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We assume a CNN model defined on a rectanguldrX N) cell
grid. C(4, j) denotes the cell at the intersection of roand columry .
N,.(i, j) denotes the neighborhood of célli, j), with radiusr. To
simplify the statements and the notation, wraparound connections will
be assumed. This is equivalent to assume the CNN arranged on a torus.

Multiplierless Digital Learning Algorithm for Cellular The state equation of the CNN is as follows:
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Abstract—A new learning algorithm is proposed for space-varying cel-
lular neural networks, used to implement associative memories. The algo-
rithm exhibits some peculiar features which make it very attractive: the wherez;; is the state of celC (i, j). A;;, x¢ denotes the connection

finite pre_cision of cqnpection v_ve_ight_s is_ automatically taken into accqun.t weight .from cellC(k, () to cell C(4, j). The transfer functiorf () is
as a design constraint; no multiplication is needed for weight computation; h | bi ise-li f S S N

learning can be implemented in fixed point digital hardware or simulated ~ (N€ usual piecewise-linear unctiofitx) = 0.5 (|*l + 1 — | - 1)).

on a digital computer without numerical errors. The proposed method is based on the following theoretical results,

which are summarized for the reader’s convenience.
In the saturation regions, necessary and sufficient conditions for the
existence of an equilibrium poist are [9]

Index Terms—Associative memories, cellular neural networks, learning.

I. INTRODUCTION
> A, kOf (i) f(zre) > 1 (2)

This paper is concerned with the design of associative memories Gk (i)

using space-varying cellular neural networks (CNNs). The problem

is to compute the weights of the cell-dependent templates in order

to store binary information in a distributed and content-retrievabter every: and;.

fashion. Several design techniques have been proposed in the literatulg each saturation region there is at most one equilibrium point. Equi-
to perform this task [1]-[8]. These methods differ in several aspegfrium points in saturation regions are asymptotically stable. Hence
e.g., capacity, error correction capability, connectivity, additivghere is a one-to-one correspondence between stable equilibrium points
learning, computational complexity. in saturation regions and the corresponding output bipolar patterns,

An important issue is the effect of finite precision when impley; — #(x), which will be calledstable output patternoreover, if
menting these memories using analog hardware. The limited precisj@g}, i; > 1 for everyi andj, then there are stable equilibrium points
of analog weights introduces errors in the nominal connection mat@éxly in the saturation regions. Hence, only bipolar outputs can be ob-
and these errors can make unstable some of the otherwise sty@fled in practice [9]. Finally, ifi;; ;; < 1 for everyi andj, then
patterns. The algorithm proposed in this Brief was developed to taggo distinct stable output patterns must differ in more than one pixel
into account, just in the learning phase, the limited precision of analpgr neighborhood [8]. This last property entails a local error correction
hardware implementations of CNNs. The computed weights haygpability that allows to recall a stored pattern, from a noisy version of
the required precision, so the synthesized network will be void @f provided that the errors are almost uniformly distributed on the cell
sensitivity problems. array [8].

As side benefits, the proposed algorithm exhibits some peculiar feaaccording to the above properties, we assuing;; = 1 for every
tures which make it very attractive from a computational viewpoint: ng ;. So, taking into account tha;,;)> = 1 for y;; = £1, conditions
multiplication is needed to compute the weights; the algorithm can p® pecome
implemented in fixed point digital hardware or simulated on a digital

computer without numerical errors. Aii ke i gre > 0 ®)
1], 2y !

C(k, O)EN (3, 7)
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Fig. 1. J(t) versust for Example 1 in the text.
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Fig. 2. J(t) versust for Example 2 in the text.
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following set of constraints:

1, ..., N, satisfying the

TABLE |

STORAGE PROBABILITY VERSUSS

)

Storage probability

(m)
i, kCYs

(m

A e > 6> 0

>

C(k, HEN (1. 3)

(4) 0

0.80

0.25

0.77

i=1....M,j=1,....,. Nym=1,..., L. 0.3

0.75

6 represents a margin of stability for the stored patterns.

Ill. PROPOSEDALGORITHM

ferent product@l(;”) Y

If L > 1, A;; ro must satisfyL simultaneous constraints with dif-

S (m

y ). However we can try to update the weights

The proposed algorithm is based on a penalty function approachyig:ording to the following rule: for each constraint being violated, in-

solve the set of constraints (4). Let consider one of the ine
(4). If A;; &0 and the producy!™ (™

ij Ui havethe same sign, the cor-¢ (m) (m) _ _y
responding termd

. vy gives a positive contribution to the  Tpe foll
left hand of (4). Otherwise, if the signs are opposite, the contributiqg the above rule:
is negative. Since the sum must be positive in order to satisfy the gg;

sign constraint, the weightd;; . should be chosen with the same

sign as that of the produgt;”)yff’. This is possible only if. = 1.

qualitiggase the weight.;, ¢ if y

Aij ke(0) =0,

E;")yfj') = 1, decrease the weight; ;, «.c

The following algorithm can be used to update the weights according

for everyi, j, k., (.
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Fig. 3. J(t) averaged over 100 experiments in Example 3.

Fort =0,1,2,..., compute: bits are sufficient to represent them, and then to implement the
P A (4 i—1 - algorithm using digital hardware.
(' T )) P T e A 4) The algorithm can be implemented or simulated on a digital hard-

j=1,....,N; m=1,..., L, ware, without numerical errors, provided that a sufficient number
’ ’ o of bits is used. In fact no rounding or truncation of the weights is

where / \ necessary. Moreover, since only additions are needed, no arith-
Ag;n)(t) = Z A ke (t) ylﬂ;”)y,(c';) -6 (5) metic errors are generated if overflows are prevented.
C(k,0EN,.(3,7)
and IV. EXPERIMENTAL RESULTS
Computer simulations have been performed to ascertain the behavior
P(x) =0, fore 20, P(e) =1, forz <0; (6)  of the proposed learning algorithm.
then update the weights as follows: Example 1: Since no symmetry is assumed for the weights, the con-
I straints (4) for a cell are independent from the weights of the other cells.
Aij et +1) = Aij pe(t) + y ) ylm p (AE’.")(f)) So, we first examine a single cell to understand the behavior of the pro-
i el 3 we(?) 2:1 Vi ke I posed algorithm. The neighborhood is 3 (nine weights). For a single

kt € N, (i, j). (7) cell, we must consider sub-patterns of nine components. Assume the

_ ) o following ten sub-patterns to be stored:
Note, thatP(x) is a flag function of the constraint violation. It depends

on the weights at iteratioh « > 0 is a learning rate. y'=[ 1 -1 -1 1 -1 -1 -1 -1 -1]
As explained in [10], asymptotic convergence of this type of algo- y(Z) =[-1 -1 -1 -1 1 1 -1 —1 1]
rithm to a solution of (4) is not guaranteed, since it can approach a (5,
limit cycle in the solution space. However, by choosingufficiently y =[1 -1 -1 -1 -1 -1 1 -1 1]
small, it is possible to force the sequentg, ¢ (t), Aij re(t+1), ... W=[1-1-1 1 1 1 1 1 1]
to stay arbitrarily close to a correct solution of (4). Then, the presence y(5> =[-1 1 -1 =1 1 —1 1 1 —1]
of a marginé in (4) guarantees the storage of the desired patterns. O = (-1 —1 1 1 1 _1 1 1 1]
Let us examine some properties of the proposed algorithm. ™ _
1) From expressions (5) and (7) it follows tltle algorithm can be y(s {1 1 -1 1 -1 -1 -1 1 1]
implemented without multiplications y¥=[-1 -1 -1 1 -1 -1 -1 -1 -1]
2) Since each term of the sum in (7) canbg, — 1 or zero, starting y(” =[ 1 -1 -1 1 -1 1 1 1 1]
from A;; 1¢(0) = 0, the weights4, ; ».(t) are integer multiples _(10) _ I _
_ i), | itip y'Y=7r1 1 1 -1 -1 -1 1 1 -1].
of a, for everyt. Assumingx = 277, whereB is a positive in-
teger,all the weights (at each iteration) have a fixed point digitalThe following values have been usetl:= 0.25; « = 0.125 =
representation 273(B = 3). Fig. 1 shows the behavior of the error function defined

3) The required precision &7 i.e., equal to the learning rate  as follows:
Note, that more thaB + 1 bits could be required to represent the I
weights, since the magnitude of the weights can be greater than J(t)= — Z P (A(”‘.) (ﬂ) A(”L-)(t).
one. If the weights and are in magnitude less than orf@,+ 1 by

m=1
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Fig. 4. Distribution of weight values in Example 3. @@= 0. (b) 6 = 0.25; (c) 6 = 0.5.

The error function/ (¢) converges to zero. The final weights are TABLE I
_ . ) ; STORAGE PROBABILITY VERSUSL
0.75 -0.75 —=0.5 025 0.5 0.5 0 0.5
The self feedback is not shown, being fixed at one. All the weights are L Storage probability
less than one in magnitude, so four bits are sufficient to represent the 5 0.96
weights. In correspondence to these weights, the patterns are stored as
stable states of the cell. 8 0.86
Example 2: The sub-patterns to be stored are 10 0.77
yP=[1 1 -1 -1 -1 1 -1 -1 1] 5 036
yP=[-1 -1 1 -1 1 -1 -1 -1 1]
yP=[-1 1 1 -1 1 1 1 1 1]
yMW=[ 1 -1 -1 -1 -1 1 -1 1 1]
yP=[-1 1 1 -1 -1 1 -1 -1 1] E F
y®=[-1 1 1 -1 -1 1 -1 =1 =-1]
yO=[1 1 1 -1 -1 1 1 1 -1] E H
y®=[-1 -1 1 -1 1 -1 -1 =1 =1]
yP=-1 1 1 1 1 -1 1 -1 1] u H
@ =[-1 -1 -1 1 -1 -1 -1 1 1]
with the same parameters of Example 1. Fig. 2 shows the behavior of LI L
J(t). It does not converge to zero but exhibits a steady-state oscilla-

tion between 2 and 2.5. The nonzero steady-state valuétpfcorre-
sponds to the fact that some patterns are not stored. Indeed, patt€imss. Patterns stored in Example 4.

633
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Fig. 6. (a) Circuit used to compufé(AS}’”). (b) Circuit used to implement (7) in the text.

vP )49 gre not stable states of the cell. This behavior is not sigumber of connections per cell. This result is in accordance with the
nificantly changed if we decrease With a« = 27*(B = 4), J(t) measure of capacity proposed in [11], and is comparable with the sim-
converges to the constant value 1.5 and pattgffsy/(®y(® are not ulation results presented in [6]-[8].
stored. Witha = 277, .J(#) converges smoothly to 1.5, but patterns Example 4: As a final example, we consider the problem of storing
y @ y®y) are not stored. the eight patterns shown in Fig. 5 on @422 CNN withr =1. In Fig. 5,
Example 3: To test the general behavior of the proposed algorithm; 1 represents whitet-1 represents black. The proposed algorithm was
300 independent tests were performed for a CNN with= 1 and used witha: = 6 = 0.125. All the patterns were stored as stable states
L = 10 random patterns to be stored. The following parameters we?&the network after 4 iterations. Then, the CNN with the computed
used:a =27%(0.0625)5 = 0.0, 0.25 and 0.5. The storage probabilitpV€ights was simulated to ascertain the error correction capability. For
per cell in the three cases is shown in Table I. Fig. 3 shows the [§&ch of the eight stored patterns, 50 trials were performed. In each trial,
havior of J(¢) averaged over 100 experiments, fox 0.25. In Fig. 4 the initial state of the network is obtained by randomly reversing the

. . . - 0
the corresponding distributions of the weight values are shown (100 g):z_(e_ls of the corresponding stored pattern, with probablllty 0.15 (15%

. . ) . C . pixels are reversed). The probability of error in the recall process
periments, i.e., 800 weights). The weight distribution is apprOX|mate§/

. : L epends on the pattern: it varies from 12% (“L,” “F”) to 24% (A"
Gaussian with zero mean. Increasirte standard deviation |ncreases,‘H,,)_ The probability of error is not negligible due to the similarity

and there is a significant probability to get weights greater than Onea{H]ong patterns. Indeed, the CNN dynamics converges in most cases to

magnitude. Hence, more th@h+-1 bits would be required to representone of the eight stored patterns. The probability to get a spurious state
them. Table Il shows the storage probability fox= 0.25 andL = 3, s very low.

8, 10, 15.
Finally, the same test has been performed for a CNN with2(5x
5 neighborhood). Assuming = 0.25,« =0.0625, and. =30, the
storage probability per cell was 0.94. The proposed learning algorithm was implemented on digital hard-
According to Tables | and I, we can say that the capacity obtain@dre using the EPLD EPM7256ATC100-7 by ALTERA, with 40 MHz
by the proposed method, in a statistical sense, is roughly equal to theck.

V. HARDWARE IMPLEMENTATION
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The algorithm described in Section Il can be decomposed in tved a minimum the number of spurious stable states, 4g,,;; = 1.
stages. The first one corresponding to the computation of the pendttyfact, only if 4;; ,; > 1 all the stable states of the CNN are into
flags P(A('")) [eqgns. (5) and (6)]. The second one corresponding tbe saturation regions, namely with outpyts and—1. Otherwise the
the Welghts updating (7). We used two distinct circuits for these twONN dynamics could converge to stable states with nonsaturated out-
stages of computation. puts, that are necessarily spurious states. Adopting this strategy, storage

The first circuit is shown in Fig. 6(a). Each component of a patapacity is the main issue, since the given patterns are not necessarily
tern is represented with 1/0 corresponding respectivelyltb—1. The stored, and the error correction is the better we can get with the given
weights are represented using two’s complement fixed-point binamgsumptions. However, the proposed algorithm can easily be modified
format with six bits: one sign bit, two bits for the mteger part, antb include different values of self-feedback, or symmetric weights, pre-

three bits for the fractional pativ = 27*). The producty! '”)J}’é”)
in (5) is |mplemented with the XOR function. The resift) is S = 0
if y"y7) = —1,$ = 1 otherwise. The value of controls the
sign of 4_”, re. Using a multiplexer, the value od;; ¢ or its two’s
complement are selected. The two’s complement 6f. is obtained
by reversing the bits and adding one. The output of the multiplexer is
the input of an 4-2 bit adders (74 283, 7482) which implement ex- [2]
pression (5). Using eight clock cycles, the eight weights of the cell (3]
C'(i, j) are added (or subtracted) to the content of an accumulation
register (74 174), initially zeroed. Finally, the valtie= 27 is sub-
tracted from the result usm? a second adder. The sign bit of the result4]
now represents the flag(A ’”)) The same computation is repeated
form =1, ..., L,andthe computed flags are stored in a flag register. 5]

Then, the second stage (7) is executed [Fig. 6(b)]. The XOR is per-
formed to compute the sign q)f"’ y{"™ . The result(S) controls the
output of a multiplexer whose inputs @&” and its complement. The
output of the multiplexer is used as input of an adddr283 + 7482)
which implements expression (7), adding (or subtracting)ttierms
to the content of the accumulation register (74 174). The input to the
adder is zeroed, using six AND ports, WheXA; ’”)) = 0. Initially,
the accumulator contains;;, ». (old); at the end of the computation it (8]
containsA;;, xe (New).

We tested the hardware implementation using the Example 4 abovejg]
with the same values far ands. The computation of eacR(A; ’”)
requires eight clock cycles £33 neighborhood, self- feedback flxed)
The weight adaptation requirésclock cycles for each weight. Hence,
the updating of the weights for a cell requitds+8L = 16L cycles. In
our examplel = 8, then 128 cycles. The learning algorithm converges[11]
in four iterations, so the computation requires &«2& 25 ns=12.8
1S. We used the same circuits in Fig. 6 for the whole CNN, with a
total computation time of 14412.8=1843;:5=1.843 ms. Using two
circuits for each cell we could complete the learning in 1258

(1]

(6]

(71

(10]

VI. DISCUSSION

It is useful to compare the present method to similar existing tech-
niques for associative memories design. The present method is an evo-
lution of that proposed in [2] to design Hopfield neural networks, and
then revisited and applied to BSB neural networks [5]. The main dif-
ferences are: the continuous-time dynamics of the network, the local
connectivity, the absence of symmetries, and above all the digital rep-
resentation (finite precision) of weights. As a consequence of this last
variant, convergence cannot be proved as in [2], [5].

In [7] the authors propose the same method to design CNNs with
analog weights. The present approach differ from [7] in two aspects:
the digital representation of weights, and the valud gf ; ;, here fixed
at one. As concerns this last point, we note thatif ;; is allowed to
increase, inequalities (4) always have a solution, for every valde of
In [7] the authors usel;; ;; as a design parameter to guarantee the
storage of the desired patterns. However, increasing the self-feedback
entails an increment in the number of spurious states, and then a reduc-
tion of error correction capability [7]. So, a trade-off must be pursued
between these two conflicting aspects. We preferred to fix the value of
the self-feedback in order to guarantee saturated outputs, and to keep

serving the advantages in computation.
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