

Abstract— In this manuscript, some design aspects of the

Speedy’O’Brain neurofeedback videogame have been outlined. It is

built on top of BF++, a framework for building bio-feedback and

Brain-Computer Interfaces. It makes large use of object-oriented

programming techniques and the adoption of a well-defined

functional model is the key for making it easily adaptable and

customizable, as herein described. The chosen programming

language, C++, the compatibility with a widely used software

platform and its free availability, makes the proposed solution a

valuable starting point for building neurofeedback applications.

Keywords— Neuro-feedback, EEG, NPXLab, BF++, videogame,

rehabilitation, regression, model, software.

I. INTRODUCTION

N recent years, neurofeedback (NFB) gained a lot of interest

because it has been demonstrated that it could support not

only medical doctors for diagnostic purposes but also

therapists in the rehabilitation process of people affected by

several neurological disorders. These include Attention Deficit

Hyperactivity Disorder (ADHD) [1, 2], epilepsy [2, 3],

schizophrenia [4], cerebral palsy [5], stroke [6 - 8] and

traumatic brain injuries [9]. Recently, even non-clinical

applications have been proposed, aimed for example at

improving motor skills in athletes [10].

The principle on which NFB is based on is that people can

be trained to self-regulate some brain signals and events that

are collected and processed in quasi-real-time through a

system that provides visual or acoustic feedback of their

ongoing neural activity. In other words, brain signals are

converted in some form of feedback with a well-defined law

that relates the neural signals with the feedback and that is

specific and characterizes each NFB application. Note that the

presence of the feedback modifies brain signals and this

implies that most of the offline data analyses cannot be

performed because signals have been modified by the

neurofeedback mechanism.

There are several different ways to perform this task, and

several different brain signals can be used. Among them, those

based on noninvasive methods such as

electroencephalography (EEG) and functional Near Infra-Red

Spectroscopy (fNIRS) are actually preferred and the most

L. Bianchi is with the Civil Engineering and Computer Science

Department of the “Tor Vergata” University of Rom, via del Politecnico, 1,

00133, Rome, Italy (phone: +39-06-7259-7461; e-mail: luigi.bianchi@

uniroma2.it).
.

widely used, also because of their relatively low costs.

Magnetoencephalography (MEG) has been also

successfully used as a brain signals recording method, but it

represents a too expensive solution and it is actually used only

in a limited number of research laboratories.

In a previous work [11] I have illustrated the main features

of "Speedy'O'Brain", a NFB videogame based on the analysis

of EEG signal that has also been successfully used in a noisy

environment such as that of an exhibition (Maker Faire 2018,

Rome, Italy) attended by more than 100,000 visitors.

In the videogame, six puppets appear on a PC screen

moving from the left to the right in a sort of race on a virtual

horizontal line [Fig. 1]. Five of them are controlled (pseudo-

randomly) by the PC while the sixth one, which is chosen by

the user, by the user's EEG activity. The winner is the puppet

that is at the rightmost position when a predefined amount of

time is elapsed. This sort of pseudo race occurs for several

times and after a calibration phase, which is necessary to train

a simple linear regressor built from EEG spectral data

computed over 1 second EEG windows.

The Speedy'O'Brain videogame supports also the NPXLab

platform, that can be used to analyze the data [12].

The NPXLab Suite is a collection of tools and software

modules - NPXLab was the first one to be released -

developed to analyze EEG and MEG signals, even if it can be

used for EKG, EMG, fNIRS and virtually any kind of sampled

signal.

Among the provided processing capabilities, there are the

Independent Component Analysis, the Common Spatial

Patterns, several time domain filters, either IIR or FIR, and

many linear and non-linear classifiers, which have been

widely used in several Brain-Computer Interface systems.

Its name derives from the native NPX file format, which

was defined to support Neurophysiological signal in XML

[13].

After the first public presentation of the videogame, some

research groups requested to obtaining the videogame, usually

requiring also customization. Some users asked to modify the

feedback modality, in order to have a more neutral kind of

stimulation, some others to support different EEG devices,

some others to cheat in order to avoid any kind of frustration

of the users in case of frequent races loss.

II. PROBLEM FORMULATION

To satisfy all the new requirements, a re-engineering of the

videogame is necessary.

The Software Model of the "Speedy’O’Brain"

Neuro-Feedback Videogame

Luigi Bianchi

I

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 543 ISSN: 1998-4464

Fig. 1 - A screenshot of the videogame during the Racing Modality. The green surrounding frame indicates that the image is captured during

the performance epoch. On the right part of the screen, features and spectra relative to the actual EEG activity are shown.

This falls into two main areas:

1. To support different platforms responsible to acquire

brain signals (e.g. different EEG systems vendors or

other signals such as MEG or fNIRS);

2. To support different and innovative NFB applications.

The first one was easily achieved because even the first

release of the videogame was developed while keeping

separated the acquisition device with the NFB videogame. In

fact, two computers are necessary to run the NFB videogame,

one for the EEG acquisition that was also responsible to

transmit the acquired signals to the second computer through a

TCP-IP connection and one for the regressor and the feedback.

For this reason, the communication protocol needed only few

minor changes to take into account a virtually unlimited

number of different acquisition devices that have to just

implement the transmission protocol to the second PC

responsible to process and drive the feedback.

It should be noted that in this class of applications a hard

real-time system is not necessary so that the non real-time

TCP-IP protocol can be used. It is technically a brute force

approach, which is however largely supported by almost every

PC: estimated delays introduced by the various acquisition

steps are of the order of milliseconds, as compared to the

analyzed epochs whose duration is of the order of several

seconds. In any case, even a LattePanda, which is a low-cost

single board PC, running Windows 10, and equipped with an

Intel Cherry Trail Z8350 Quad Core 1.8GHz CPU and with

4GB RAM was able to drive the regressor and the videogame.

On the contrary, the supporting of several different NFB

applications was more invasive and required some relevant

changes. Even if the support to the NPXLab platform for the

offline analyses was granted, it should be noted that the

feedback relies on the ability to modulate and modify brain

signals. This implies that to test different feedback modalities

or regressors it is necessary to re-acquire the data: offline

analyses cannot be performed to test other regressors because

it is assumed that acquired signals are modified by the

presence of the regressor used during the acquisition, whose

effects cannot be easily removed from the acquired data. For

this reason, to test a different regressor, feedback rule or

modality, it is necessary to collect new data.

This requires time as well as the implementation of a new

NFB system, which usually requires even more time.

III. PROBLEM SOLUTION

The BF++ platform [14] was used to implement the

neurofeedback platform. It is a software framework written in

C++ programming language to implement and analyze bio-

feedback and BCI systems.

The idea behind the specific implementation is to capture all

the main common aspects of a NFB application and build a

hierarchy of object-oriented classes, which are progressively

specialized to cover well-defined aspects of a specific

implementation.

This should maximize source code reuse and dramatically

reduce the time spent to customize or implement a new NFB

application.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 544 ISSN: 1998-4464

Fig. 2 - A Run is formed by a collection of trials and each trial is formed by a sequence of epochs. They are ITI, Relax and Performance in the

example.

In short, there are usually four different working modalities:

Exploring, Calibrating, Testing and Racing, each of them

completed in a Run and composed of a set of Trials (Fig. 2).

Each trial is then usually divided into three main epochs (this

number, however, may be easily changed):

a) Inter Trial Interval (ITI), during which no data is

processed and the user is free to move and stretch;

b) Relax, during which the user has to stay relaxed. This

epoch is usually devoted to collect some reference data;

c) Performance, during which the user has to perform a

mental task and whose data are usually compared to those of

the previous relax epoch.

While the meaning of the epochs is the same for each

operating modalities, the application handles brain signals in

different ways, depending on the operating modalities, which

usually are:

a) Exploring: a modality used to allow users to familiarize

with the mental task. Users can try to perform several different

mental tasks in order to find the one that is the most

comfortable for them. Data from the relax epoch are compared

to those of the performance and a t-test, on their respective

spectral data is computed on each spectral sample and for each

sensor to determine if the chosen mental task can be

distinguished from the relax. Operators can also verify if the

more responsive brain areas and frequencies are

physiologically compatible with the mental task chosen by the

user. For example, motor cortex should be selected while

performing motor imagery. In this operating modality no

feedback is provided to the user.

b) Calibrating: during this epoch, a regressor is trained in

order to establish a correlation between the spectral data

collected and computed during the relax and the performance

epochs. For example, a multiple linear regressor can be trained

by assigning a prediction value of 0 for the relax epoch and a

value of 1 for the performance epoch. No feedback is provided

to the user.

c) Testing: before the races, it is possible to see if the user is

able to control the system. Feedback is provided to the user.

d) Racing: data are acquired during the Relax and the

Performance epochs and the regressor law computed during

the calibration phase is applied to one of the racers. The more

a user can replicate the mental task executed during the

performance epoch in the calibration phase, the faster the

racer. Several races are performed in a run.

It should be noted that the number of operating modalities

and epochs could be changed very easily and a programmer

can set the desired values for each of them.

Fig. 3 The Operating Modalities Hierarchy.

The ancestor WorkingMode class holds two main objects, a

Regressor, which is responsible to convert brain signals in a

numeric value, and a UserInterface, which is responsible for

converting the numeric value into a feedback to the user.

There are two main classes derived from UserInterface: GUI

(Graphic User Interface), for visual feedback and AUI

(Acoustic User Interface) for acoustic one. They both share

the same C++ interface.

Listing 1 shows the main methods of the WorkingMode

class.

class WorkingMode

{

 public:

 WorkingMode (const char* name);

 virtual ~ WorkingMode ();

 const std::string& GetName() const;

 virtual int Setup(UserInterface* p_ui);

 virtual void Reset();

 virtual int SetSR(uint32 sr_);

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 545 ISSN: 1998-4464

 uint32 GetSR() const;

 virtual int PrepareTrial();

 virtual bool IsEndOfTrial() const;

 uint32 GetMaxTrialDurationSmpl();

 virtual bool IsTrialCompleted() const;

 virtual bool IsRunCompleted() const;

 virtual void ResetCount();

 int GetEpochIndex(int smpl) const;

 int GetEpochsCount() const;

 int AddEpoch(const MyEpoch& ep);

 const MyEpoch& Epoch(int i) const;

 uint32 GetBeginEpochSmpl(int epoch_index);

 int GetCurrEpochIndex() const;

 virtual void SetUserInterface(UserInterface* u);

 virtual UserInterface* GetUI();

 static void SetRegressor(Regressor* ptr_pred);

 virtual Regressor* GetRegressor();

 virtual void ResetUI();

 virtual void OnExitMode();

 virtual void OnEnterMode();

 protected:

 virtual void OnRunEnd();

 virtual void OnTrialBegin();

 virtual void OnTrialEnd();

 virtual void OnEpochBegin(int epoch);

 virtual void OnEpoch(int epoch);

 virtual void OnEpochEnd(int epoch);

…..

 public:

 static uint32 s_EnterModeDelaySmpl;

 static uint32 s_EnterModeElapsedSmpl;

 protected:

 uint32 m_nTotalTrials;

 uint32 m_nCurrTrial;

 std::vector<MyEpoch> m_vEpochs;

 std::string m_strName;

 static Regressor * s_pRegressor;

 UserInterface *m_pUI;

 uint32 m_SR;

};

Listing 1 – The WorkingMode C++ class declaration.

A clock object is also responsible of triggering all the

timing events (e.g. OnEpochBegin, invoked at the beginning

of an epoch), and to notify them to the various objects such as

the UserInterface and the Regressor, that can execute the

desired actions.

This triggering feature is provided thanks to the

EpochScheduler class, which acts as a concertmaster as it

holds a clock and determines when an epoch is elapsed and

then a new one should begin as well as if a trial is completed

and so on.

Actually, there are two main derived classes to handle

different situations:

1) The NFB application determines the events, usually by

updating a clock every time a data packet is received. This is

the usual case in real-time applications;

2) The NFB application receives the clock info from an

external process, as in the case of data playback, that is when

the videogame is driven from an already acquired file to

replicate the online behavior. In this case, events stored in a

file (e.g. “ITI Begin”) are used to determine and trigger the

proper epochs timing and events.

In this way, by simply changing the epoch scheduler one

can transform, with just one line of code, an online NFB

application into a playback one.

It is then clear that the main strategy is to simply derive a

class from an ancestor one and customize the behavior of the

NFB application by overriding functions whenever necessary,

with a minimal effort.

This is also true for the implementation of the various

regressors: at the time of this writing, four main different

regressors families (multiple linear regressor, artificial neural

network, stepwise linear discriminant analysis and Lasso

shooting) have been implemented and a user can choose which

one to use. All of them are actually fed by spectral data,

computed through classical FFTs procedures.

In any case, a new regressor can be easily implemented by

overriding a few member functions.

Listing 2 illustrates the main functions of the FFTRegressor

class, from which the 4 aforementioned regressors derive. In

the listings, Mat is a Matrix class and MyFeature is a class that

represents a feature holding information regarding its

regression weight, and the channel and frequency to which it

refers.

class MyFFTRegressor : public MyRegressor

{

public:

 MyFFTRegressor(const char* sz_name);

 virtual ~MyFFTRegressor();

 virtual int Train (Mat& bl, Mat& perf, double res);

 virtual double GetScore(const RowVector& rw);

 virtual int SetSR(uint32 sr);

 int SetFFTLen_ms(uint32 length);

 uint32 GetFFTLen_ms() const;

 virtual void OnEpoch(int epoch);

 virtual void OnEpochEnd(int epoch);

 virtual int Reset();

 virtual bool IsTrained();

 virtual size_t GetTrainedInfo(ostringstream& oss);

 double GetDelta(const WorkingMode * mwm);

 const list<MyFeature>& Features() const;

protected:

 Mat m_vSpeHistCalibBL; //

 Mat m_vSpeHistCalibPerf; //

 Mat m_p_values;

 fftw_complex* m_pFFTW_In;

 fftw_complex* m_pFFTW_Out;

 fftw_plan m_FFTWPlanFwd;

 std::list<MyFeature> m_lstFeat;

};

Listing 2 – The FFTRegressor C++ class declaration.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 546 ISSN: 1998-4464

Fig. 4 – A file generated with the Speedy’O’Brain software re-opened with the NPXLab tool for the off-line reviewing and analysis. Relax and

Performance epochs are clearly identifiable. The last six rows represent the positions of the six racers.

To give an idea of the oversimplification of the programming

task, it should be considered that to implement the

RacingMode class it has been necessary to write less than 300

lines of code, most of them devoted to the handling of the

feedback, overriding just 11 functions whose names are very

self-explicative such as:

1) PrepareTrial(), which is triggered in order to prepare a

new trial and perform som randomization such as the speed of

the runners controlled bey the computer in the case of the

Speedy’o’Brain videogame.

2) OnEpochBegin(), used to reset data buffers, timers,

counters and update the user interface;

3) OnEpochEnd(), used to trigger events to regressors and

user interface;

4) OnRunEnd(), used to perform final analyses, such as

training classifiers in CalibratingMode or present final results

to users when in RacingMode;

Therefore, if one has to show the performances at the end of

a session he has just to override the OnRunEnd function: the

internal model automatically triggers all the events and calls

the proper functions. Even the various regressors were

implemented by overriding just 4 member virtual functions.

As an example, the multiple linear regressor was implemented

with less than 150 lines of code.

In practice, most neurofeedback applications share the same

working modalities, so that usually there is no need to

implement a new one: usually, only the user interface needs to

be implemented, which is a very simple task.

Listing 3 illustrates the interface of the MyRacingGUI class,

which is devoted to the visualization of the various phases of

the race and responsible to animate, move and show the results

of the various puppets at the end of each race and at the end of

a session, formed by a set of races whose results are summed

and notified to the users at the end of a run.

class MyRacingGUI : public MyGUI

{

public:

 MyRacingGUI();

 virtual ~MyRacingGUI();

 virtual void OnRunEnd(WorkingMode* m);

 virtual void OnEpochBegin(WorkingMode* m, int epoch);

 virtual void OnEpoch(WorkingMode* m, int epoch);

 virtual void OnEpochEnd(WorkingMode* m, int epoch);

 virtual void OnExitMode(WorkingMode * m);

};

Listing 3 – The MyRacingGUI C++ class declaration.

The meaning and functionalities of the member functions

are quite self-explicative: in practice, one has to define what

happens when the various epochs begin, end and during them.

These functions are automatically invoked by the scheduler so

that a programmer has just to override them to customize the

behavior of the NFB application.

Finally, I should be mentioned that a data file in NPX

Format is also automatically generated with all the events (e.g.

“ITI”, “EndOfRun”, “Calibrated”, etc…) and feedback entities

(e.g. racer position) stored into it.

In addition, calibration parameters and regressors laws are

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 547 ISSN: 1998-4464

also stored in a NPX file. All this information can be further

processed and reviewed with all the tools of the NPXLab

Suite. Finally, it is possible to “playback” a stored file as if it

were processed in real-time to help programmers to debug

their own implementations. A screenshot of NPXLab with a

file generated with Speedy’O’Brain loaded is shown in Fig. 4.

IV. CONCLUSION

Speedy’O’Brain is a neurofeedback videogame that has

gained a lot of interest after its first large audience public

presentation. Because lots of researchers and users were

interested in adapting it with minimal changes according to

their needs, it has been re-engineered according to a well-

defined BCI model [14] that has already been used in several

BCI implementations [15, 16, 17, 18]. The model has also

been considered as a starting point in a proposal for BCI

standardization [19].

The fact that it automatically integrates with all the dozens

of tools of the free and publicly available NPXLab Suite make

it an easy a ready to use platform for implementing a wide

range of neurofeedback applications.

Future works will include multiplayer support and the

release of more regressors together with the compatibility with

a larger set of hardware brain signals acquisition devices.

V. AWARDS

Speedy’O’Brain was awarded at the Maker Faire 2018,

European Edition, held in Rome, Italy 13-15 October 2018

with the Maker of Merit Blue Ribbon.

VI. ACKNOWLEDGMENT

The author would like to thank Micromed S.p.A. and

EBNeuro S.p.A. manufacturer for the assistance and the

support they provided to realize the communication protocols.

A special thank goes to dr. Federica Cinelli for her invaluable

support and for making it possible to acquire good quality

EEG signals in a very hostile environment, such as that of an

exhibition.

REFERENCES

[1] Johnstone SJ, Roodenrys SJ, Johnson K, Bonfield R, Bennett SJ.

"Game-based combined cognitive and neurofeedback training using
Focus Pocus reduces symptom severity in children with diagnosed

AD/HD and subclinical AD/HD". Int J Psychophysiol. 2017 Jun;116:32-

44.
[2] Bakhtadze S, Beridze M, Geladze N, Khachapuridze N, Bornstein N.

"Effect of EEG Biofeedback on Cognitive Flexibility in Children with

Attention Deficit Hyperactivity Disorder With and Without Epilepsy."
Appl Psychophysiol Biofeedback. 2016 Mar;41(1):71-9.

[3] Marzbani H, Marateb HR, Mansourian M, "Neurofeedback: A

Comprehensive Review on System Design, Methodology and Clinical
Applications", Basic Clin Neurosci. 2016 Apr;7(2):143-58

[4] Wenya Nan, Feng Wan, Lanshin Chang, Sio Hang Pun, Mang I. Vai,

Agostinho Rosa. "An Exploratory Study of Intensive Neurofeedback
Training for Schizophrenia", June 2017Behavioural neurology

2017(2):1-6

[5] Alves-Pinto A, Turova V, Blumenstein T, Hantuschke C, Lampe R.
"Implicit Learning of a Finger Motor Sequence by Patients with

Cerebral Palsy After Neurofeedback.", Appl Psychophysiol

Biofeedback. 2017 Mar;42(1):27-37

[6] Reichert JL, Kober SE, Schweiger D, Grieshofer P, Neuper C, Wood G.

"Shutting Down Sensorimotor Interferences after Stroke: A Proof-of-

Principle SMR Neurofeedback Study", Front Hum Neurosci. 2016 Jul
15;10:348.

[7] Renton T, Tibbles A, Topolovec-Vranic J. "Neurofeedback as a form of

cognitive rehabilitation therapy following stroke: A systematic review.",
PLoS One. 2017 May 16;12(5):e0177290.

[8] Kober SE, Schweiger D, Witte M, Reichert JL, Grieshofer P, Neuper C,

Wood G. "Specific effects of EEG based neurofeedback training on
memory functions in post-stroke victims.", J Neuroeng Rehabil. 2015

Dec 1;12:107.

[9] Bennett CN, Gupta RK, Prabhakar P, Christopher R, Sampath S,
Thennarasu K, Rajeswaran J "Clinical and Biochemical Outcomes

Following EEG Neurofeedback Training in Traumatic Brain Injury in

the Context of Spontaneous Recovery". Clin EEG Neurosci. 2018
Nov;49(6):433-440.

[10] Jeunet C, Glize B, McGonigal A, Batail JM, Micoulaud-Franchi JA.

"Using EEG-based brain computer interface and neurofeedback
targeting sensorimotor rhythms to improve motor skills: Theoretical

background, applications and prospects." Neurophysiol Clin. 2018 Nov

7. pii: S0987-7053(18)30259-4.
[11] Bianchi L (2018), "Speedy’O’Brain: a Neuro-Feedback Videogame

driven by Electroencephalographic Signals", International Journal of

Biology and Biomedical Engineering, Vol. 12, pp 229-234.
[12] Bianchi L, "The NPXLab Suite 2018: a Free Features Rich Set of Tools

for the Analysis of Neuro-Electric Signals", WSEAS Transactions on
Systems and Control, ISSN / E-ISSN: 1991-8763 / 2224-2856, Volume

13, 2018, Art. #18, pp. 145-152

[13] Bianchi L, Quitadamo LR, Marciani MG, Maraviglia B, Abbafati M,
Garreffa G. (2007). “How the NPX data format handles EEG data

acquired simultaneously with fMRI”. Magnetic Resonance Imaging. vol.

25(6), pp. 1011-1014 ISSN: 0730-725X.
[14] Bianchi L, Babiloni F, Cincotti F, Salinari S, Marciani MG. (2003).

“Introducing BF++: A C++ framework for cognitive bio-feedback

systems design”. Methods of Information In Medicine. vol. 42, pp. 104-
110 ISSN: 0026-1270.

[15] Bianchi L, Ferrante R, Quitadamo LR. (2018). “Analog-like control is

possible in SSVEP based brain-computer interfaces”. 2018 IEEE Life
Sciences Conference, Montreal, Canada; 28 – 30 October 2018, Article

number 8572094, Pages 235-238.

[16] Lugo ZR, Quitadamo LR, Bianchi L, Pellas F, Veser S, Lesenfants D,
Real RGL, Herbert C, Guger C, Kotchoubey B, Mattia D, Kübler A,

Laureys S, Noirhomme Q. “Cognitive processing in non-communicative

patients: What can event-related potentials tell us?”. (2016). Front. Hum.
Neurosci, Vol. 10, 14 November 2016, Article number 569.

[17] Bianchi L, Sami S, Hillebrand A, Fawcett IP, Quitadamo LR, Seri S, "
Which Physiological Components are More Suitable for Visual ERP
Based Brain--Computer Interface? A Preliminary MEG/EEG Study”,

(2010), Brain Topography, Volume 23, Issue 2, pp 180–185.

[18] Bianchi L, Quitadamo LR, Abbafati M, Marciani MG, Saggio G.
“Introducing NPXLab 2010: A tool for the analysis and optimization of

P300 based brain-computer interfaces”, (2009), 2nd International

Symposium on Applied Sciences in Biomedical and Communication
Technologies (ISABEL), 24-27 Nov. 2009, Bratislava, Slovakia.

[19] Bianchi l. (2018), "Brain-computer interface systems: Why a standard

model is essential. On BCI standards". 2018 IEEE Life Sciences
Conference, Montreal, Canada; 28 – 30 October 2018, Article number

8572142, pp. 134-139.

Luigi Bianchi was born in Milano, Italy, in 1965. He was graduated in

Electronic Engineering at the University of Rome “La Sapienza”, with a thesis
on the analysis of dipolar sources localization techniques from EEG recorded

activity in man. In 2005 he got the Ph.D. in "Neurophysiology: Neural Basis

of Superior Cognitive Functions" (University of Rome "La Sapienza") with a

thesis entitled: "Brain-Computer Interface Systems: Design, Algorithms and

Optimization". From 1993 to 1994 he worked at the University of Pierre e

Marie Curie (Paris, France). From 1994 to 1995 he worked at the University
of Rome “La Sapienza” in the Human Physiology Laboratory cooperating

with the Institute of Neuroscience and Bio-Images of the CNR (National

Research Centre) of Milan (Italy). From 1996 to 2011 he worked in the
Nerophysiopathology Laboratory of the University of Rome “Tor Vergata”.

From 1998 to 2006 he was a consultant of the Research and Development

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 548 ISSN: 1998-4464

Division of the EBNeuro S.p.A., one of the largest European manufacturers

and distributors of Neurophysiology instruments, for which he developed,

among the others:

1) The first commercial European Digital Video EEG system;

2) The first release of the Galileo EEG system for Windows;
3) The Spectral Analysis Package, which includes 3-D spectral maps, spectral

coherence computation and many other facilities;

Since 2011 he is Assistant Professor at the University of Rome "Tor Vergata"
(Civil Engineering and Computer Science Engineering Dept.), where he

actually works. He is the author of more than 100 peer-reviewed scientific

publications (more than 4500 citations) and he is in the editorial board of
several scientific journals. His h-index is 34 (Source: Google Scholar,

November 2018). He also participated in several EU research project. His

main interests are real-time and offline signal processing, Brain-Computer
Interfaces, Human-Computer Interaction and assistive technologies and

released many free tools which can be downloaded from his web site

http://www.brainterface.com. Prof. Luigi Bianchi is a member of the IEEE
society and of the BCI society. In 2002 he was awarded at the II° Brain-

Computer Interface Workshop (Albany, NY) and in 2018 he was awarded at

the MakerFaire 2018, European Edition.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 13, 2019 549 ISSN: 1998-4464

