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Relation identities in 3-distributive varieties

Paolo Lipparini

Abstract. Let α, β, γ, . . . Θ, Ψ, . . . R, S, T, . . . be variables for, respectively, con-
gruences, tolerances and reflexive admissible relations. Let juxtaposition denote in-
tersection. We show that if the identity

α(β ◦Θ) ⊆ αβ ◦ αΘ ◦ αβ

holds in a variety V , then V has a majority term, equivalently, V satisfies α(β ◦ γ) ⊆
αβ ◦ αγ. The result is unexpected, since in the displayed identity we have one more
factor on the right and, moreover, if we let Θ be a congruence, we get a condition
equivalent to 3-distributivity, which is well-known to be strictly weaker than the
existence of a majority term.

The above result is optimal in many senses; for example, we show that slight
variations on the displayed identity, such as R(S ◦ γ) ⊆ RS ◦Rγ ◦RS or R(S ◦ T ) ⊆
RS◦RT ◦RT ◦RS hold in every 3-distributive variety, hence do not imply the existence
of a majority term. Similar identities are valid even in varieties with 2 Gumm terms,

with no distributivity assumption. We also discuss relation identities in n-permutable
varieties and present a few remarks about implication algebras.

1. Introduction

Congruence identities and relation identities. By a classical and sur-

prising result by Nation [26] in the 1970’s, there are non-equivalent lattice

identities which are equivalent when considered as identities satisfied in all

congruence lattices of algebras in some variety. Many results of this kind fol-

lowed, for example, Freese and Jónsson [4] proved that modularity is equivalent

to the Arguesian identity for congruence lattices in varieties. See also Day and

Freese [3]. The survey [12] by Jónsson is an excellent introduction to earlier

results on the subject. The field is still very active today; more recent results

and further references can be found, among others, in Czédli, Horváth and

Lipparini [1], Freese and McKenzie [5], Gumm [7], Hobby and McKenzie [9],

Kearnes and Kiss [14] and Tschantz [27].

The research in the present note is motivated by two facts related to the

study of congruence identities. First, it almost invariably happens that toler-

ances, and sometimes even reflexive and admissible relations, are irreplaceable

tools in proving results about congruences. This is already evident in the proofs
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of the famous and well-known characterizations by Jónsson [11] and Day [2] of,

respectively, congruence distributive and congruence modular varieties. The

relevance of tolerances and admissible relations in the study of congruence

identities appears clearly in [1, 7, 27], just to mention some examples.

The second aspect that plays a role in our motivations is that, almost at

the same time of Nation’s discovery mentioned at the beginning, non trivial

“relation identities” have been discovered. By a relation identity we mean an

identity satisfied by reflexive and admissible relations on some algebra, where

the operations considered are usually intersection and relational composition,

possibly also converse and transitive closure. Non trivial is intended in a sense

similar to that of Nation’s results; namely, we call an implication between

two relation identities non trivial if it holds when considered for all algebras

in a variety, but it does not necessarily hold for single algebras. Werner [28]

showed that a variety is congruence permutable if and only if the relation

identity R ◦ R = R holds in V . The result is also due independently to

Hutchinson [10]. It is easy to see that the result is non trivial in the sense

specified above; see Remark 4.3(b) below. A similar relational characterization

of congruence n-permutable varieties is mentioned in Hagemann an Mitschke

[8]. See Proposition 4.2 below for some generalizations. Further examples,

details, comments, applications and references about the use of tolerances or

reflexive admissible relations, and about relation identities can be found in

[1, 6, 7, 14, 17, 19, 20, 21, 22, 27]. Because of the above comments we believe

that the study of relation identities is interesting, as a non trivial generalization

of the study of congruence identities.

Relation identities in congruence distributive varieties. In [22] we used

relation identities in order to approach the problem of the relationships be-

tween the numbers of Gumm and of Day terms in a congruence modular va-

riety. While the problem is still largely unsolved, the partial results confirm

the usefulness of the approach. Though our main aim has been the study of

relation identities satisfied in modular varieties, we encountered delicate issues

already in the relatively well-behaved case of 4-distributive varieties [21].

Here we show that the problem of the satisfaction of relation identities is

not trivial even for identities related to 3-distributivity. A detailed study of 3-

distributive varieties in a different direction appears in Kiss and Valeriote [15].

A variety V is n-distributive if V satisfies the congruence identity α(β ◦ γ) ⊆

αβ ◦αβ ◦αγ . . . (n factors), where “n factors” means n−1 occurrences of ◦ on

the right-hand side. In general, we say that some identity holds in a variety

V if the identity holds in the set of reflexive and admissible relations on every

algebra in V . We shall adopt the conventions introduced in the first paragraph

of the abstract, in particular, juxtaposition denotes intersection and R, S. . .

are interpreted as reflexive and admissible relations. All the binary relations

considered in this note are assumed to be reflexive, hence we shall sometimes

simply say admissible in place of reflexive and admissible.
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The definition of n-distributivity as given above is equivalent to the classical

notion of being ∆n, as introduced in Jónsson [11]. Among other, Jónsson [11]

showed that a variety is congruence distributive if and only if it is ∆n, for

some n. As remarked in [18], a recent result by Kazda, Kozik, McKenzie and

Moore [13] can be used to strengthen Jónsson’s Theorem to the effect that a

variety V is congruence distributive if and only if there is some k such that V

satisfies the relation identity

α(S ◦ T ) ⊆ αS ◦ αT ◦ αS . . . (k factors). (1.1)

Hence it is interesting to study relation identities satisfied by congruence dis-

tributive varieties; in particular, to evaluate the best possible value of k for

which (1.1) holds in any given variety.

Summary of the main results. It is easy to see that if V has a majority

term (and is not a trivial variety) then the best possible value of k for V in

(1.1) above is 2. In [21] we provided examples of 4-distributive varieties for

which the best possible value of k is 4. The main results of the present note

assert that there is no variety for which the best possible value of k is 3, even

if we allow T to be a tolerance; moreover, the best value of k is 4 for every 3-

distributive not 2-distributive variety. Combining the present results with [21],

we get that the best value of k in (1.1) does not determine the distributivity

level of a variety.

We do not know whether there is a variety for which k = 5 is the best value.

More generally, we know little about the best possible values of k for arbitrary

congruence distributive varieties, though some bounds are provided in [18, 21]

for, say, varieties with h directed Jónsson terms and for varieties with an n-ary

near-unanimity term. Bounds are provided in Section 4 below for congruence

distributive n-permutable varieties.

The identities we consider in this note are extremely sensible to minimal

variations. For example, if k = 3 and we let T be a congruence in (1.1), we

get a condition equivalent to 3-distributivity. See identity (3.3) in Theorem

3.1. It is well-known that there are 3-distributive not 2-distributive varieties;

in particular, any such variety fails to satisfy the identity

α(β ◦Θ) ⊆ αβ ◦ αΘ ◦ αβ (1.2)

displayed in the abstract, but does satisfy

α(Ψ ◦ γ) ⊆ αΨ ◦ αγ ◦ αΨ. (1.3)

The symmetry between (1.2) and (1.3) is only apparent. In (1.3) the relation

assumed to be a congruence is placed in the middle of the right-hand side,

while in (1.2) it appears two times on the edges.

Further relation identities satisfied by 3-distributive varieties are presented

in Section 3. There we show that, in many cases, we do not even need the

equation j2(z, y, z) = z from the set of Jónsson’s equations characterizing

3-distributivity. Namely, the results apply to congruence modular varieties
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with 2 Gumm terms, where in the numbering we are not counting the trivial

projection included in the original presentation by Gumm of his set of terms.

Congruence distributive and congruence modular varieties which are further

assumed to be n-permutable are discussed in Section 4. Finally, in Section 5

we show directly by an example that the displayed identity in the abstract

fails in the variety of implication algebras. We also show that most properties

of implication algebras are preserved if we add a 4-ary near-unanimity term.

2. A tolerance identity implying 2-distributivity

Theorem 2.1. If V is a variety and the identity

α(β ◦Θ) ⊆ αβ ◦ αΘ ◦ αβ (2.1)

holds in every algebra A in V, for all congruences α, β and tolerance Θ on A,

then V has a majority term. In fact, it is enough to assume that (2.1) holds

in FV(3), the free algebra in V generated by 3 elements.

Theorem 2.1 shall be proved after a lemma, whose proof is standard, but not

completely usual, since it involves a tolerance, not only congruences. Before

stating the lemma we recall the Jónsson terms for 3-distributivity. These

terms will appear only marginally in the proof of the lemma and will assume

a prominent role in Section 3. According to [11], a variety V is ∆3 if and only

if V has terms j1 and j2 satisfying the following set of equations:

(JL) x = j1(x, x, z), (JC) j1(x, z, z) = j2(x, z, z), (JR) j2(x, x, z) = z,

(J1) x = j1(x, y, x), (J2) j2(z, y, z) = z.
(J)

It is implicit in [11], and only a minor part of it, that a variety V is ∆3 if

and only if V obeys the definition of 3-distributivity that we have given in the

introduction.

In the equations (J) we could have done with just two variables, but we

shall not need this observation, which nevertheless is important and relevant

in different contexts. We believe that here maintaining three variables looks

intuitively clearer; the same applies to the equations in (2.2) below.

Remark 2.2. Notice the asymmetry between j1 and j2 in the equations (J).

We get different identities if we reverse both the order of the terms and of

the variables. A probably better way to appreciate the asymmetry goes as

follows. Recall that a majority term is a term j1 satisfying the equations (JL),

(J1), as well as j1(x, z, z) = z. In (J) j1 is required to satisfy two thirds of

the majority condition. On the other hand, a Maltsev term for congruence

permutability is a term j2 satisfying (JR), as well as x = j2(x, z, z). In (J)

j2 is required to satisfy one third of the majority condition and one half of

the permutability condition. The terms j1 and j2 are tied by equation (JC),

but (JC) is not symmetric, either. Had we required j1(x, x, z) = j2(x, x, z) in

place of (JC), we would have obtained x = z, by (JL) and (JR). In spite of the
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apparent similarity, j1 and j2 behave in a quite different way! Let us remark

that the above observation is only part of much more general considerations,

see Remark 4.2 in [22].

Now we state and prove the lemma we need. In some of the equations below

we shall use a semicolon in place of a comma in order to improve readability.

Lemma 2.3. If FV(3) satisfies the identity (2.1), then V has a 5-ary term w

such that the following equations hold in V:

(A) x = w(x, x, z;x, z) (B) w(x, x, z; z, x) = z

(C) x = w(x, y, x; y, x) (D) w(x, y, x;x, y) = x.
(2.2)

Proof. Let x, y and z be the generators of FV(3) and let α and β be the

congruences generated by, respectively, the pairs (x, z) and (x, y). Let Θ be the

smallest tolerance containing (y, z), thus (x, z) ∈ α(β ◦Θ), as witnessed by the

element y. By assumption, (x, z) ∈ αβ ◦ αΘ ◦ αβ, hence x αβ j1 αΘ j2 αβ z,

for certain elements j1, j2 ∈ FV(3). Notice that the condition j1 α j2 is

redundant, since it follows from the assumption that α is a congruence and

from j1 α x α z α j2. In fact, we shall not use j1 α j2 explicitly.

Since we are working in the free algebra generated by x, y and z, we can

think of j1 and j2 as ternary terms. Classically, the α-relations imply that j1
and j2 satisfy the equations (J1) and (J2) from (J), while the β-relations entail

(JL) and (JR). Were Θ assumed to be a congruence, we had also (JC), thus

getting the Jónsson’s condition for 3-distributivity. Since Θ is only assumed

to be a tolerance, we have to proceed in a different fashion. It is easy to check

that

Θ = {(w(x, y, z; y, z), w(x, y, z; z, y)) | w a 5-ary term of V}. (2.3)

Indeed, the relation defined by the condition on the right in (2.3) is obviously

reflexive, admissible, symmetrical and contains (y, z). On the other hand, any

reflexive, admissible and symmetrical relation containing (y, z) has to contain

all the pairs appearing on the right in (2.3). Hence equality follows.

Since j1(x, y, z) Θ j2(x, y, z) by construction, then by (2.3) there exists

some 5-ary term w such that

j1(x, y, z) = w(x, y, z; y, z) and w(x, y, z; z, y) = j2(x, y, z). (2.4)

Since the equations in (2.4) involve only three variables and hold in FV(3),

these equations hold throughout V . Notice that in (2.4) we actually need

three variables; two variables are not enough. Substituting the equations (2.4)

in (JL), (JR), (J1) and (J2), we get respectively the equations (A), (B), (C)

and (D) in (2.2). �

Remark 2.4. Of course, the proof of Lemma 2.3 provides an “if and only

if” condition, since we can retrieve j1 and j2 from w, using the equations

(2.4); then the classical homomorphism argument shows that these three terms

witness that the identity (2.1) holds throughout V . However, we do not need
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this argument, since the conclusion of Theorem 2.1 is much stronger; indeed,

the existence of a majority term implies the tolerance identity α(β ◦ Θ) ⊆

αβ ◦ αΘ, actually, the relation identity R(S ◦ T ) ⊆ RS ◦RT . In other words,

we get the quite surprising result that, globally, that is, within a variety, the

locally weaker tolerance identity α(β ◦Θ) ⊆ αβ ◦ αΘ ◦ αβ implies (and hence

is equivalent to) the much stronger relation identity R(S ◦ T ) ⊆ RS ◦ RT .

Notice that the latter identity is stronger in two senses: first, we have 2 factors

instead of 3 factors on the right; moreover, it is more general, since it deals with

reflexive and admissible relations, rather than with tolerances or congruences.

But we are getting too far ahead! A proof of Theorem 2.1 is necessary in

order to fully justify the above comment.

Proof of Theorem 2.1. Suppose that V satisfies the identity (2.1). By Lemma

2.3, we have a 5-ary term w satisfying the equations (2.2). Define

m(x, y, z) = w(w(x, y, z; y, z), w(x, y, z; z, y), y; z, w(x, z, y; y, z)). (2.5)

Using (2.5) and (2.2) repeatedly, we get

m(x, x, z) = w(w(x, x, z;x, z), w(x, x, z; z, x), x; z, w(x, z, x;x, z))

=(A)(B)(D) w(x, z, x; z, x) =(C) x,

m(x, y, x) = w(w(x, y, x; y, x), w(x, y, x;x, y), y;x,w(x, x, y; y, x))

=(C)(D)(B) w(x, x, y;x, y) =(A) x,

m(x, z, z) = w(w(x, z, z; z, z), w(x, z, z; z, z), z; z, w(x, z, z; z, z)) =(B) z,

where the superscripts indicate the specified equations of (2.2) that we have

used, in the respective order. Hence m is a majority term and the theorem is

proved. �

3. Relation identities valid in 3-distributive varieties

Since there are 3-distributive varieties without a majority term (see, e. g.,

Section 5 below), we have that 3-distributive varieties do not necessarily satisfy

identity (2.1). On the other hand in the present section we show that 3-

distributive varieties satisfy identities which are slightly weaker than (2.1), but

very similar to it. For example, 3-distributive varieties do satisfy R(S ◦ γ) ⊆

RS ◦Rγ ◦RS and R(S ◦T ) ⊆ RS ◦RT ◦RT ◦RS. Notice that if we take R, S

and T to be congruences in the above identities, we get back 3-distributivity,

hence the results are optimal.

As mentioned in the introduction, the results form Kazda, Kozik, McKenzie

and Moore [13] and the observations in [18] show that, for every n, there is some

(possibly quite large) k such that α(S◦T ) ⊆ αS◦αT ◦αS◦. . . (k factors) holds

in every n-distributive variety. We show that in the case n = 3 the best possible

value of k is 4, hence not particularly large; moreover, we can equivalently

consider a reflexive and admissible relation R in place of the congruence α.
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Theorem 3.1. If V is a 3-distributive variety, then V satisfies

R(S ◦ T ) ⊆ RS ◦RT ◦RT ◦RS, (3.1)

R(S ◦ T ) ⊆ RS ◦RT ◦RS ◦RT, and (3.2)

R(S ◦ γ) ⊆ RS ◦Rγ ◦RS. (3.3)

Recall the equations displayed in (J) at the beginning of the previous sec-

tion. Before proving Theorem 3.1 and for later use, we shall state in a lemma

those parts of the proof which do not need the equation (J2). We first give a

name to some elements which will be frequently used.

Convention 3.2. If a, b and c are elements of some algebra and j1 and j2 are

ternary terms, we shall denote by e, f , g, g• the following elements.

e = j1(j1(a, b, c), b, c),

f = j1(j1(a, c, c), c, c) =
(JC) j2(j2(a, c, c), c, c),

g = j2(j2(a, c, c), j2(b, c, c), c),

g• = j2(j2(a, c, c), j2(a, b, c), c).

Since the elements a, b and c and the terms j1 and j2 shall be kept fixed

throughout this section, we do not indicate explicitly the dependence.

Lemma 3.3. Under the above Convention, if a R c, a S b T c and j1 and j2
satisfy (JL), (JC), (JR) and (J1), then the following relations hold.

e R c, f R c, a RS e RT f T g S c, f S g• T c.

Proof. The proof is given by the following computations in which, for clarity,

we underline the elements which are moved by the appropriate relations and,

as usual by now, we indicate as superscripts the identities we are using.

e = j1(j1(a, b, c), b, c) R j1(j1(c, b, c), b, c) =
(J1) c,

f = j2(j2(a, c, c), c, c) R j2(j2(c, c, c), c, c) =
(JR) c,

a =(J1) j1(j1(a, b, a), b, a) R j1(j1(a, b, c), b, c) = e,

a =(JL) j1(j1(a, a, c), a, c) S j1(j1(a, b, c), b, c) = e,

e =(JR) j2(j2(a, a, c), c, e) R j2(j2(a, c, c), c, c) = f.

e = j1(j1(a, b, c), b, c) T j1(j1(a, c, c), c, c) = f.

f =(JR) j2(j2(a, c, c), j2(b, b, c), c) T j2(j2(a, c, c), j2(b, c, c), c) = g,

g = j2(j2(a, c, c), j2(b, c, c), c) S j2(j2(b, c, c), j2(b, c, c), c) =
(JR) c,

f =(JR) j2(j2(a, c, c), j2(a, a, c), c) S j2(j2(a, c, c), j2(a, b, c), c) = g•,

g• = j2(j2(a, c, c), j2(a, b, c), c) T j2(j2(a, c, c), j2(a, c, c), c) =
(JR) c. �

Proof of Theorem 3.1. Suppose that (a, c) ∈ R(S ◦ T ), hence a R c and a S

b T c, for some b. By 3-distributivity and [11], we have Jónsson’s terms j1 and

j2 satisfying the displayed set of equations (J) at the beginning of the previous
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section. Because of Lemma 3.3, in order to prove (3.1) and (3.2) it is enough

to prove f R g R c and f R g• R c. We first prove f R j2(a, c, c) and we shall

also use f R c, as proved in Lemma 3.3. Here are the computations.

f =(JR) j2(j2(a, c, c), c, j2(a, a, c)) R j2(j2(a, c, c), c, j2(a, c, c)) =
(J2) j2(a, c, c),

f =(J2) j2(f, j2(b, c, c), f) R j2(j2(a, c, c), j2(b, c, c), c) = g,

g = j2(j2(a, c, c), j2(b, c, c), c) R j2(j2(c, c, c), j2(b, c, c), c) =
(J2) c.

f =(J2) j2(f, j2(a, b, c), f) R j2(j2(a, c, c), j2(a, b, c), c) = g•,

g• = j2(j2(a, c, c), j2(a, b, c), c) R j2(j2(c, c, c), j2(a, b, c), c) =
(J2) c.

Were Rγ a transitive relation, (3.3) would follow from (3.1) with T = γ. In

the general case, since γ is supposed to be a congruence, hence transitive, we

have e γ g from Lemma 3.3. In order to prove (3.3) it is then enough to show

e R g. We have already proved that e R c, thus

e =(JR) j2(a, a, e) R j2(a, c, c), hence

e =(J2) j2(e, j2(b, c, c), e) R j2(j2(a, c, c), j2(b, c, c), c) = g.

In the special case when R is a congruence, a direct simpler proof of (3.3)

is possible. Take R = α and notice that if (a, c) ∈ α(S ◦ γ), as witnessed by b,

then a αS j1(a, b, c) αγ j2(a, b, c) αS c. For example, j1(a, b, c) γ j1(a, c, c) =

j2(a, c, c) γ j2(a, b, c). The rest is more direct and easier. Cf. also [17, Remark

17]. �

Remark 3.4. As we mentioned, if we take R, S and T congruences in the

identities (3.1) and (3.3), we get back 3-distributivity. On the other hand, if

we take R, S and T congruences in (3.2), we get only 4-distributivity. This

suggests that perhaps, for general n-distributive varieties, one gets cleaner

results when considering identities of the form

α(S ◦ T ) ⊆ αS ◦ αT ◦ αT ◦ αS ◦ αS ◦ αT . . . ,

rather than identities of the form (1.1). Compare also identities (4.11) - (4.13)

below. More generally, there is the possibility of considering identities like

α(R1 ◦R2) ⊆ αRf(0) ◦ αRf(1) ◦ αRf(2) ◦ . . . , (3.4)

where f is a function with codomain {1, 2}. Some arguments presented in [20,

Section 4] suggest that considering identities like (3.4) is a very natural choice.

Two Gumm terms. Let us say that a variety V has 2 Gumm terms if V

has terms j1 and j2 satisfying the identities (JL), (JC), (JR) and (J1) from

(J) in Section 2; thus we are leaving out identity (J2), as we did in Lemma

3.3. Sometimes a variety as above is said to have 3 Gumm terms, since a

trivial projection j0 onto the first coordinate is counted. Notice that some

authors give the definition of Gumm terms with the ordering of variables and

of terms reversed. This applies to some papers of ours, too, but here it is
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more convenient to maintain the analogy with the common condition for 3-

distributivity. A variety V has 2 Gumm terms if and only if V satisfies the

congruence identity α(β ◦ γ) ⊆ αβ ◦ α(γ ◦ β). Notice that if we take converses

and exchange β and γ, we get α(β ◦γ) ⊆ α(γ ◦β)◦αγ. See, e. g., [7, 13, 18, 22]

for further details and information.

If S is a reflexive binary relation on some algebra, we denote by S the

smallest admissible relation containing S. In the following theorem we shall

provide bounds for expressions like, say, R(S ◦ T ) ◦ RW , rather than simply

R(S ◦T ). If 0 denotes the minimal congruence, i.e., the identity relation, then

one can always obtain the latter expression from the former, by taking W = 0.

The reader might always assume to be in the simpler situation when W = 0

with just an exception. We need the more involved formula (3.5) below with

the actual presence of RW in order to get the relation R(S ◦ T ) ◦R(S ◦ T ) ⊆

RS ◦RT ◦R(S ◦T ) in the course of the proof of Corollary 3.7 below. Theorem

3.1, too, allows a version with an RW factor added; we have not included this

more general version in the statement for simplicity and since we do not need it

here. In detail, arguing as in the proof of identities (3.6) and (3.7) below, we get

that a 3-distributive variety satisfies R(S◦T )◦RW ⊆ RS◦RT ◦RT ◦R(S ∪W ),

as well as R(S ◦ T ) ◦RW ⊆ RS ◦RT ◦RS ◦R(T ∪W ).

Theorem 3.5. If V has 2 Gumm terms, then V satisfies

R(S ◦ T ) ◦RW ⊆ RS ◦RT ◦R(S ∪ T ∪W ), (3.5)

R(S ◦RT ) ◦RW ⊆ RS ◦RT ◦RT ◦R(S ∪W ), (3.6)

R(RS ◦ T ) ◦RW ⊆ RS ◦RT ◦RS ◦R(T ∪W ). (3.7)

Proof. Suppose that (a, c•) ∈ R(S ◦T )◦RW with a R c and a S b T c RW c•.

By Lemma 3.3 we have a RS e RT f , hence in order to prove (3.5) it is enough

to compute

f=(JR)j2(j2(a, c, c), j2(b, b, c), c) S ∪ T ∪W j2(j2(b, c, c), j2(b, c, c), c
•)=(JR)c•,

f = j2(j2(a, c, c), c, c) R j2(j2(c, c, c), c, c
•) =(JR) c•.

To prove (3.6), take T = RT in Lemma 3.3, thus f RT g. We can also

assume b R c, hence

g = j2(j2(a, c, c), j2(b, c, c), c) R j2(j2(c, c, c), j2(c, c, c), c
•) =(JR) c•,

g = j2(j2(a, c, c), j2(b, c, c), c) S ∪W j2(j2(b, c, c), j2(b, c, c), c
•) =(JR) c•.

The proof of (3.7) is similar, using the element g•. This time we assume

S = RS and a R b. The relations still needing a proof are

g• = j2(j2(a, c, c), j2(a, b, c), c) R j2(j2(c, c, c), j2(b, b, c), c
•) =(JR) c•,

g• = j2(j2(a, c, c), j2(a, b, c), c) T ∪W j2(j2(a, c, c), j2(a, c, c), c
•) =(JR) c•. �

Remark 3.6. Using the methods in the proof of Lemma 2.3 we could have given

Maltsev conditions for the identities (3.1) - (3.5) by means of the existence of
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terms satisfying appropriate equations. Then, following the lines of the proofs

of Theorems 3.1 and 3.5, one can construct explicitly these terms in function

of j1 and j2. In the case at hand, dealing directly with relation identities

seems simpler. However, there is an aspect dealing with terms which deserves

mention.

The proofs of Theorems 3.1 and 3.5 implicitly use the terms d1(x, y, z) =

j1(j1(x, y, z), y, z) and d2(x, y, z) = j2(j2(x, z, z), j2(x, y, z), z). If j1 and j2
are Jónsson terms, then the terms d1 and d2 constitute a set of two directed

Jónsson terms [13, 29], namely, they satisfy the equations

x = d1(x, x, z), d1(x, z, z) = d2(x, x, z), d2(x, z, z) = z,

x = d1(x, y, x), d2(x, y, x) = x.
(3.8)

Compare the middle equation in (3.8) with (JC). Moreover, in comparison

with Remark 2.2, notice that here there is full symmetry between d1 and d2.

Among other, we have showed that a 3-distributive variety has two directed

Jónsson terms. This is the poor man’s version of the far more general result

proved by Kazda, Kozik, McKenzie and Moore [13] that every congruence

distributive variety has a (generally longer) set of directed Jónsson terms.

Yet it is interesting to check which parts of Theorem 3.1 follow just from

the existence of two directed Jónsson terms. The existence of two directed

Jónsson terms implies identity (3.2), limited to the case when R is assumed

to be a tolerance, by the case ℓ = 2 in equation (3.1) in [18, Proposition 3.1].

Notice that the number of terms is counted in a different way in [18], including

also two trivial projections; here we adopt the counting convention from [13].

On the other hand, there are varieties having two directed Jónsson terms

and which are not 3-distributive: see [18, p. 11] and [21]. Since the identities

(3.1) and (3.3) do imply 3-distributivity, we get that the existence of two

directed Jónsson terms does not imply (3.1) and (3.3). In particular, our

arguments go far beyond the simple proof of the existence of directed Jónsson

terms and exploit special particularities of 3-distributive varieties.

Similar remarks apply to Theorem 3.5, with reference to directed Gumm

terms [13].

If R is a binary relation, we let R∗ denote the transitive closure of R.

Corollary 3.7. (1) A 3-distributive variety satisfies

R∗(S ◦ T )∗ = (RS ◦RT )∗ and, more generally, (3.9)

(R ◦ V )∗(S ◦ T )∗ = (RS ◦RT ◦ V S ◦ V T )∗. (3.10)

(2) If V has 2 Gumm terms, then V satisfies

R∗(S ◦ T )∗ = (RS ◦RT )∗ ◦R(S ∪ T ), (3.11)

R∗(RS ◦ T )∗ = (RS ◦RT )∗, and (3.12)

R∗S∗ = (RS)∗. (3.13)
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Proof. We first prove identity (3.13) in (2). Of course, (3.13) is the particular

case S = T of (3.11), however, it seems convenient to obtain the latter identity

as a consequence of the former, hence let us prove (3.13). Let Sn denote the

iterated relational composition of S with itself with a total of n factors and

recall that 0 denotes the minimal congruence. By taking W = 0 and Sn in

place of both S and T in (3.5), we get RS2n = R(Sn ◦Sn) ⊆ RSn◦RSn◦RSn.

Since RS∗ =
⋃

m∈ω RSm, we get by induction that RS∗ ⊆ (RS)∗. By taking

R∗ in place of R in the above identity and then exchanging the role of R and

S we get R∗S∗ ⊆ (R∗S)∗ ⊆ ((RS)∗)∗ = (RS)∗. The reverse inclusion in (3.13)

is trivial.

Having proved (3.13), then by taking S ◦ T in place of S in (3.13), we get

R∗(S ◦ T )∗ = (R(S ◦ T ))∗. By taking W = S ◦ T in (3.5), we get R(S ◦ T ) ◦

R(S ◦ T ) ⊆ RS ◦RT ◦R(S ◦ T ). Then by induction, always factoring out the

first compound factor on the left, we get

(R(S ◦ T ))∗ ⊆ (RS ◦RT )∗ ◦R(S ◦ T ). (3.14)

Applying again (3.5) with W = 0, we get R(S ◦ T ) ⊆ RS ◦ RT ◦ R(S ∪ T ).

Summing everything up, we get the ⊆ inclusion in (3.11). The reverse inclusion

is trivial, since S ◦ T ⊇ S ∪ T .

Applying (3.7) with W = 0, we get R(RS ◦ T ) ⊆ RS ◦ RT ◦ RS ◦ RT . By

(3.14) with RS in place of S we get the ⊆ inclusion in (3.12). Again, the

reverse inclusion is trivial, We have proved (2).

Now (3.9) is immediate from (3.11) and (3.2). Identity (3.10) follows by

repeated applications of (3.9). Of course, identity (3.9) can be also proved

directly from (3.2) by using only a minimal part of the above arguments. �

Further comments. Theorems 3.1 and 3.5 can be improved in many ways.

For example, notice that the “middle” element f = j1(j1(a, c, c), c, c) in the

proof of Theorem 3.1 does not depend on b. Hence the proof provides a bound

for R(S1 ◦ T1)(S2 ◦ T2)(S3 ◦ T3) . . . . Moreover, the element f is the same in

the proofs of 3.1 and 3.5. In addition, the arguments in the proof of Theorem

3.5 clearly apply to 3-distributive varieties, as well (here take c• = c or, which

is the same, W = 0). Moreover, in the notations from the proof of Theorem

3.1, we have a =(JL) j1(j1(a, a, c), a, c) R j1(j1(a, c, c), c, c) = f . Summing

everything up, we get items (1) and (2) in the following proposition.

As for (3) below, the definition of two directed Jónsson terms recalled in

(3.8) from Remark 3.6 can be extended to any chain of terms; see [13] for full

details. Then, merging the above arguments with the proof of [18, Proposition

3.1], we get a proof of (3) below.

Proposition 3.8. (1) A 3-distributive variety satisfies

R(S1 ◦T1)(S2 ◦T2)(S3 ◦T3) . . . ⊆ R(RS1 ◦RT1)(RS2 ◦RT2)(RS3 ◦RT3) . . . ◦

R(RS1 ◦RT1)(RT1 ◦RS1)(RS2 ◦RT2)(RT2 ◦RS2) . . . (S1 ∪ T1)(S2 ∪ T2) . . .
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(2) A variety with 2 Gumm terms satisfies

R(S1 ◦T1)(S2 ◦T2)(S3 ◦T3) . . . ⊆ R(RS1 ◦RT1)(RS2 ◦RT2)(RS3 ◦RT3) . . . ◦

R(S1 ∪ T1)(S2 ∪ T2)(S3 ∪ T3) . . .

(3) A variety with n (n + 2 in the terminology from [18]) directed Jónsson

terms satisfies

Θ(S1 ◦T1)(S2 ◦T2)(S3 ◦T3) . . . ⊆ (Θ(ΘS1 ◦ΘT1)(ΘS2 ◦ΘT2)(ΘS3 ◦ΘT3) . . . )
n.

By Corollary 3.7 we get an affirmative solution to Problem 2.12 in Gyenizse

and Maróti [6] in the special cases of 3-distributive varieties and of varieties

with 2 Gumm terms. Recall that a preorder is a reflexive and transitive rela-

tions.

Corollary 3.9. If A belongs to a 3-distributive variety (a variety with 2 Gumm

terms) then the lattice of admissible preorders of A is congruence distributive

(respectively, congruence modular).

Proof. Immediate from identities (3.9) and (3.12). �

4. Assuming n-permutabiliy

The length of a chain of iterated relational compositions is bounded in a con-

gruence n-permutable variety. Hence, assuming also congruence distributivity,

we get bounds for the value of k in the identity (1.1) from the introduction.

This observation shall be dealt with in Theorem 4.5 below. Since we are deal-

ing with admissible relations, not congruences, the bound is not exactly n,

in general. See Corollary 4.4 below. Recall that a variety V is congruence

n-permutable if the congruence identity β ◦ γ ◦ β . . . = γ ◦ β ◦ γ . . . (n factors

on each side) holds in V .

We shall use the following conventions, in order to make the notation more

compact.

Convention 4.1. The expression S◦T ◦ m. . . denotes S◦T ◦S . . . with m factors,

that is, with m − 1 occurrences of ◦. If, say, m is odd, we sometimes write

S ◦ T ◦ m. . . ◦ S when we want to make clear that S is the last factor in the

expression. We shall use the above notation even when R or T are replaced

with compound factors, or even when they do not strictly alternate, such as

in the expression

αS ◦ αT ◦ αT ◦ αS ◦ αS ◦ αT ◦ m. . . (4.1)

In any case, the number above the dots always indicates the number of ◦’s

minus one, that is, the number of “factors”, with the provision that compound

factors are always counted as one factor. For example, if m = 10 in (4.1), the

expression reads

αS ◦ αT ◦ αT ◦ αS ◦ αS ◦ αT ◦ αT ◦ αS ◦ αS ◦ αT.
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In any case, when we write only two factors on the right as in αS ◦ αT ◦ m. . .

or in αS ◦αT ◦ 2m−1. . . ◦αS, we always mean that these two factors alternate as

αS ◦ αT ◦ αS ◦ αT . . .

Moreover, recall that if R is a reflexive binary relation on some algebra,

R denotes the smallest admissible relation containing R and that R∗ denotes

the transitive closure of R. Recall also the definition of Rm. In the above

notation, Rm is R ◦R ◦ m. . ..

Parts of the following proposition are known. See, e. g., Werner [28], Hage-

mann and Mitschke [8] and reference [3] quoted there. However it seems that

some parts of the proposition are new.

Proposition 4.2. Suppose that n ≥ 2 and V is a variety. Each of the following

identities is equivalent to congruence n-permutability of V.

R1 ◦R2 ◦ . . . ◦Rn ⊆ R1 ∪R2 ◦R2 ∪R3 ◦ . . . ◦Rn−1 ∪Rn , (4.2)

Rn ⊆ Rn−1, (4.3)

R∗ = Rn−1, (4.4)

(S ◦ T )∗ = S ◦ T ◦ S ◦ T ◦ 2n−2. . . ◦ S ◦ T, (4.5)

(S ◦ T )∗ = S ◦ T ◦ T ◦ S ◦ S ◦ T ◦ 2n−2. . . , (4.6)

S ◦ T ◦ T ◦ S ◦ S ◦ T ◦ 2n−2. . . = T ◦ S ◦ S ◦ T ◦ T ◦ S ◦ 2n−2. . . , (4.7)

S ◦ T ◦ 2n−1. . . ◦ S ⊆ T ◦ S ◦ 2n−2. . . ◦ S, (4.8)

S ◦ T ◦ 2n−1. . . ◦ S = T ◦ S ◦ 2n−1. . . ◦ T. (4.9)

In all the above identities we can equivalently let R1, . . . , R, S, T be either

reflexive and admissible relations or tolerances.

Moreover, identities (4.2), (4.6) and (4.7) are still equivalent to congruence

n-permutability if we let R1, . . . , S, T be congruences.

Proof. We shall give a proof which works in both cases, either when R1, . . . , R,

S, T are reflexive and admissible relations or when they are tolerances. Notice

that in the identities (4.4) - (4.6) the left-hand side is always larger than the

right-hand side, hence it is enough to prove the reverse inclusion. Let (n-perm)

denote congruence n-permutability. We shall prove that (n-perm) ⇒ (4.2) for

varieties and that (4.2) ⇒ (4.3) ⇒ (4.4) ⇒ (4.6) ⇒ (4.7) ⇒ (n-perm) and

(4.4) ⇒ (4.5) ⇒ (4.8) ⇒ (4.9) ⇒ (4.3) hold in every algebra.

If, say, V is a congruence 3-permutable variety, then, by [8], there are terms

t1 and t2 such that x = t1(x, y, y), t1(x, x, y) = t2(x, y, y) and t2(x, x, y) = y

are equations valid in V . If a R1 b R2 c R3 d, then a = t1(a, b, b) R1 ∪R2

t1(b, b, c) = t2(b, c, c) R2 ∪R3 t2(c, c, d) = d, hence (4.2) follows in the case

n = 3. In general, for n ≥ 2, the same argument shows that every congruence

n-permutable variety satisfies (4.2).

Taking R1 = R2 = · · · = R in (4.2), we get (4.3). Then (4.4) follows from

a trivial induction.
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In order to prove that (4.4) implies (4.6), observe that S ◦ T is a reflexive

and admissible relation which contains both S and T , thus S ◦ T ⊇ S ∪ T .

Since S, T ⊆ S ∪ T , hence S ◦ T ⊆ S ∪ T ◦ S ∪ T , we get (S ◦ T )∗ = (S ∪ T )∗.

By taking the admissible relation S ∪ T in place of R in (4.4) and using alter-

natively S ∪ T ⊆ S ◦ T and S ∪ T ⊆ T ◦ S, we get (4.6). Notice that if S and

T are tolerances, then R = S ∪ T is a tolerance, hence the proof works also in

the case when we are dealing with tolerances. On the other hand, notice that

S ◦ T is not necessarily a tolerance, even when S and T are.

The implication (4.6) ⇒ (4.7) is obvious, since (S ◦ T )∗ = (T ◦ S)∗.

By taking S and T congruences in (4.7), we get α ◦β ◦ n. . . = β ◦α ◦ n. . ., that

is, congruence n-permutability. Notice that, since congruences are transitive,

n− 2 factors annihilate on each side of (4.7), hence we end up with n actual

factors on each side. Notice that we have only used transitivity of tolerances,

we do not need symmetry.

The proof that (4.4) implies (4.5) is similar to the proof that (4.4) implies

(4.6). Take R = S ∪ T and always use S ∪ T ⊆ S ◦ T . Notice that, were S

and T reflexive and admissible relations, we could have proceeded in a simpler

way, since S ◦T is reflexive and admissible, too, hence (4.5) is the special case

of (4.4) obtained by considering S ◦ T in place of R. However, the previous

argument works also for tolerances.

The implication (4.5) ⇒ (4.8) is trivial, exchanging the role of S and T ,

since S ◦ T ◦ 2n−1. . . ◦ S ⊆ (S ◦ T )∗.

By identity (4.8) we get S◦T ◦2n−1. . . ◦S ⊆ T ◦S◦2n−2. . . ◦S ⊆ T ◦S◦2n−1. . . ◦S◦T ,

thus by symmetry we get equality of the outer expressions, that is, (4.9).

Recall that 0 denotes the minimal congruence. Taking S = R and T = 0 in

(4.9) we get back (4.3).

Now we prove the last statement. If some identity holds for reflexive and

admissible relations, then it trivially holds for congruences, hence congruence

n-permutable varieties satisfy the versions of (4.2), (4.6) and (4.7) when the

variables range on such a restricted scope. We already mentioned that (4.7)

relative to congruences does imply congruence n-permutability and the argu-

ment is the same for (4.6), namely, take S and T congruences. Finally, if

R1 = R3 = · · · = α and R2 = R4 = · · · = β are congruences, then (4.2)

implies α ◦ β ◦ n. . . ⊆ (α ∪ β)n−1 ⊆ β ◦ α ◦ α ◦ β ◦ β ◦ α ◦ 2n−2. . . = β ◦ α ◦ n. . .. �

Remarks 4.3. (a) The proof of Proposition 4.2 shows that, for every n, the

identities (4.3) - (4.6), (4.8) - (4.9) are equivalent for every algebra. Indeed,

identity (4.6) implies (4.4), by taking T = 0, all the rest has been mentioned

in the proof of 4.2.

(b) We now justify the assertion in the introduction that the equivalence

between congruence permutability and the identity R ◦ R = R is non trivial,

in the sense that it holds for varieties, but not for single algebras.

On one hand, in every algebra, the identity R ◦R = R for relations, or even

the identity Θ ◦ Θ = Θ for tolerances, do imply congruence permutability.
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This follows from the implication (4.3) ⇒ (4.6) in Proposition 4.2 in the case

n = 2. More directly. if α and β are congruences, take Θ = α ∪ β, the smallest

admissible relation containing α and β, getting α ◦ β ⊆ Θ ◦Θ = Θ = α ∪ β ⊆

β ◦ α. Compare the proof of [17, Proposition 13(a)].

On the other hand, let A = {0, 1, 2} and A be the algebra on A with only

one unary operation g defined by g(0) = 1, g(1) = g(2) = 2. The lattice

Con(A) has 3 elements, hence consists of pairwise permutable congruences,

the relation R = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)} is reflexive and admissible,

but R ◦R = R fails.

Corollary 4.4. For every variety V and every n ≥ 2, the following conditions

are equivalent.

(1) V is congruence n-permutable.

(2) V is admissible-preorder n-permutable.

(3) V is admissible-relation 2n− 1-permutable.

(4) V is tolerance 2n− 1-permutable.

Proof. The equivalence of (1) and (2) follows from identity (4.7).

The equivalence of (1), (3) and (4) follows from identity (4.9). �

In particular, apart from the degenerate case, congruence n-permutability is

equivalent to admissible-relation n-permutability if and only if n = 2. Notice

that the above results do not exactly clarify the meaning of admissible-relation

n-permutability for n even. In fact, by identity (4.5) in Proposition 4.2, we

get that every congruence n-permutable variety satisfies S ◦T ◦S ◦ T ◦ 2n−2. . . =

T ◦ S ◦ T ◦ S ◦ 2n−2. . . ; however, we do not know the exact consequences of this

last identity.

Recall the notational conventions established in the abstract and in 4.1.

Theorem 4.5. Suppose that n ≥ 2 and V is a variety. Each of the following

identities is equivalent to the conjunction of congruence distributivity and n-

permutability of V.

(Θ(S ◦ T )∗)∗ = ΘS ◦ΘT ◦ΘS ◦ΘT ◦ 2n−2. . . ◦ΘS ◦ΘT, (4.10)

(Θ(S ◦ T )∗)∗ = ΘS ◦ΘT ◦ΘT ◦ΘS ◦ΘS ◦ΘT ◦ 2n−2. . . , (4.11)

Θ(S ◦ T ◦ T ◦ S ◦ S ◦ 2n−2. . . ) ⊆ ΘT ◦ΘS ◦ΘS ◦ΘT ◦ΘT ◦ΘS ◦ 2n−2. . . , (4.12)

α(S ◦ T ◦ T ◦ S ◦ S ◦ 2n−2. . . ) = αT ◦ αS ◦ αS ◦ αT ◦ αT ◦ αS ◦ 2n−2. . . , (4.13)

α(S ◦ T ◦ 2n−1. . . ◦ S) = αT ◦ αS ◦ 2n−1. . . ◦ αT. (4.14)

The variables S and T can be equivalently taken to be tolerances in (4.10)

- (4.14) and congruences in (4.11) - (4.13).

Proof. The ⊇ inclusions in (4.10), (4.11) and (4.13) are obvious. Notice that

in (4.13) we need transitivity of α.

If V is congruence distributive, then, by Kazda, Kozik, McKenzie and Moore

[13] and by [18, Proposition 3.1], Θ(S ◦ T )∗ ⊆ (ΘS ◦ ΘT )∗. If in addi-

tion V is congruence n-permutable, we can apply the identities (4.5), (4.6)
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and (4.9) with ΘS and ΘT in place of, respectively, S and T , obtaining a

bounded number of factors on the right. Hence (4.10) - (4.14) follow from

the assumptions. To prove the ⊇ inclusion in (4.14) use (4.9) in order to get

αT ◦ αS ◦ 2n−1. . . ◦ αT = αS ◦ αT ◦ 2n−1. . . ◦ αS ⊆ α(S ◦ T ◦ 2n−1. . . ◦ S), again since

α is transitive.

Conversely, by taking Θ, S and T congruences in each of (4.10) - (4.14), we

get identities implying congruence distributivity by [11]. If we take Θ = α = 1,

that is, the largest congruence, in (4.10) - (4.14), we get one of (4.5) - (4.7) or

(4.9). These identities imply congruence n-permutability by Theorem 4.2. �

Theorem 4.6. Suppose that n ≥ 2 and V is a variety. Each of the following

identities is equivalent to the conjunction of congruence modularity and n-

permutability of V.

ΘRn ⊆ (ΘR)n−1, (4.15)

αR∗ = (αR)n−1, (4.16)

α(S ◦ αT )∗ = αS ◦ αT ◦ αS ◦ αT ◦ 2n−2. . . ◦ αS ◦ αT, (4.17)

α(S ◦ αT )∗ = αS ◦ αT ◦ αT ◦ αS ◦ αS ◦ αT ◦ 2n−2. . . , (4.18)

α(S ◦ αT ◦ 2n−1. . . ◦ αT ◦ S) = αT ◦ αS ◦ 2n−1. . . ◦ αT. (4.19)

The variables R, S and T can be equivalently taken to be tolerances in (4.15)

- (4.19) and congruences in (4.18).

Proof. We have from [19, Theorem 1] that a congruence modular variety sat-

isfies ΘR∗ ⊆ (ΘR)∗. Again, this result relies heavily on [13]. By congruence

n-permutability and (4.4) we get the nontrivial inclusions in (4.15) and (4.16).

By taking R = S ◦ αT in (4.16) we get α(S ◦ αT )∗ = (α(S ◦ αT ))n−1. But

α(S ◦ αT ) = αS ◦ αT , hence we get α(S ◦ αT )∗ = (αS ◦ αT )∗. Then, as usual

by now, by applying Theorem 4.2 with αS in place of S and αT in place of T ,

we get the nontrivial inclusions in (4.17) - (4.19).

Taking R = β ◦ αγ in (4.16) and using again α(S ◦ αT ) = αS ◦ αT we

get congruence modularity. Using [2], we prove in a similar way that (4.15)

implies congruence modularity.

The above arguments work when R, S and T are assumed to be reflexive

and admissible relations. If we assume that R = Θ, S = Ψ and T = Φ are

tolerances, argue as above using R = Θ = αΦ ◦Ψ ◦αΦ or R = Θ = αγ ◦β ◦αγ

notice that these are tolerances and that α(αΦ ◦Ψ ◦ αΦ) = αΦ ◦ αΨ ◦ αΦ.

By taking S and T congruences, we have that (4.17) - (4.19), too, imply

congruence modularity. As in the proof of Theorem 4.5, the identities (4.15)

- (4.19) imply congruence n-permutability, taking Θ = α = 1 and considering

the corresponding identities in Theorem 4.2. �

Remarks 4.7. (a) There are obviously many other intermediate equivalent con-

ditions in Proposition 4.2, Theorems 4.5 and 4.6. In order to keep the state-

ments within a reasonable length, we have not explicitly stated such equivalent
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conditions. For example, for every m ≥ n, the identity Rm ⊆ Rn−1 is equiv-

alent to congruence n-permutability, as follows from the proof of 4.2. More

generally, we can equivalently augment the number of factors on the left in

(4.7) - (4.9), (4.12) - (4.14), provided we replace = with ⊆. Similarly, we can

replace transitive closure with a sufficiently long iteration of compositions in

each of (4.4) - (4.6), (4.10), (4.11). Moreover, in (4.10) - (4.11) we can replace

(Θ(S ◦ T )∗)∗ = ΘS ◦ ΘT ◦ . . . with either (Θ(S ◦ T ))∗ = ΘS ◦ ΘT ◦ . . . or

Θ(S ◦ T )∗ ⊆ ΘS ◦ ΘT ◦ . . . Similar remarks apply to Theorem 4.6. We leave

details to the interested reader.

(b) Congruence identities characterizing the conjunction of n-permutabilty

and distributivity or modularity appeared in [16, Propositions 4 and 5].

(c) By equations (3.9) [(3.13) and (3.12)] in Corollary 3.7 we have that if the

assumption of congruence distributivity [congruence modularity] is strength-

ened to 3-distributivity [to the existence of two Gumm terms], then we can

allow α and Θ to be reflexive and admissible relations in the identities (4.10)

- (4.14) [(4.15) - (4.19)], provided we replace = by ⊆.

5. Implication algebras and a 4-ary near-unanimity term

We denote by +, · and ′ the operations of a Boolean algebra. The variety I of

implication algebras is the variety generated by polynomial reducts of Boolean

algebras in which i(x, y) = xy′ is the only basic operation. Equivalently, I is

the variety of algebras with a binary operation i which satisfies all the equations

satisfied by the term xy′ in Boolean algebras. A more frequent description of

implication algebras uses the term x′+ y, instead, but Boolean duality implies

that (if we reverse the order of variables) we get the same variety. Mitschke [24]

showed that I is 3-distributive, not 2-distributive, congruence 3-permutable

and not congruence permutable.

In the above notations, i(x, i(y, z)) represents the Boolean term f(x, y, z) =

x(yz′)′ = x(y′ + z). Sometimes it is simpler to deal with the corresponding

reduct I− of Boolean algebras. Namely, I− is the variety generated by reducts

of Boolean algebras having f as the only basic operation. The varieties I and

I− have many properties in common, for example, I− is still 3-distributive,

congruence 3-permutable and, obviously, not 2-distributive and not congruence

permutable. The terms j1 = f(x, f(x, y, z), z) = x(x′ + yz′ + z) = x(y + z)

and j2 = f(z, y, x) = z(y′ + x) are Jónsson terms witnessing 3-distributivity

of I−. The terms f and j2 are Hagemann-Mitschke terms [8] for congruence

3-permutability of I−.

On the other hand, I− is much simpler to deal with. For example, free

algebras in I− are much smaller and more easily described than free algebras

in I. Further details about I− can be found in the former version [23] of this

note. Now [23] is largely subsumed by the present version.

By Theorem 4.5 and the above comments, both I and I− satisfy the identi-

ties (4.10) and (4.11) with four factors on the right and moreover we can take
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an admissible relation R in place of Θ in these identities, by Remark 4.7(c).

A direct proof of related identities appeared in [23]. By Theorem 2.1, we get

that I fails to satisfy the identity (2.1). Again, a direct proof appeared in [23].

Some features of the counterexamples presented in [23] are reported below.

Example 5.1. Let 2 be the 2-elements Boolean algebra and consider the fol-

lowing elements of 25: x = (1, 1, 1, 0, 0); y = (1, 0, 0, 1, 0) and z = (0, 1, 0, 1, 1).

Let A be the subset of 25 consisting of those elements which are ≤ than at

least one among x, y or z. Then A = (A, i) is an implication algebra. Let α

be the kernel of the second projection, β be the intersection of the kernels of

the first and of the fifth projections, γ be the intersection of the kernels of the

third and of the fourth projections.

Let Ψ be the binary relation on A defined as follows: two elements a, b ∈ A

are Ψ-related if and only if at least one of the following conditions holds:

(a) both a ≤ x and b ≤ x, or

(b) (either a ≤ y or a ≤ z, possibly both) and (either b ≤ y or b ≤ z,

possibly both).

The relation Ψ is trivially symmetric; Ψ is also reflexive, since, by con-

struction, every element of A is ≤ than either x, y or z. We claim that Ψ is

admissible in A, thus a tolerance. Indeed, if a Ψ c is witnessed by (a), then

ab′ ≤ a ≤ x and cd′ ≤ c ≤ x, for all b, d ∈ A, hence ab′ Ψ cd′ (we do not

even need the assumption that c and d are Ψ-related). Similarly, if a Ψ c is

given by (b), then ab′ is ≤ than either y or z and the same holds for cd′, hence

ab′ Ψ cd′. We have proved that Ψ is a tolerance on A,

Let Θ = γΨ be the intersection of γ and Ψ . Then (x, z) ∈ α(β ◦ Θ), as

witnessed by y. The only (other) element of A which is αβ-related to x is

x1 = (1, 1, 0, 0, 0) = x(y + z) and the only (other) element αβ-related to z is

z1 = (0, 1, 0, 0, 1) = z(y′+x). No non trivial Θ relation holds among the above

elements, besides xΘx1 and zΘz1 and the converses, hence (x, z) 6∈ αβ◦αΘ◦αβ

and this shows that the identity (2.1) fails in A. See [23] for further details,

comments and variations related to the present example.

Mitschke [25] showed that I has no near-unanimity term. It is thus natural

to ask whether there exists a congruence 3-permutable, 3-distributive not 2-

distributive variety with a near-unanimity term. We show that some expansion

of I has these properties.

Let u be the lattice term defined by u(x1, x2, x3, x4) =
∏

j 6=j(xi+xj), where

the indices on the product vary on the set {1, 2, 3, 4}. The term u is clearly a

near-unanimity term in every lattice, in particular, in Boolean algebras. Let

Inu denote the variety generated by polynomial reducts of Boolean algebras

in which both i and u are taken as basic operations. We denote by Inu− the

variety in which only f and u are considered.

Proposition 5.2. Both Inu and Inu− are 3-distributive and congruence 3-

permutable varieties with a 4-ary near-unanimity term. The varieties Inu and

Inu− are neither congruence permutable, nor 2-distributive.
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Proof. Since any congruence permutable and distributive variety is arithmeti-

cal, hence 2-distributive, it is enough to show that Inu is not 2-distributive.

All the rest follows from previous remarks and the mentioned results from [24].

Essentially, we are going to show that the counterexample to 2-distributivity

presented in Mitschke [24, p. 185]—and credited in that form to the referee—

is closed under u. Notice that we are working with the dual. The subset

B = 23 \ {(1, 1, 1)} of the 8-elements Boolean algebra 23 is clearly closed

under i. It is also closed under u, since if b1, b2, b3, b4 ∈ B, then at least two

bj ’s have a 0 in the same position, hence u(b1, b2, b3, b4) has 0 in the same

position. If α, β and γ are, respectively, the kernels of the 2nd, 1st and 3rd

projections, then ((1, 1, 0), (0, 1, 1)) ∈ α(β ◦ γ), as witnessed by the element

(1, 0, 1). But ((1, 1, 0), (0, 1, 1)) 6∈ αβ ◦ αγ in B, since the only element which

could do the job is (1, 1, 1) and (1, 1, 1) 6∈ B. �

Remark 5.3. In [17] we showed that, under a fairly general hypothesis, a variety

V satisfies an identity for congruences if and only if V satisfies the same identity

for tolerances, provided that only tolerances representable as R◦R` are taken

into account. By [24], I is 3-distributive that is, I satisfies the congruence

identity α(β ◦ γ) ⊆ αβ ◦ αγ ◦ αβ. On the other hand, I fails to satisfy this

identity when γ is interpreted as a tolerance, by Example 5.1. Alternatively,

use Theorem 2.1 and again [24], where implication algebras are shown not to

be 2-distributive. Hence the assumption of representability is necessary in [17],

even in the case of 3-distributive congruence 3-permutable varieties. A similar

counterexample for 4-distributive varieties has been presented in [21].

Notice that the results from [17] imply that every 3-distributive variety

satisfies, for example, α(β ◦R ◦R`) ⊆ αβ ◦ α(R ◦R`) ◦ αβ, a result formally

incomparable with the identity (3.1).

This is a preliminary version, it might contain inaccuraccies (to be precise, it is more likely to
contain inaccuracies than planned subsequent versions).

The author considers that it is highly inappropriate, and strongly discourages, the use of
indicators extracted from the list below (even in aggregate forms in combination with similar
lists) in decisions about individuals (job opportunities, career progressions etc.), attributions of
funds and selections or evaluations of research projects.
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