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Abstract. Several experiments for neutron generation using high intensity laser sources, with a 

power exceeding 10
19

 W/cm
2
 via TNSA (Target Normal Sheath Acceleration) or other similar 

methods, have been performed in recent years in different laboratories. However, so far there is 

no one running neutron source based on such a technology. We have just started a study of the 

advantages and limits of this novel technique, trying to identify the critical points in order to 

pave the way for future experiments. 

1.  Introduction 

The need for accelerating gradients orders of magnitude larger than existing ones drives the research 

in particle accelerators towards plasma based accelerators [1],[2]. These machines can sustain fields 

greater than tens of GV/m paving the way for the realization of table top accelerators. In every 

considered scheme under investigation a PW class laser is used. 

Likely these lasers will be not considered uniquely to drive the main accelerator but they will also 

be devoted to other several activities. The interaction of such a laser with matter produces a large 

number of electrons, ions, positrons, protons via several different mechanisms depending on the laser 

intensity and the target material compositions and dimensions [3]. While a lot of effort is dedicated 

nowadays to improving the quality of these charged or neutral beams of particles to use them, up to 

now there is not yet a user facility using these kind of beams while there are several studies concerning 

neutron production via laser-matter interaction (for instance among others [4],[5], [6]). 

2.  Methodological analysis 

Our interest is to focus mainly on a very compact neutron source. In order to achieve it we consider a 

moderator with the Bedogni design [7], implemented already in a thermal neutron irradiation facility 

with extended and very uniform irradiation area (HOTNES at ENEA-INFN, Frascati). A neutron 

source is located on the bottom of a large cylindrical cavity (30 cm diameter, 70 cm in height) 

delimited by polyethylene walls. Owing on a polyethylene shadow-bar, only multiple-scattered 

neutrons can reach the irradiation volume. The resulting neutron spectrum is highly thermalized (Cd-

ratio about 10). Irradiation planes are disks (30 cm in diameter) showing very uniform thermal field 
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(1-2%) over their whole surface. The moderating efficiency (thermal fluence per primary neutron) is 

about 2 10
-4

 cm
-2

. 

HOTNES was designed using the Monte Carlo MCNPX 2.7 Monte Carlo code [8] using the 

ENDF/B-VII cross section library [9] for neutrons with energies below 20 MeV and the room 

temperature cross section tables for thermal neutrons in polyethylene, S(,). In our case we replace 

the radionuclide neutron source with the laser compact source. 

 

3.  Conventional source 

We use as a master reference the parameter of the Eupraxia collaboration [10], a European design 

study to produce the first conceptual design report of a plasma based accelerator. Eupraxia is still 

considering several alternatives, and we focus on the case where the beam is produced in a 

conventional accelerator and later plasma-accelerated. An electron beam of 1 GeV energy, with bunch 

charge 100 pC, a repetition rate of 10 Hz and an average current of 1 nA is foreseen. We consider the 

production of neutrons via bremsstrahlung, using a tungsten target of 5x5x9 cm
3
, being 9 cm the 

maximum yield. We can obtain about 0.4 neutrons for each primary electron. With the Eupraxia 

design values we can have about 2.5 10
9
 neutrons/s. This number sets the lower limit of any laser 

based neutron compact source that can be consider interesting at such a facility. 

Using a moderator like [7] we conclude that we can have about 2.32 10
-4

 neutrons per primary 

particle. We are not considering the beam collimation because it has an impact less than an order of 

magnitude in terms of lost neutron flux, and it does not change the results of our analysis. With these 

figures we estimate about 9.3 10
-5

 n/cm
2
 per primary on the sample. 

 

 

4.  Laser based source 

When a high intensity laser (10
19

 W/cm
2
 or larger) is focused on a solid target several effects can be 

triggered, like for instance Target Normal Sheath Acceleration (TNSA) [11], Radiation Pressure 

Acceleration (RPA) [12], collisionless shock acceleration [13] and Break Out Afterburner (BOA) [14], 

depending on target material, thickness and surface contaminations for instance. Let us focus on 

TNSA. Fast electrons are accelerated through the material by the laser. These electrons penetrate the 

target, ionizing other particles and escaping from the other side. In this moment they build up a very 

strong electric field, in the order of TV/m. This field extracts protons and ions from the rear surface, 

producing an intense beam of particles. A sketch describing the physics of the interaction can be find 

in [15]. While there are scaling laws of the process, it is very difficult to define the energy spectrum, 

the flux intensity, and the particle geometrical distribution in a general case, as the emission is strongly 

linked to the target material, surface contamination, laser energy and intensity, and laser contrast. To 

better underline this argument the reader can have a look to the spectra of Figure 1 produced from very 

different lasers. While their energies are quite different, the intensities are much more similar. The 

increasing of the energy increases both proton number and average energy. However this dependence 

is not followed very strictly, mainly due to some particular experimental arrangement of the target, as 

well as the use of different kind of targets triggering different mechanisms. 
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Table 1. Symbol caption for spectrum in Fig.1. 

Label  Name Intensity(W/

cm
2
) 

Energy(J) Reference 

a) Vulcan 2.0 10
20

 200 [16] 

b) Trident 1.5 10
20

 80 [17] 

c) Arcturus 1.0 10
20

 3 [18] 

d) Vulcan 1.0 10
20

 42 [19] 

e) Astra Gemini 1.0 10
21

 10 [20] 

 

What is really important is the number of protons in an energy range below 10-20 MeV, because 

even a laser with energy around or below 40 J can already produce a proton number in the order of 

10
11

 in such energy range. Once that the primary beam is produced, the protons/ions hit a material like 

for instance LiF or Be, in order to produce a neutron flux. This scheme is usually called pitcher-

catcher scheme. In [6] there is a comparison between results obtained with different lasers and target 

materials. This kind of comparison is very difficult because the properties of the proton or ion beams 

are not completely and uniquely linked to the laser but also to the target material, geometry and 

thickness. 

 

5.  Expected flux 

We focus on a typical catcher target of lithium fluoride. Different yields are found in the literature for 

the same reaction. For this simulation and for the following, the neutron production yield was 

generated using a custom Labview
TM

 based software based on a continuous projectile slowing down in 

the target. The stopping power data were generated from PSTAR (NIST) [21] for protons and SRIM 

2011 [22] for deuterons. Cross sections data were taken from ENDFB VII [9] and EXFOR (protons) 

[23] or TENDL2009 (deuterons) [24]. The differences in the yield in the range of the tens-few tens of 

MeV are only about a factor 2-4, much less than an order of magnitude, making appealing also protons 

of lower energy that can be produced by smaller laser with higher repetition rate. The thickness of the 

target was also optimized in order to maximize the neutron flux. With 0.2 cm of LiF target, the typical 

 

Figure 1. Comparison of proton spectrum emerging in different experiments. For the symbol caption see 

the Table 1. 
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moderation yields in thermal neutron flux per primary fast neutron is about 1.55 10
-4

 n/p per proton of 

5 MeV. 

We also considered the case of a Beryllium target (0.3 mm thick) with a deuteron beam, because 

usually the targets are hydrogenated on the surface to increase the deuteron number. Considering 7 

MeV deuterons we can have a moderation yield in thermal neutron flux per primary fast neutron of 

about 1.24 10
-4

 n/d.  

6.  Conclusions 

Looking at Table 2 we can compare the results of the several cases examined. 

 

Table 2. Neutrons from different scenarios. 

Primary Energy Yield (n/prim) m(moderation 

efficiency) 

Y x m 

Electrons 1 GeV 4.0 10
-1

 2.32 10
-4

 9.3 10
-5

 

Protons 5 MeV 8.67 10
-4

 1.55 10
-4

 1.4 10
-7

 

Ions 7 MeV 7.64 10
-4

 1.24 10
-4

 9.4 10
-8

 

 

It is clear that to be competitive, in a lab where there is already an accelerator with GeV energy beam, 

this kind of source must have a flux of primary particles at least 3 orders of magnitude greater. Let us 

consider now some specific applications for such a laser based neutron source such as Prompt Gamma 

Activation Analysis (PGAA) and neutron radiography. Usually a series of many techniques is used to 

study the objects in this field like THz, IR, X-ray radiation and neutron based techniques. There is a 

particular interest in considering new plasma accelerators for cultural heritage, because for instance in 

the Eupraxia project, all of these sources are foreseen. Adding also, with the same instrumentation, a 

neutron source could be very interesting, giving the possibility of having on the same site all these 

techniques together. Neutron radiography requires parallel beam or divergent beam of low energy 

neutrons having intensity in the range of only 10
4
 - 10

6
 neutrons/cm

2
/s to avoid formation of 

significant amount of long-lived radioactive isotope from neutron absorption within the specimen. 

PGAA are less demanding considering that even conventional portable sources are used for this end, 

giving flux on the sample in the order of 10
3 
n/cm

2
/s. 

These kind of numbers are in the some order of several CANS [25]. For a laser based neutron 

source, with such a high efficiency and compact moderator the required initial flux of primary 

particles is in the order of 10
11

-10
12

 particles/s in an energy range around tens of MeV. This number is 

really very close to the existing results of several experiments. In particular, while it is already 

achieved in a single shot, it must be demonstrated for lasers with lower energy, let’s say less than 30 J, 

that can operate with a repetition rate of 1-10 Hz. The gap can be filled in the next years with 

improvements in the targets and laser technologies. 

Laser plasma based neutron sources are very promising CANS. The reduced dimensions, the 

absence of RF devices, the small number of personnel needed to operate them, are all in favor of 

further development in this field. The state of the art is really close to consider interesting these kind 

of sources in some particular applications. 

References 

[1] J. Faure,et al.,Nature 431 (2004) 541. 

[2] W. P. Leemans ,et al.,Physical Review Letters 113 (2014) 245002. 

[3] Ledingham, K. W. D., and Wilfried Galster , New Journal of Physics 12.4 (2010): 045005. 

[4] Roth, M., et al., Physical review letters 110.4 (2013): 044802. 

[5] Kar, S., et al., New Journal of Physics 18.5 (2016): 053002. 



5

1234567890 ‘’“”

ICANS XXII IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1021 (2018) 012011  doi :10.1088/1742-6596/1021/1/012011

 

 

 

 

 

 

[6] Alejo, A., et al., Nuovo Cimento C 38 (2016): 188. 

[7] Bedogni, R., et al., NIM A 843 (2017): 18-21. 

[8] Pelowitz, D. B., et al, Los Alamos National Laboratory, LA-UR-11-01502(2011) 

[9] Chadwick, M.B., al., Nucl. Data Sheets 107, 29313060, (2006) 

[10] http://www.eupraxia-project.eu/ 

[11] Hatchett, S.P. et al., Phys. Plasmas 2000, 7, 20762082 

[12] Esirkepov, T. et al., Phys. Rev. Lett. 2004, 92 

[13] Haberberger, D. et al., Nat. Phys. 2012, 8, 9599 

[14] Henig, A. et al., Phys. Rev. Lett. 2009, 103, 045002 

[15] H. Schwoerer, et al., Nature 439, 445-448(26 January 2006) 

[16] Yang, J. M., et al., Journal of applied physics 96.11 (2004): 6912-6918. 

[17] Gaillard, S. A., et al., Physics of Plasmas 18.5 (2011): 056710. 

[18] Kar, Satyabrata, et al., Nature communications 7 (2016). 

[19] Clark, Eugene Laurence. PhD Thesis, (2002). 

[20] Green, J. S., et al., Applied Physics Letters 104.21 (2014): 214101. 

[21] PSTAR, NIST. URL http://physics.nist.gov/PhysRefData/Star/Text 

[22] Ziegler, J. F., et al., SRIM 2011 Code, 19842011. 

[23] https://www-nds.iaea.org/exfor/exfor.htm 

[24] Koning, A. J., and D. Rochman., Nuclear Research and Consultancy Group, Petten (2009). 

[25] Anderson, I. S., et al., Physics Reports 654 (2016): 1-58. 

 

 


