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Abstract: Curcumin is a compound isolated from turmeric, a plant known for its medicinal use.
Recently, there is a growing interest in the medical community in identifying novel, low-cost, safe
molecules that may be used in the treatment of inflammatory and neoplastic diseases. An increasing
amount of evidence suggests that curcumin may represent an effective agent in the treatment of
several skin conditions. We examined the most relevant in vitro and in vivo studies published to date
regarding the use of curcumin in inflammatory, neoplastic, and infectious skin diseases, providing
information on its bioavailability and safety profile. Moreover, we performed a computational
analysis about curcumin’s interaction towards the major enzymatic targets identified in the literature.
Our results suggest that curcumin may represent a low-cost, well-tolerated, effective agent in the
treatment of skin diseases. However, bypass of limitations of its in vivo use (low oral bioavailability,
metabolism) is essential in order to conduct larger clinical trials that could confirm these observations.
The possible use of curcumin in combination with traditional drugs and the formulations of novel
delivery systems represent a very promising field for future applicative research.

Keywords: curcumin; antioxidants; molecular docking; inflammatory skin diseases; psoriasis; atopic
dermatitis; iatrogenic dermatitis; wound care; skin aging; inflammaging; skin cancer; skin infections

1. Introduction

Curcumin is a bright yellow chemical compound isolated from Curcuma longa L. (turmeric) plants
(Zingiberaceae) [1]. Turmeric has been historically used in herbalism as a traditional medical remedy
for cutaneous and gastrointestinal inflammation, weight control, and poor digestion [2–4].

Recently, conventional medicine is directing a lot of effort towards identifying novel, low-cost,
safe molecules that may be used in the treatment of inflammatory, neoplastic, and infectious diseases.
Numerous in vitro and in vivo studies have examined curcumin’s anti-inflammatory, anticancer,
and antimicrobial properties, both individually and combined with traditional treatments. This paper
aims to provide an overview on the current knowledge regarding curcumin’s effects on skin conditions
alongside with its bioavailability and safety profile through the analysis of the most relevant studies
published to date, providing suggestions for further research (Figure 1). Molecular docking studies
describing the interaction of curcumin with molecular targets involved in the development of skin
disorders are nowadays not available in literature. We therefore complemented our data with original
results, obtained through molecular docking analysis, regarding curcumin’s binding mode and
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interaction towards six major enzymatic targets, indicated in this review as responsible for several
dermatological conditions.
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bioaccessibility, due to its low solubility in water and low stability [5]. Curcumin also undergoes 
extensive first-pass metabolism through its glucuronidation and sulfation, with the production of 
metabolites that have shown to have significant lower biological activities compared to parent curcumin 
and that are rapidly eliminated [6]. A curcumin-converting enzyme named “NADPH-dependent 
curcumin/dihydrocurcumin reductase” (CurA) has been purified from Escherichia Coli, shedding new 
light on the role of human intestinal microorganisms in the mechanism of curcumin metabolism in vivo 
[7]. Preclinical and clinical studies assessed that curcumin is poorly absorbed following oral 
administration. In rats, only 60% of the dose of curcumin administered orally was adsorbed, with 
negligible quantities (<20 μg/tissue) detected in liver and kidney from 15 min up to 24 h after 
administration albeit 38% of the initial dose being detected in the large intestine and patients taking 
curcumin orally show plasmatic concentration of the compound at nanomolar levels, with limited 
biological effects [8–12]. To overcome this limitation, combination with adjuvant substances such as 
piperine, encapsulation with polylactic-co-glycolic acid (PLGA) and cyclodextrin (CD), or formulation 
in liposome, micelles, nanoparticles, nanomicellizing solid dispersion based on rebaudioside A and 
dispersion with colloidal submicron-particles have been recently proposed, showing to enhance 
curcumin bioavailability and therapeutic potential [6,13–18]. We present some significant results 
induced by curcumin administered in several formulations below in this review (Table 1). Ongoing 
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1.1. Bioavailability of Curcumin

According to Nutraceutica Bioavailability Classification Scheme (NuBACS), curcumin shows
poor bioaccessibility, due to its low solubility in water and low stability [5]. Curcumin also undergoes
extensive first-pass metabolism through its glucuronidation and sulfation, with the production of
metabolites that have shown to have significant lower biological activities compared to parent curcumin
and that are rapidly eliminated [6]. A curcumin-converting enzyme named “NADPH-dependent
curcumin/dihydrocurcumin reductase” (CurA) has been purified from Escherichia Coli, shedding new
light on the role of human intestinal microorganisms in the mechanism of curcumin metabolism
in vivo [7]. Preclinical and clinical studies assessed that curcumin is poorly absorbed following
oral administration. In rats, only 60% of the dose of curcumin administered orally was adsorbed,
with negligible quantities (<20 µg/tissue) detected in liver and kidney from 15 min up to 24 h after
administration albeit 38% of the initial dose being detected in the large intestine and patients taking
curcumin orally show plasmatic concentration of the compound at nanomolar levels, with limited
biological effects [8–12]. To overcome this limitation, combination with adjuvant substances such as
piperine, encapsulation with polylactic-co-glycolic acid (PLGA) and cyclodextrin (CD), or formulation
in liposome, micelles, nanoparticles, nanomicellizing solid dispersion based on rebaudioside A and
dispersion with colloidal submicron-particles have been recently proposed, showing to enhance
curcumin bioavailability and therapeutic potential [6,13–18]. We present some significant results
induced by curcumin administered in several formulations below in this review (Table 1). Ongoing
clinical trials investigating the topical or systemic use of curcumin in skin conditions are listed in
Table 2.



Nutrients 2019, 11, 2169 3 of 25

Table 1. Formulations of curcumin for oral, topical, or intravenous use investigated in preclinical and
clinical studies for enhanced bioavailability listed in this review.

Route of Administration Formulation Reference

Oral

Curcumin-piperine nanoparticles [6]
Curcumin-loaded PLGA nanoparticles [13]

CE-complexed curcumin [14]
Curcumin-loaded self-nanomicellizing solid dispersion based on

RA (RA-Cur) [15]

Colloidal Submicron-Particle Curcumin (Theracurmin®) [16]
Curcumin-loaded liposomes [6,17]

Curcumin micelles [17,18]
Lecithin-based formulation (Meriva®) [19]

Curcumin nanocapsules [20]

Topical

Curcumin-loaded chitosan-alginate sponges [21]
Curcumin-loaded oleic acid-based polymeric bandages [22]

Curcumin-loaded alginate foams [23]
Curcumin-incorporated collagen films [24]

Hydrogel system containing curcumin micelles [25]
Curcumin nano-emulsion [26]

Curcumin-β-Cyclodextrin nanoparticles [27]
Chrysin-curcumin-loaded nanofibers [28]

Curcumin-loaded transdermal patches [29]
Curcumin nanoparticles [30–32]

Curcumin-loaded-liposomes [30,33,34]
Curcumin-loaded chitosan nanoparticles impregnated into

collagen-alginate scaffolds [35]

Intravenous
Curcumin-loaded solid lipid nanoparticles [36]

Curcumin-loaded liposomes [37–39]

PLGA, polylactic-co-glycolic acid; CE, cyclodextrin; RA, rebaudioside A.

Table 2. Ongoing clinical trials with curcumin in skin disorders.

Major Outcome Measures Pain Intensity Measured by
Visual Analog Scale (VAS)

Change in Erythema 1 Day After UV Exposure
Change in Erythema 2 Days After UV Exposure
Change in Erythema 1 Day After UV Exposure

Study design Randomized, double-blind, Phase
1 clinical trial Randomized, double-blind

Intervention model Parallel assignment Parallel assignment

Topical or ingested curcumin
containing product Topical Ingested

Intervention/treatment Drug: Triamcinolone
Drug: Turmeric paste

Dietary supplement: Crucera-SGSDietary
Supplement: Meriva 500-SF

ClinicalTrials.gov Identifier NCT03877679 NCT03289832

Study

The Effect of Topical Curcumin
Versus Topical Corticosteroid on

Management of Oral Lichen
Planus Patients

Effect of Orally Delivered Phytochemicals on
Aging and Inflammation in the Skin

Condition or disease Oral lichen planus UV-induced skin erythema

Intravenous use of curcumin has been proposed in order to improve curcumin bioavailability
and increase its efficacy. Serum curcumin levels after intravenous administration were significantly
higher than the one observed after oral administration in rats [36,40]. In animal models, curcumin
infusion showed significant anticancer effects without inducing toxicity [6,41]. A randomized,
placebo-controlled double-blind phase I dose escalation study investigated the pharmacokinetics,
safety, and tolerability of short-term intravenous administration of liposomal curcumin in healthy
subjects with good results in terms of bioavailability and safety [37]. Pharmacokinetics of curcumin



Nutrients 2019, 11, 2169 4 of 25

infusion seems to depend on co-medication and health status, as highlighted by a recent clinical
study [38]. However, these interesting albeit limited data must be confirmed by larger clinical trials
with longer follow-up in order to recommend this route of administration.

Curcumin showed a good accessibility and bioactivity when administered topically, especially
when incorporated in novel formulations such as chitosan-alginate sponges, polymeric bandages,
alginate foams, collagen films, nano-emulsion, hydrogel, and β-cyclodextrin-curcumin nanoparticle
complex, making curcumin eligible as a therapeutic agent for the topical treatment of skin
conditions [21–27,42]. Investigating the possible interactions between curcumin and other chemicals
commonly used in topical skin treatments may provide useful insights for the development of new
effective combination preparations, tailored for different conditions.

1.2. Curcumin’s Safety Profile

Curcumin is recognized as a safe compound by Food and Drug Administration (FDA). Numerous
preclinical and clinical studies assessed the safety of this compound [43–45]. The maximum
recommended dose varies, ranging from a maximum daily intake of 3 mg/kg to 4–10 g [46]. In a clinical
study, curcumin was not detected in the serum of healthy subjects administered up to 8000 mg/day,
and only low levels were detected in two subjects administered 10,000 or 12,000 mg. No harmful
effect was observed in any of the subjects, regarding a daily intake of 12,000 mg as safe in healthy
individuals [47].

A good safety profile of curcumin was observed also in patients with cardiovascular risk factors
and patients affected by high risk conditions or pre-malignant lesions of internal organs taking
a dose of curcumin ranging from 500 to 8000 mg/day for 3 months [43,48]. This safety has been
observed also in patients with advanced colorectal cancer taking a dose of curcumin ranging from 36
to 180 mg/day for up to 4 months, in breast cancer patients undergoing radiotherapy while taking up
to 6000 mg/day of curcumin, and advanced pancreatic cancer patients taking 8000 mg/day of curcumin
for 2 months [49–51].

Other studies in both healthy subjects and patients affected by several conditions such as advanced
colorectal cancer, cholangitis and ulcerative colitis reported mild and manageable gastrointestinal
symptoms with a daily intake of up to 8000 mg of curcumin [52–55]. Alongside these data, a minority
of patients affected by primary sclerosing cholangitis taking up to 1400 mg/day of curcumin reported
only mild symptoms such as headache or nausea [56]. Controversially, intractable abdominal pain
after assumption of curcumin at a dose of 8000 mg/day has also been reported in patients affected by
advanced pancreatic cancer taking gemcitabine [57]. It may be speculated whether curcumin-induced
COX inhibition and the subsequent inhibition of prostaglandin (PG) synthesis (see below) plays a role
in the development of gastrointestinal side effects in patients suffering other gastrointestinal conditions.
However, no sound explanation is available to date.

Short-term intravenous dosing of liposomal curcumin has been indicated as safe up to a dose of
120 mg/m in a clinical trial on healthy subjects, whereas in a dose escalation study on metastatic cancer
patients a dose of 300 mg/m2 over 6 h appeared to be the maximum tolerated dosage [37,39]. However,
changes in red blood cell morphology may represent a dose limiting sign of toxicity, and one case of
hemolysis and one death associated with intravenous curcumin preparation were reported, suggesting
the need for further data regarding the safety and recommended dosages of curcumin administered
intravenously [36,39,58].

It is worth mentioning that the majority of studies assessing curcumin safety profile has been
conducted for short periods of time. No sound evidence is available to date regarding the consequences
of long-term use of this compound. Although doses recommended for over-the-counter curcumin
are generally lower than the ones in clinical studies mentioned above, supplements containing this
compound are widely available to the general public and are increasingly popular. In this regard, recent
reports of liver diseases related to curcumin assumption drove the medical community’s attention to
the possible liver toxicity of this molecule [59]. The exact role of curcumin in the development of these
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conditions still has to be elucidated, and a possible contamination of supplements with lead has been
postulated. Until further data is available, surveillance is needed, especially in long-term use, in the
over-the-counter context and in patients affected by liver conditions.

1.3. Curcumin for the Treatment of Psoriasis

Psoriasis (PsO) is a chronic inflammatory, multisystemic, and multifactorial disease affecting
about 3% of the world population. The clinically observed thick, silvery plaques are the result of
uncontrolled proliferation of keratinocytes. The first step in psoriasis pathogenesis is the activation
of mature and inflammatory dendritic cells (DC), leading to hyperproduction of proinflammatory
molecules such as cytokines, chemokines and antimicrobial peptides (AMPs). Cytokines belonging to
the IL-23/T-helper-(Th)-17 axis and type I interferons (IFNs) play a paramount role, being a target of
several monoclonal antibodies used in the treatment of psoriasis [60].

Curcumin is able to suppress the excessive production of TNF-α by activated macrophages [61–65].
Curcumin has been shown to directly bind to the receptor-binding sites of TNF-α by covalent and
non-covalent interactions, blocking the subsequent TNF-dependent activation of NF-κB [66,67]. It has
been also observed that curcumin can inhibit a TNF-α promoter by its methylation and is able to
impair lipopolysaccharide (LPS) signaling, responsible of the induction of TNF-α production, by acting
on toll-like receptors (TLRs) 2 and 4 [68–70]. Moreover, curcumin is a non-competitive inhibitor of
Phosphorylase kinase (PhK), a serine/threonine-specific protein kinase. Levels of PhK in human skin
samples taken from patients affected by untreated active psoriasis, resolving psoriasis undergoing
topical treatment, and non-psoriatic subjects showed to directly correlate to the activity of psoriasis.
In this study, decreased levels of PhK in samples of plaques treated with curcumin 1% alcoholic gel
as well as other traditional topical treatment were associated with decreased keratinocyte transferrin
receptor (TRR) expression, severity of parakeratosis, and density of epidermal CD8+ T cells [71].
These preliminary observations may suggest that agents capable to inhibit PhK activity, such as
curcumin, could be considered suitable candidates the topical treatment of psoriasis [72,73].

In animal studies, daily applications of 1% curcumin gel reduced skin psoriasis-like inflammation
artificially induced by imiquimod, through the inhibitions of the potassium channels (subtypes Kv1.3)
expressed in T cells and the reduction of IL-17A, IL-17F, IL-22, and other pro-inflammatory cytokines
in ear samples taken from mice [74,75]. Clinically, daily applications of a turmeric tonic significantly
reduced the cutaneous symptoms and quality of life of patients affected by scalp psoriasis compared
to the placebo [76]. A recent randomized, double-blind, placebo-controlled clinical trial reported the
anti-psoriatic effects of oral administration of Meriva, a novel bioavailable lecithin-based delivery form
of curcumin, observing a reduction of cutaneous symptoms together with a decrease of serum levels
of IL-22. Furthermore, the treatment increased the anti-psoriatic effects of topical steroids in these
patients when treated in combination [19].

Curcumin oral administration (40 mg/kg, for 20 days) resulted in significant reduction of the
serum levels of IL-2, IL-12, IL-22, IL-23, IFN-gamma, and TNF-alpha in psoriatic mice, reducing
psoriasis-associated inflammation as well as hyper-proliferation of keratinocytes [77]. Clinically,
a phase II clinical trial confirmed the efficacy of oral curcumin on cutaneous symptoms of plaque
psoriasis, reporting an excellent safety profile [67]. Interestingly, a double blind, placebo-controlled
randomized clinical trial reported that oral administration of curcumin formulated as nanoparticles
potentiated the effectiveness of acitretin in psoriatic patients and resulted in control of their serum
cholesterol levels, suggesting a role of this compound as adjuvant treatment in moderate-to-severe
psoriasis [78].

1.4. Curcumin for the Treatment of Atopic Dermatitis

Atopic dermatitis (AD) is a chronic, pruritic inflammatory skin disease of unknown etiology,
resulting from a complex interplay between genetic, environmental, and immune factors [79]. It usually
starts in early infancy, but also affects a substantial number of adults. The prevalence of atopic diseases
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has increased abruptly in recent years in most Westernized societies, resulting in considerable research
into safe, economically viable, and readily manufactured therapies for AD [80].

An imbalance in the T cell subsets is crucial in the pathogenesis of AD. The early stages are
characterized by an abnormal production of cytokines such as IL-4, IL-5, IL-13, and IL-31 by Th2,
whereas in later phases a switch from the initial Th2 response to a Th1 type-immune response is
observed, with excessive release of IL-1, IL-6, TNF-α, IL-12, and IL-18 by recruited monocytes [81].

In Asian countries, curcumin has been traditionally used to manage atopic dermatitis
symptoms [82].

The phytocomponent p-hydroxycinnamic acid (HCA) isolated from Curcuma longa has been shown
to modulate the protein kinase C (PKC) theta (PKCθ) pathway in vitro, leading to the inhibition of T-cell
activation [83]. In animal study, oral administration of HCA induced a reduction in the production of
proinflammatory cytokines by keratinocytes in both the ear tissues and in vitro, improving cutaneous
signs of AD such as dermo-epidermal thickening and inflammation in mice [71].

Clinically, a combination herbal extract cream (Herbavate®) containing C. longa applied daily
alleviated erythema, scaling, thickening, and itching in patients affected by eczema [84]. However,
the design of the study (non-comparative study, lack of control group, high drop-out rate, impossibility
to distinguish between the effects of turmeric and the other cream components) makes the significance
of the results debatable. Further randomized, comparative clinical trials are needed in order to establish
the potential role of curcumin in the treatment of AD.

Contact dermatitis and contact urticaria after topical application of curcumin-based creams have
been reported [85–87]. Once more, surveillance is advisable in highly reactive patients, such as the
ones affected by atopic dermatitis.

1.5. Curcumin for the Treatment of Iatrogenic Dermatitis

Iatrogenic dermatitis is a non-specific term used to indicate a variety of inflammatory skin
conditions directly attributable to medical procedures or drug administration. Radiation-induced
dermatitis developing in patients undergoing radiotherapy sessions and allergic contact dermatitis
due to applied medicaments are typical examples of iatrogenic dermatitis.

Several studies propose curcumin as a natural, safe, widely available, and inexpensive treatment
for the management of iatrogenic dermatitis.

In an animal model, daily topical application of curcumin showed to improve epithelial cell
survival and recovery in irradiated skin, reducing the expression of cyclooxygenase-2 and nuclear
factor-kappaB [88].

In a randomized, double-blind, placebo-controlled clinical trial oral curcumin administration
(6 g/day) during radiotherapy sessions reduced the severity of radiation-induced dermatitis in 30 breast
cancer patients [50].

Oral administration of curcumin (4 g/day) showed to prevent capecitabine-induced hand-foot
syndrome (HFS) in 40 cancer patients undergoing treatment with capecitabine, with no toxicity
associated with curcumin. Interestingly, no correlations between inflammatory parameters such as
IL-6, TNF-α, neutrophil/lymphocyte index, and HFS severity was found, thus the mechanism behind
this preventive effect is not fully elucidated [89].

In addition, a placebo-controlled study reported that oral administration of curcumin (1 gr/day)
combined with piperine for 4 weeks improved sulphur mustard-induced chronic pruritic symptoms
and DLQI of 46 patients compared with placebo. The authors observed a significant reduction in
the levels of various inflammatory markers such as IL-8, hs-CRP CGRP in the patients receiving
curcumin compared with placebo, and a concurrent reduction of substance p (p < 0.001) as well as
significant elevations in serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase
activities, further confirming the well-documented antioxidant activities of curcumin (discussed below).
The authors state that the abovementioned effects may have been influenced by the association of
curcumin with piperine, a well-documented bioavailability enhancer [90].
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1.6. Curcumin for Wound Care

Wound treatment represents a therapeutic challenge with significant economic impact on healthcare
systems worldwide, with its cost rising sharply [26].

Wound healing is a complex, dynamic process that involves a sequence of cellular and molecular
events. It can be divided in a simplified manner into three phases: (1) hemostasis and inflammation,
(2) proliferation with formation of granulation tissue, and (3) remodeling, with formation of new
epithelium and scarring [91].

During the inflammatory phase a significant number of neutrophils are recruited at the wounded
site, releasing proteases, reactive oxygen species (ROS), and inflammatory mediators such as TNF-α
and IL-1 [92,93]. As mentioned above (see Section 1.3) curcumin is able to reduce inflammation through
the inhibition of nuclear factor κB (NF-κB) and the suppression of TNF-α expression, as well as through
the impairment of LPS signaling. Moreover, curcumin exerts its anti-inflammatory effects by acting
on other signaling pathways, such as peroxisome proliferator-activated receptor-gamma (PPAR-γ)
and myeloid differentiation protein 2-TLR 4 co-receptor (TLR4-MD2) [94–97]. Excessive oxidative
stress plays a major role in prolonged inflammation, a significant feature in the pathogenesis of chronic
non-healing wound [98,99]. In fact, while low levels of ROS are physiologically formed during the
physiologic wound healing process, their excessive production cannot be balanced by the cellular
antioxidant system, leading to oxidative stress, lipid peroxidation (LPx), DNA breakage and enzyme
inactivation, including free-radical scavenging enzymes, in a self-perpetuating cycle resulting in chronic
disease [100]. The reducing potential of its electron-donating groups allows curcumin to restore the
redox balance and suppress transcription factors related to oxidation, while sustaining the production
and activity of antioxidant enzymes and their constituents, such as glutathione (GSH) [24,101–105].
Moreover, a protective action of curcumin against hydrogen peroxide has been observed in vitro in
human keratinocytes and fibroblasts [106].

During the proliferative phase of wound healing, the dermis is invaded by proliferating fibroblasts
producing immature ECM proteins (EDA fibronectin and type III collagen) as well as activating growth
factors such as TGF-β1, leading to reparation of the wounded dermal layer [107–113].

Simultaneously, keratinocytes migrate at the wounded site, where they proliferate and differentiate
in order to restore the overlying epithelium [114,115]. A major role in this process is played by hair
follicle stem cells [116,117].

Curcumin may exert significant action during the proliferative phase [118]. In fact, it has been
demonstrated that curcumin is able to reduce the number of membrane matrix metallo-proteinases
(MMPs), increase the hydroxyproline and collagen synthesis, and accelerate the maturation of
collagen fibers [24,119]. In addition, curcumin also promotes the differentiation of fibroblasts into
myofibroblasts, which marks the beginning of wound contraction, and reduces the epithelization
period in wounds [119–124].

In animal models, daily curcumin topical application accelerated wound healing in irradiated
mini-pigs, and the application of chrysin-curcumin-loaded nanofibers reduced the levels of IL-6,
MMP-2, TIMP-1, TIMP-2, and iNOS gene expression in male rats, resulting in the acceleration of the
healing process of surgical wounds [28,88]. Transdermally applied curcumin on surgical wounds on
rats produced marked inhibition of H2O2-induced damage to keratinocytes and fibroblasts, while
application of curcumin-oligochitosan nanoparticle complex or with application of oligochitosan
coated curcumin-loaded-liposomes resulted in faster healing of surgical wounds in mice compared
with controls [29,30]. In a diabetic rat model, wounds treated with curcumin showed an accelerated
reepithelization rate compared with untreated controls [125]. Treatment with curcumin-loaded
polymeric bandages resulted in significantly lower expression of PI3K and pAKT, indicative of
an inhibition of the PI3K/AKT/NFκB axis, reduced LPx levels, and increase in collagen compared
with controls.
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Clinically, patients affected by diabetic wounds treated with curcumin loaded chitosan nanoparticles
impregnated into collagen-alginate scaffolds reported a significantly faster healing process compared
to those treated with patients receiving treatment with placebo scaffold [35].

As mentioned above, topical application of curcumin seems to have more pronounced effects
on wound healing compared to its oral administration in the treatment of wounds, owing to higher
accessibility of the drug at the wound site [94,125–127]. Many new formulations of curcumin have been
developed in order to achieve better topical application at the wound site, such as chitosan-alginate
sponges, curcumin-loaded polymeric bandages, alginate foams, collagen films, and nano-emulsion and
hydrogel [26–31]. The incorporation into these formulations resulted in increased curcumin bioactivity,
although no formulation showed a significant difference in its effect compared to the others. However,
formulation as nanoparticles seems to be of special interest, as it increases curcumin bioavailability
and half-life and enhances its water dispersibility [27,30–32]. Further studies comparing nanoparticles
with other formulations are needed in order to confirm these observations.

1.7. Curcumin for the Treatment of Skin Aging: The “Inflammaging” Issue

Human aging is a very complex process that occurs in an intricate biological and physiological
setting, depending on a complex interaction between genetic, environmental, and stochastic factors.
The term “exposome” has been proposed to describe the totality of exposures to which an individual is
subjected from conception to death, including both external and internal factors as well as the human
body’s response to these factors. Specifically, not clinically evident infections, sun radiations (UVA and
UVB), air pollution, and tobacco smoke have been listed as environmental factors [128]. Many changes
occur with aging. Among the most important are changes in immune reactivity associated with cell
differentiation stages and the phenomenon of inflammaging, understood as subclinical low-grade
inflammation, manifested by elevated levels of proinflammatory factors, being both these processes
driven by chronic antigen stimulation [129].

Inflammaging is considered the basis of most age-related diseases (ARDs). Increased levels of
cytokines such as IL-1,2,6,12,15,18,22,23, TNF-α, and INF have been detected in patients affected by many
ARDs, such as obesity, metabolic syndrome, diabetes, cardiovascular diseases, and Alzheimer’s disease,
together with a decrease of anti-inflammatory factors such as IL1-Ra, IL-4, IL-10, and TGF-b [130].

Release of these cytokines is primarily induced by chronic antigenic stimulation, and sustained by
the hyperproduction of ROS, also elicited by the inflammatory response to the antigenic stimuli. On the
other hand, the antioxidant system may be depleted in a setting of chronic inflammation, resulting in
an imbalance of the redox status and prolonged oxidative stress [131] (Figure 2).

In this vicious cycle, pathophysiological changes, tissue injury, and healing proceed simultaneously.
Irreversible cellular and molecular damage that is not clinically evident slowly accumulates over
decades, eventually resulting in cutaneous aging and ARDs [132].

Long-lived people, especially centenarians, seem to cope with chronic subclinical inflammation
through an anti-inflammatory response, called therefore “anti-inflammaging” [133]. On the basis of
these observations, efforts have been recently made in order to identify molecules that can improve
our response to subclinical inflammation and prevent the consequent cellular damages.

Due to its known anti-inflammatory and antioxidant effects, potential topical and systemic use of
curcumin in the treatment and prevention of skin aging has been examined, especially when related to
sun exposure (photoaging) [4].

A clinical study on 28 women in their 30s investigated the use of an herbal combination gel
containing turmeric, rosemary, and gotu kola (Tricutan®) in improving signs of photoaging, reporting
a significant improvement in skin firmness and improvement in subjects’ overall self-evaluations after
4 weeks of daily use [134].
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A randomized, double-blind, placebo-controlled trial on 47 healthy subjects receiving daily hot
water extract of Curcuma longa reported a significant inhibition of the increasing in ultraviolet B-induced
TNF-α and IL-1β at the mRNA and protein levels compared to placebo. Moreover, the administration
of the compound resulted in a significant increase in hyaluronan production from non-stimulated
keratinocytes and in a subsequent increase in the water content in facial skin. Besides confirming its
anti-inflammatory effects, these results suggest that curcumin may represent an effective moisturizing
agent [135].

The effects of curcumin on collagen synthesis discussed above (see Section 1.6) are of definite
interest regarding the tone and appearance of facial skin.

Randomized, double-blind, placebo-controlled studies on a larger number of patients are
warranted in order to further investigate the possible application of different curcumin formulations in
the treatment of skin aging, and whether other ADRs may benefit from its administration.

1.8. Curcumin for the Treatment of Skin Cancer

Non-melanoma skin cancer (NMSC) is the most common cancer in humans, including squamous
and basal cell carcinoma (SCC and BCC). Although actinic keratoses (AKs) are lesions characterized by
a milder degree of dysplasia, they have up to a 20% risk of progression to squamous cell carcinoma,
with eradication being mandatory in affected patients. Mortality from NMSC is low, however,
its incidence is high, resulting in a significant public health burden. This makes NMSC a suitable target
for chemoprevention and long-lasting research. The skin of the head and neck accounts for 70%–80% of
skin cancer cases, chronic sun exposure being a major risk factor for the development of NMSC [136].

Carcinogenesis is a dynamic process that may be divided into two stages: initiation and
promotion. The promotion phase is temporally prolonged and potentially reversible, being the
target of chemopreventive agents that may prevent the development of an invasive tumor [137].

The pro-inflammatory microenvironment in which cancer develops, and that the cancer itself
contributes to produce and maintain, has raised great interest in recent years, representing a potential
target for both cancer prevention and treatment.

Several studies have highlighted that the cyclooxygenases-1 and -2 enzymes (COX-1 and
COX-2), induced by UV and other factors, play a significant role in tumor proliferation [138].
In particular, up-regulation of COX-2 induces arachidonic acid metabolism resulting in overproduction
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of prostaglandin (PG), which directly influence cell growth after binding to specific cell surface
receptors, including PG E, F, and I classes of receptors [139,140]. Up-regulation of both COX-1 and
COX-2 induces vascular epidermal growth factor (VEGF) production, resulting in angiogenesis and
tumor proliferation [141]. Increased levels of prostaglandin are also induced by the down-regulation
of tumor suppressor gene 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) [142].

Topical non-steroidal anti-inflammatory drugs (NSAID) represent effective and well-tolerated
treatment options for AKs, as they work as nonspecific COX inhibitors. Our group previously
demonstrated that local treatment with piroxicam, a NSAID which is active on both COX-1 and
COX-2, is a safe and effective agent in the treatment of AKs and field of cancerization, as it blocks the
biosynthesis of PGs and in 15-PGDH increased expression [143].

Curcumin selectively inhibits COX-2 in a dose and time-dependent manner [144]. Curcumin may
exert this effect by directly targeting COX-2 and PG production and by up-regulating AMP-activated
protein kinases (AMPK), that leads to a suppression of COX-2 production [83]. Moreover, curcumin
can also prevent biosynthesis of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2) [145].

Cancer can be considered as the result of a disruption in the physiological balance between
cellular proliferation and senescence or apoptosis, regulated by the expression of oncogenes and
onco-suppressor genes. Pre-clinical studies pointed out that curcumin induces apoptosis in cancer
cells by acting on several pathways. In fact, curcumin showed to induce apoptosis via activation
of p53, one of the most studied tumor suppressor genes [8]. Furthermore, curcumin acts on the
PI3K/AKT/mTOR pathway, causing a remarkable up-regulation of PTEN, which is a tumor suppressor
gene mutated in many types of cancer, and inhibiting the PI3K/AKT axis, which promotes growth and
proliferation over differentiation [8]. Of note, curcumin prevents the activation of NF-κB, a protein
complex that plays a central role in the survival and resistance of cancer cells [146].

Interestingly, curcumin also showed to induce apoptosis in cancer cells via accumulation
of ceramide, a bioactive lipid implicated in apoptosis, cell differentiation, senescence, migration,
and adhesion [147]. Moreover, it is able to induce overexpression of TRAIL, one of the most important
apoptosis receptors. TRAIL is up-regulated also by the inhibition of NF-kB, that may in turn be
induced by curcumin [148]. Curcumin showed to induce apoptosis in a concentration-dependent
manner in human colon cancer, human myelocytic leukemia, human choriocarcinoma, and melanoma
cells through the activation of c-Jun N-terminal kinases (JNKs), a group of mitogen-activated protein
kinases involved in redox reactions and apoptosis induction [149–153]. It has been suggested that
up-regulation of JNK by curcumin may enhance the therapeutic efficiency of chemotherapy drugs,
but the real benefits of a combination therapy are still a matter of debate [154–156].

In spite of its incidence being low, melanoma is the foremost aggressive kind of cutaneous cancer,
being extremely resistant to chemotherapy and radiotherapy. To date, uncontrolled sun exposure is
regarded as the only modifiable risk factor for melanoma [4]. Although no solid evidence regarding
the role of specific nutrients in the prevention of melanoma is available to date, a possible link between
diet quality and melanoma risk has been postulated [157]. Several in vitro studies assessed the effects
of curcumin on melanoma cells proliferation and viability [158–160]. Of note, curcumin showed to
affect the growth of melanoma cells selectively, through all the above-mentioned mechanisms that
result in the induction of the apoptotic process. Moreover, curcumin could be able to arrest cell cycle in
G2/M by directly inhibiting cyclic nucleotide phosphodiesterases (PDEs) [161].

Studies on animal models largely confirmed the effects of curcumin against melanoma, especially
when administrated in formulations that ameliorate curcumin bioavailability, such as nanocapsules [20].
As mentioned above, attempts to associate curcumin with conventional drugs in order to potentiate
their efficacy on melanoma have been made, with promising results [162–165]. However, results
observed in preclinical models may not be mirrored in clinical studies, due to problems related to
the in vivo low bioavailability and metabolism of curcumin, or to the significant differences existing
between tumors generated in animal models and human cancer. Bypass of these limitations represents
a very promising field for future applicative research, paving the way to clinical trials.
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1.9. Curcumin for the Treatment of Skin Infections

The efficacy of curcumin to control skin infection diseases was also investigated both in vitro and
in vivo in animal models. Cutaneous infections may be caused by a wide variety of microorganisms
including bacteria, fungi, viruses, and parasites. The most common bacteria responsible for this
illness belong to the genera Corynebacteria, Propionibacteria, and Staphylococci. These microorganisms,
which normally live on the skin as commensals, playing a crucial role in the maintenance of skin
homeostasis, may also cause cutaneous infections, acting as opportunistic pathogens [166]. Among
Staphylococcus spp., Staphylococcus aureus is responsible for a wide spectrum of skin infections such
as boils, impetigo, cellulitis, and folliculitis. Staphylococcus epidermidis and Propionibacterium acnes
are also part of the human skin microbiota and both play a direct role in the development of acne
vulgaris. In most cases primary skin infections are not invasive diseases in immunocompetent
individuals. However, because of the increasing number of microorganisms resistant to multiple
drugs, skin bacterial infections can remain extremely difficult to treat. Some staphylococcical strains
have developed resistance to both naturally and semisynthetic beta-lactamase-resistant penicillins
(i.e., oxacillin, methicillin, and dicloxacillin). Propionibacterium acnes is naturally resistant to some
antibiotics such as 5-nitroimidazole, aminoglycosides, sulfonamides, and mupirocin, although it
is generally susceptible to a numerous type of antibiotic drugs. Over the last years resistance of
Propionibacterium acnes to antibiotic therapies has also gradually increased becoming a worldwide
concern, with maximal resistance for erythromycin and clindamycin and less frequent resistances to
tetracycline, in parallel with the most common topical administration of macrolides [167–169]. Beside
the emergence of acquired resistance in bacteria against the current antibiotics used in clinical setting,
another main concern is the overall variation of the human skin microbiota, related to the emergence
of resistant microbial species induced by the selective pressure exerted by antibiotic agents [170].
This issue should limit topical and/or systemic antibiotics therapies for long term in the management
of skin diseases such as acne vulgaris. Thus, novel therapeutic approaches are required to treat skin
infectious diseases. In the last years researchers have focused their attention on the development on
plant derived natural products, as alternative or complementary option to traditional medicine. Indeed,
the bioactive aromatic compounds obtained from some of the medicinal herbs have been shown to
possess potential antimicrobial properties. In this scenario, the antimicrobial activity of curcumin has
been extensively investigated due to its large uses and safety profile even at high doses tested in clinical
trials [170]. In vitro studies demonstrated that S. aureus is one of the Gram-positive strains susceptible
to the inhibitory effect of curcumin. Further, the curcumin efficacy has also been shown against
methicillin-resistant S. aureus (MRSA) either alone or in association with conventional antibiotics [170].
A significant dose dependent microbicidal activity in vitro against both S. aureus and P. acnes was
obtained by blue light activated curcumin. This microbicidal property of light irradiated curcumin
could be attributed to the bacterial cell membrane disruption mediated by vanillin, a curcumin
photolytic degradation product [171]. Additionally, as demonstrated for the first time by Almeida et al.,
curcumin, acting as a photosensitizer, enhanced the bactericidal effect of photodynamic therapy against
MSRA in a murine model of intradermal infections [172]. As the blue light safety profile in mammalian
cells has been proven, the photolytic treatment of curcumin could be used in the future to eradicate
bacterial skin infections caused by multi drug resistant strains of S. aureus and P. acnes. Moreover,
an improved antibacterial activity in vitro against both macrolide-sensitive and resistant strains of
P. acnes was also obtained by liposomal gel formulations containing curcumin combined with lauric
acid [33]. These results were supported by preclinical studies showing that curcumin co-applied with
lauric acid in liposomal gel, in a rat model of acne vulgaris, significantly reduced the comedones count
and the inflammatory cytokine production such as TNF-alpha and IL-1-beta [34]. Additional in vivo
studies showed that myristic acid acts in synergistic way with curcumin, loaded in the microemulsion
carrier, in inhibiting S. epidermidis growth. These results suggest the potential use of curcumin-loaded
microemulsions as alternative therapy in S. epidermidis-associated diseases like acne vulgaris [34].
Beside to bacteria, several genera of fungi may be responsible for superficial and cutaneous mycoses.
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Particularly, dermatophytes represent the most common fungal pathogens involved in skin infections.
Among dermatophytic fungal pathogens, Trychophyton rubrum has become the most frequent species
worldwide, causing mainly tinea pedis and tinea unguium [173]. Over the last years, like bacteria,
fungi have also been developing resistance to conventional antimycotic drugs. In addition, due to low
number and toxicity of the antifungal agents currently in use, the treatment of skin mycotic infections
is often difficult. Therefore, there is an urgent necessity to develop novel antifungal molecules able to
target specific cellular and or molecular mechanisms involved in fungal pathogenicity, to control these
illnesses. In this context, curcumin encapsulated in nanoparticles administered after photodynamic
therapy has been shown to completely inhibit the growth of T. rubrum in vitro, through the release of
reactive oxygen (ROS) and nitrogen species (RNS), which play an important role in inducing fungal
death by apoptosis [174]. Altogether this experimental evidence suggests that curcumin alone or
combined with phototherapy may be a potential and very promising candidate in treating bacterial
and fungal skin diseases, overcoming the multi-drug resistance of pathogens.

1.10. Molecular Docking Analysis Highlights the Role of Curcumin in the Control of Skin Disorders

Molecular docking is a computational tool able to predict the binding mode of a ligand with a
protein of known three-dimensional structure. Docking can be used to perform virtual screening on large
libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the
target, which is invaluable in the research of novel inhibitory compounds [175]. A variety of molecular
docking studies have been applied to demonstrate the role of the curcumin molecule in targeting a
selection of proteins actively involved in various pathologies unrelated to skin disorders. A molecular
docking analysis has been performed on diketone form of curcumin molecule with acetylcholinesterase
(AChE), indicating that this molecule exhibits a large binding affinity, and suggesting the use of
curcumin to inhibit AChE and balance the level of acetylcholine as an alternative to the present
Alzheimer’s disease treatments [176]. Focusing on the effects of phytochemicals on some important
ocular disorders (Eales, Diabetic Retinopathy, Uveitis, Age related Macular Disorder, Central Retinal
Vein Occlusion), virtual screenings identified the potentiality of ginkgolide, D-pinitol, gugglesterones,
berberine, and curcumin molecules against the above-mentioned ocular disorders [177]. Curcumin
analogues have also been evaluated for COX-2 inhibition and anti-inflammatory activity. Molecular
docking studies show that these designed analogues significantly enhance their COX-2 selectivity,
suggesting the route to the design of novel inhibitors [178]. Subsequently, molecular docking was
carried out to evaluate the binding efficiency of curcumin with peroxisome proliferator-activated
receptor gamma (PPARγ). The experimentally validated results demonstrate a preventive role of
curcumin on diet induced insulin resistance in rats by ameliorating the altered levels of metabolic
changes [179]. Molecular docking was also performed to evaluate the interaction of curcumin with
JAK2, an important upstream kinase that phosphorylates STAT3. The obtained results, supported
by experimental evidence, indicate that curcumin is able to exert anti-tumor activity through the
inhibition of the STAT3 signaling pathway [180]. Recently a study aimed at understanding the binding
of curcumin and its analogues to different PDE-4 subtypes, has been carried out. Docking analysis
has been employed to design curcumin derivatives with increased anti-inflammatory activity [181].
Concluding, several studies demonstrate that the activity of Sortase A, a bacterial surface protein from
S. aureus and Streptococcus mutans, can be inhibited by curcumin and its analogues [182–184].

Molecular docking studies describing the interaction of curcumin with molecular targets involved
in the development of skin disorders are nowadays not available in the literature. To overcome this
limitation, we used protein-ligand molecular docking to evaluate binding mode and interaction energy
of the curcumin towards six major enzymatic targets, indicated in this review as responsible for most of
skin disorders. The docking simulations were executed using the AutoDock Vina 1.1.2 program, through
the AutoDock/Vina PyMOL plugin (http://wwwuser.gwdg.de/~{}dseelig/adplugin.html) [185,186].
The curcumin 3D structure (Figure 3), in the form of an SDF file, was obtained from the PubChem
compound database (https://pubchem.ncbi.nlm.nih.gov, compound CID: 969516).

http://wwwuser.gwdg.de/~{}dseelig/adplugin.html
https://pubchem.ncbi.nlm.nih.gov
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Figure 3. Stick representation of the keto form of the curcumin molecule. The red, grey, and white
colors indicate the oxygen, carbon, and hydrogen atoms, respectively. A black circle indicates the
center of the symmetric molecule, while the 4-hydroxy-3-methoxyphenyl, present in each of the two
compound halves, is enclosed by a dotted line. This image was generated using the program PyMOL
(The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC, New York, NY, USA).

Crystal structures of nucleotide phosphodiesterases-1 (PDE-1; PDB ID: 4NPW), protein
kinase B (AKT; PDB ID: 6HHF), protein kinase C (PKC) theta (PKCθ; PDB ID: 5F9E),
serine/threonine-specific protein kinase (PhK; PDB ID: 2Y7J), cyclooxygenase-2 (COX-2; PDB ID:
5F1A), and phosphoinositol-3-kinase (PI3K; PDB ID: 4WAF), have been used as receptors for the
molecular docking simulations [187–192]. Each chosen structure displays a co-crystallized compound
(Table 3), which was re-docked as a test using the same simulation parameters. The side chains
belonging to the active sites were considered rotatable to improve mobility of the receptors during the
simulations. The dimensions of the docking box were tailored depending on the active site typology
and structure. The AutoDock/Vina program selects, for each docking simulation, 10 ligand poses
representing the cluster centroids of all the evaluated solutions. Each docking simulation run takes
about 20’ (elapsed real time) on a dedicated AMD Ryzen 7 1700X CPU workstation.

Curcumin was docked in the active site of six enzymes (i.e., PDE1, AKT, PKCΘ, PhK, COX-2
and PI3K), which are involved in several patterns described in this review. In all these receptors
the molecule shows interaction energies that ranges between −10.0 and −8.0 kcal/mol, suggesting a
possible inhibitory role (Table 1). Moreover, when the co-crystallized inhibitors detected in the PDB
files were re-docked using the same simulation conditions, they display energies that are comparable
with those evaluated for the curcumin. In particular, the curcumin molecule docked in the active sites
is fully stabilized by several hydrophobic contacts and hydrogen bonds established with the active site
residues (Figures 4 and 5).

Chemically, curcumin is a diarylheptanoid (IUPAC name: (1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)
hepta-1,6-diene-3,5-dione), a tautomeric compound existing in enolic form in organic solvents or
as a keto form in water. The two halves of this highly symmetric compound are able to dispose in
a wide range of conformations due to the rotatable bonds located in the center of the molecule
(Figure 3). As a consequence, curcumin is able to arrange the two substituted phenol rings
(i.e., the 4-hydroxy-3-methoxyphenyl) to establish both hydrophilic and hydrophobic interactions.
These results show that the curcumin has a high ligand-potentiality for a wide range of macromolecules,
making us hypothesize that it may interact with many other enzymes or proteins which were not
considered in this simulation analysis.
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Table 3. Molecular docking simulations results.

Receptor Name
(PDB ID)

Co-Crystallized
Compound Name

Co-Crystallized
Compound Structure

Co-Crystallized
Compound

Docking Energy
∆G

(kcal/mol)

Curcumin
Docking Energy
∆G (kcal/mol)

PDE1 (4NPW)

Inhibitor
19A((7,8-dimethoxy-
N-[(2S)-1-(3-methyl-

1H-pyrazol-5-yl)propan-
2-yl]quinazolin-4-amine))
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type. This picture was generated using the program Chimera (Pettersen E.F., Goddard T.D., Huang
C.C., Couch G. S., Greenblatt D.M., Meng E.C. and Ferrin T.E. (2004) UCSF Chimera—A visualization
system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.).

2. Conclusions

Turmeric is a plant known by its medicinal use, dating back to 4000 years ago in the Vedic culture
in India and is widely used in herbal and complementary medicine.

A growing amount of evidence confirms that curcumin might modulate those phenomena
involved in inflammatory, proliferative, and infectious disorders of the skin.
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To current knowledge, curcumin is a low-cost, well-tolerated agent. However, due to the functional
pleiotropy of this molecule resulting in a large spectrum of actions that are still not fully understood,
surveillance is advisable, especially in its over-the-counter use. The simulation results confirm the
large conformational adaptability of the curcumin compound, indicating a wide range of unknown
possible interactors and suggesting the route for the discovery of new targets.

Bypass of limitations related to curcumin in vivo use, such as low oral bioavailability and
metabolism, and larger experience with its intravenous administration, would pave the way to larger
clinical studies that could provide clinicians solid data regarding curcumin safety and the possible
clinical benefits of curcumin-containing products to skin health. The possible use of curcumin in
combination with traditional drugs and the formulations of novel delivery systems represent a very
promising field for future applicative research.
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