around 15, whereas the
covariances of FIOU and FISOU arrive to around 2, for α ≈ 1.

Moreover, referring to color plot of the covariances of FIOU and FISOU in Fig.12, we
note that for every values of α the FISOU covariance, although slightly, has values greater
than those of the FIOU covariance. In addition, the FISOU covariance show higher values
(consequently, it can be seen a more diffuse correlation) around the diagonal respect to the
case of FIOU covariance. In particular, note that, for α = 0.2 in Fig.12, FISOU covariance
c(u, t) shows highest values for small values of t and u close to the diagonal, differently from
the FIOU covariance. For α = 0.5 and α = 0.8 the color plots of FISOU become more
similar to those of FIOU, even if a more diffusion correlation remains evident for FISOU
case. An explanation of these differences can be that the SOU process has a random starting
point, and this has an impact on the ISOU, implying a greater variability (larger variance
and correlation) respect to the case of IOU process.
The above comparing remarks can also be verified in the three-dimensional plots in Fig.11,
where it is also possible to observe how the covariance functions increase for increasing values
of α.
However, for large enough time t, variance and covariance of the three processes are increasing
functions of α, as one expects.

1

2

3

4

1
2

3
4

0

5

10

15

α= 0.1

1

2

3

4

 

1

2

3

4

1
2

3
4

0

5

10

15

α= 0.5

2

4

6

8

 

1

2

3

4

1
2

3
4

0

5

10

15

α= 0.9

5

10

15

 

1 2 3 4

1

2

3

4
α= 0.2

0

5

10

15

 

1 2 3 4

1

2

3

4
α= 0.5

0

5

10

15

 

1 2 3 4

1

2

3

4
α= 0.8

0

5

10

15

 

Figure 10: On top: three-dimensional plot of the covariance function of FIBM
cov(Iα(B)(u), Iα(B)(t)), for σ = µ = 1, and various values of α. On bottom: two-dimensional
color plot of the covariance function of FIBM cov(Iα(B)(u), Iα(B)(t)) on the same scale.
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Figure 11: On top: three-dimensional plot of the covariance function of FIOU c(u, t) =
cov(Iα(YOU)(u), Iα(YOU)(t)) for σ = µ = 1, and various values of α. On bottom: the same
for the covariance function of FISOU c(u, t) = cov(Iα(YSOU)(u), Iα(YSOU)(t)).

We remark the usefulness of the graphical comparisons for the considered processes and
for different values of fractional order α. Again we confirm that the parameter α can be
extremely useful in models, similar to the proposed neuronal model, for tuning the length of
memory and the accuracy of the time-scale of dynamics under observation.

The aim of giving further contribution to neuronal modeling led us to consider the long
range memory process obtained as the fractional integral over time of a GM process. In par-
ticular, the adoption of the fractional integral operator in place of the integer one, extending
(form mathematical point of view) the latter, allows to describe dynamics that occur on
different time-scales on which the integration of their past evolution plays the key rule to
understand and predict the resultant complex behaviors.

In this paper, motivated by the above considerations, we have studied as replacing the
ordinary Riemann integral with the fractional RL integral of order α ∈ (0, 1) affects the
behavior, when varying α, of an integrated GM process, i.e. the processes obtained applying
the fractional RL integral over time to GM processes; in particular, we have studied the frac-
tional integral of Brownian motion, non-stationary OU process and stationary OU process.
These processes have a preeminent use in neuronal modeling and they are representative of
the main classes of GM processes. Beyond the closed-form obtained of covariance function
of each of the above processes, we also provide numerical and graphical results, suitably
compared. The possible applications by means of a neuronal model are illustrated. The
advantage of the evaluations of covariances for fractional integrated processes is in the possi-
bility to implement a simulation procedure for sample paths and the consequent investigation
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Figure 12: On top: two-dimensional color plot of the covariance function of FIOU
c(u, t) = cov(Iα(YOU)(u), Iα(YOU)(t)), for σ = µ = 1, (on the same scale) and vari-
ous values of α. On bottom: the same for the covariance function of FISOU c(u, t) =
cov(Iα(YSOU)(u), Iα(YSOU)(t)).

of the first passage times through specific boundaries ([3],[40]). This will be of extreme in-
terest to explain and predict neuronal dynamics, because none theoretical result about these
times for fractional integrated processes is available. All these further investigations will be
the object of our future work.
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