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Multiplierless Digital Learning Algorithm for Cellular
Neural Networks

Renzo Perfetti and Giovanni Costantini

Abstract—A new learning algorithm is proposed for space-varying cel-
lular neural networks, used to implement associative memories. The algo-
rithm exhibits some peculiar features which make it very attractive: the
finite precision of connection weights is automatically taken into account
as a design constraint; no multiplication is needed for weight computation;
learning can be implemented in fixed point digital hardware or simulated
on a digital computer without numerical errors.

Index Terms—Associative memories, cellular neural networks, learning.

I. INTRODUCTION

This paper is concerned with the design of associative memories
using space-varying cellular neural networks (CNNs). The problem
is to compute the weights of the cell-dependent templates in order
to store binary information in a distributed and content-retrievable
fashion. Several design techniques have been proposed in the literature
to perform this task [1]–[8]. These methods differ in several aspects
e.g., capacity, error correction capability, connectivity, additive
learning, computational complexity.

An important issue is the effect of finite precision when imple-
menting these memories using analog hardware. The limited precision
of analog weights introduces errors in the nominal connection matrix
and these errors can make unstable some of the otherwise stored
patterns. The algorithm proposed in this Brief was developed to take
into account, just in the learning phase, the limited precision of analog
hardware implementations of CNNs. The computed weights have
the required precision, so the synthesized network will be void of
sensitivity problems.

As side benefits, the proposed algorithm exhibits some peculiar fea-
tures which make it very attractive from a computational viewpoint: no
multiplication is needed to compute the weights; the algorithm can be
implemented in fixed point digital hardware or simulated on a digital
computer without numerical errors.
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The paper is organized as follows. In Section II, some theoretical re-
sults are shortly summarized. In Section III, the algorithm is outlined.
In Section IV, some simulations results are presented concerning the
convergence of the algorithm and the performance of the synthesized
CNN. Section V presents an example of digital hardware implementa-
tion of the algorithm. Finally, Section VI contains a comparison with
different existing methods.

II. REVIEW OF THEORY

We assume a CNN model defined on a rectangular (M � N ) cell
grid.C(i; j) denotes the cell at the intersection of rowi and columnj.
Nr(i; j) denotes the neighborhood of cellC(i; j), with radiusr. To
simplify the statements and the notation, wraparound connections will
be assumed. This is equivalent to assume the CNN arranged on a torus.
The state equation of the CNN is as follows:

_xij = �xij +
C(k; `)2N (i;j)

Aij ; k`f(xk`) (1)

wherexij is the state of cellC(i; j). Aij; k` denotes the connection
weight .from cellC(k; `)) to cellC(i; j). The transfer functionf() is
the usual piecewise-linear function:f(x) = 0:5 (jx + 1j � jx� 1j).
The proposed method is based on the following theoretical results,
which are summarized for the reader’s convenience.

In the saturation regions, necessary and sufficient conditions for the
existence of an equilibrium pointx are [9]

C(k; `)2N (i;j)

Aij; k`f(xij)f(xk`) > 1 (2)

for everyi andj.
In each saturation region there is at most one equilibrium point. Equi-

librium points in saturation regions are asymptotically stable. Hence
there is a one-to-one correspondence between stable equilibrium points
in saturation regions and the corresponding output bipolar patterns,
y = f(x), which will be calledstable output patterns. Moreover, if
Aij; ij � 1 for everyi andj, then there are stable equilibrium points
only in the saturation regions. Hence, only bipolar outputs can be ob-
served in practice [9]. Finally, ifAij; ij � 1 for every i andj, then
two distinct stable output patterns must differ in more than one pixel
per neighborhood [8]. This last property entails a local error correction
capability that allows to recall a stored pattern, from a noisy version of
it, provided that the errors are almost uniformly distributed on the cell
array [8].

According to the above properties, we assumeAij; ij = 1 for every
i; j. So, taking into account that(yij)2 = 1 for yij = �1, conditions
(2) become

C(k; `)2N (i; j)

Aij; k` yij yk` > 0 (3)

whereNr(i; j) = Nr(i; j)� C(i; j), andyij = f(xij).
The design problem of the CNN associative memory is formulated

as follows.
The L bipolar patterns to be stored are:y(1) . . .y(L). Assume

Aij; ij = 1 for every i; j. Then, find the connection weights,
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Fig. 1. J(t) versust for Example 1 in the text.

Fig. 2. J(t) versust for Example 2 in the text.

Aij; k`; k` 6= ij; i = 1; . . . ; M; j = 1; . . . ; N , satisfying the
following set of constraints:

C(k; `)2N (i; j)

Aij; k` y
(m)
ij y

(m)
k` � � > 0 (4)

i = 1; . . . ; M; j = 1; . . . ; N; m = 1; . . . ; L.
� represents a margin of stability for the stored patterns.

III. PROPOSEDALGORITHM

The proposed algorithm is based on a penalty function approach to
solve the set of constraints (4). Let consider one of the inequalities
(4). If Aij; k` and the producty(m)

ij y
(m)
k` have the same sign, the cor-

responding termAij; k` y
(m)
ij y

(m)
k` gives a positive contribution to the

left hand of (4). Otherwise, if the signs are opposite, the contribution
is negative. Since the sum must be positive in order to satisfy the de-
sign constraint, the weightsAij; k` should be chosen with the same
sign as that of the producty(m)

ij y
(m)
k` . This is possible only ifL = 1.

TABLE I
STORAGE PROBABILITY VERSUS�

If L > 1, Aij; k` must satisfyL simultaneous constraints with dif-
ferent productsy(m)

ij y
(m)
k` . However we can try to update the weights

according to the following rule: for each constraint being violated, in-
crease the weightAij; k` if y(m)

ij y
(m)
k` = 1, decrease the weightAij; k`

if y(m)
ij y

(m)
k` = �1.

The following algorithm can be used to update the weights according
to the above rule:
Let

Aij; k`(0) = 0; for everyi; j; k; `:
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Fig. 3. J(t) averaged over 100 experiments in Example 3.

For t = 0; 1; 2; . . . ; compute:

P �
(m)
ij (t) ; i = 1; . . . ; M ;

j = 1; . . . ; N ; m = 1; . . . ; L;

where

�
(m)
ij (t) =

C(k; `)2N (i; j)

Aij; k` (t) y
(m)
ij y

(m)
k` � � (5)

and

P (x) = 0; for x � 0; P (x) = 1; for x < 0; (6)

then update the weights as follows:

Aij; k`(t+ 1) = Aij; k`(t) + �

L

m=1

y
(m)
ij y

(m)
k` P �

(m)
ij (t)

k` 2 Nr(i; j): (7)

Note, thatP (x) is a flag function of the constraint violation. It depends
on the weights at iterationt. � > 0 is a learning rate.

As explained in [10], asymptotic convergence of this type of algo-
rithm to a solution of (4) is not guaranteed, since it can approach a
limit cycle in the solution space. However, by choosing� sufficiently
small, it is possible to force the sequenceAij; k`(t); Aij; k`(t+1); . . .
to stay arbitrarily close to a correct solution of (4). Then, the presence
of a margin� in (4) guarantees the storage of the desired patterns.

Let us examine some properties of the proposed algorithm.

1) From expressions (5) and (7) it follows thatthe algorithm can be
implemented without multiplications.

2) Since each term of the sum in (7) can be+1,�1 or zero, starting
fromAij; k`(0) = 0, the weightsAij; k`(t) are integer multiples
of �, for everyt. Assuming� = 2�B , whereB is a positive in-
teger,all the weights (at each iteration) have a fixed point digital
representation.

3) The required precision is2�B i.e., equal to the learning rate�.
Note, that more thanB+1 bits could be required to represent the
weights, since the magnitude of the weights can be greater than
one. If the weights and� are in magnitude less than one,B + 1

bits are sufficient to represent them, and then to implement the
algorithm using digital hardware.

4) The algorithm can be implemented or simulated on a digital hard-
ware, without numerical errors, provided that a sufficient number
of bits is used. In fact no rounding or truncation of the weights is
necessary. Moreover, since only additions are needed, no arith-
metic errors are generated if overflows are prevented.

IV. EXPERIMENTAL RESULTS

Computer simulations have been performed to ascertain the behavior
of the proposed learning algorithm.

Example 1: Since no symmetry is assumed for the weights, the con-
straints (4) for a cell are independent from the weights of the other cells.
So, we first examine a single cell to understand the behavior of the pro-
posed algorithm. The neighborhood is 3�3 (nine weights). For a single
cell, we must consider sub-patterns of nine components. Assume the
following ten sub-patterns to be stored:

y
(1) = [ 1 �1 �1 1 �1 �1 �1 �1 �1 ]

y
(2) = [�1 �1 �1 �1 1 1 �1 �1 1 ]

y
(3) = [ 1 �1 �1 �1 �1 �1 1 �1 1 ]

y
(4) = [ 1 �1 �1 1 1 1 1 1 1 ]

y
(5) = [�1 1 �1 �1 1 �1 1 1 �1 ]

y
(6) = [�1 �1 1 1 1 �1 1 1 1 ]

y
(7) = [ 1 1 �1 1 �1 �1 �1 1 1 ]

y
(8) = [�1 �1 �1 1 �1 �1 �1 �1 �1 ]

y
(9) = [ 1 �1 �1 1 �1 1 1 1 1 ]

y
(10) = [ 1 1 1 �1 �1 �1 1 1 �1 ]:

The following values have been used:� = 0:25; � = 0:125 =
2�3(B = 3). Fig. 1 shows the behavior of the error function defined
as follows:

J(t) _=�

L

m=1

P �
(m)
i; j (t) �

(m)
i; j (t):
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(a) (b)

(c)

Fig. 4. Distribution of weight values in Example 3. (a)� = 0. (b) � = 0:25; (c) � = 0:5.

The error functionJ(t) converges to zero. The final weights are

0:75 �0:75 �0:5 0:25 0:5 0:5 0 0:5:

The self feedback is not shown, being fixed at one. All the weights are
less than one in magnitude, so four bits are sufficient to represent the
weights. In correspondence to these weights, the patterns are stored as
stable states of the cell.

Example 2: The sub-patterns to be stored are

y
(1) = [ 1 1 �1 �1 �1 1 �1 �1 1 ]

y
(2) = [�1 �1 1 �1 1 �1 �1 �1 1 ]

y
(3) = [�1 1 1 �1 1 1 1 1 1 ]

y
(4) = [ 1 �1 �1 �1 �1 1 �1 1 1 ]

y
(5) = [�1 1 1 �1 �1 1 �1 �1 1 ]

y
(6) = [�1 1 1 �1 �1 1 �1 �1 �1 ]

y
(7) = [ 1 1 1 �1 �1 1 1 1 �1 ]

y
(8) = [�1 �1 1 �1 1 �1 �1 �1 �1 ]

y
(9) = [�1 1 1 1 1 �1 1 �1 1 ]

y
(10) = [�1 �1 �1 1 �1 �1 �1 1 1 ]

with the same parameters of Example 1. Fig. 2 shows the behavior of
J(t). It does not converge to zero but exhibits a steady-state oscilla-
tion between 2 and 2.5. The nonzero steady-state value ofJ(t) corre-
sponds to the fact that some patterns are not stored. Indeed, patterns

TABLE II
STORAGE PROBABILITY VERSUSL

Fig. 5. Patterns stored in Example 4.
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(a)

(b)

Fig. 6. (a) Circuit used to computeP (� ). (b) Circuit used to implement (7) in the text.

y
(2)
y
(5)
y
(9) are not stable states of the cell. This behavior is not sig-

nificantly changed if we decrease�. With � = 2�4(B = 4), J(t)
converges to the constant value 1.5 and patternsy

(2)
y
(6)
y
(9) are not

stored. With� = 2�7, J(t) converges smoothly to 1.5, but patterns
y
(6)
y
(8)
y
(9) are not stored.

Example 3: To test the general behavior of the proposed algorithm,
300 independent tests were performed for a CNN withr = 1 and
L = 10 random patterns to be stored. The following parameters were
used:� =2�4(0.0625),� = 0.0, 0.25 and 0.5. The storage probability
per cell in the three cases is shown in Table I. Fig. 3 shows the be-
havior ofJ(t) averaged over 100 experiments, for� = 0:25. In Fig. 4
the corresponding distributions of the weight values are shown (100 ex-
periments, i.e., 800 weights). The weight distribution is approximately
Gaussian with zero mean. Increasing� the standard deviation increases,
and there is a significant probability to get weights greater than one in
magnitude. Hence, more thanB+1 bits would be required to represent
them. Table II shows the storage probability for� = 0:25 andL = 5,
8, 10, 15.

Finally, the same test has been performed for a CNN withr = 2(5�
5 neighborhood). Assuming� = 0.25,� =0.0625, andL =30, the
storage probability per cell was 0.94.

According to Tables I and II, we can say that the capacity obtained
by the proposed method, in a statistical sense, is roughly equal to the

number of connections per cell. This result is in accordance with the
measure of capacity proposed in [11], and is comparable with the sim-
ulation results presented in [6]–[8].

Example 4: As a final example, we consider the problem of storing
the eight patterns shown in Fig. 5 on a 12�12 CNN withr =1. In Fig. 5,
�1 represents white,+1 represents black. The proposed algorithm was
used with� = � = 0:125. All the patterns were stored as stable states
of the network after 4 iterations. Then, the CNN with the computed
weights was simulated to ascertain the error correction capability. For
each of the eight stored patterns, 50 trials were performed. In each trial,
the initial state of the network is obtained by randomly reversing the
pixels of the corresponding stored pattern, with probability 0.15 (15%
of pixels are reversed). The probability of error in the recall process
depends on the pattern: it varies from 12% (“L,” “F”) to 24% (“A,”
“H”). The probability of error is not negligible due to the similarity
among patterns. Indeed, the CNN dynamics converges in most cases to
one of the eight stored patterns. The probability to get a spurious state
is very low.

V. HARDWARE IMPLEMENTATION

The proposed learning algorithm was implemented on digital hard-
ware using the EPLD EPM7256ATC100-7 by ALTERA, with 40 MHz
clock.
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The algorithm described in Section III can be decomposed in two
stages. The first one corresponding to the computation of the penalty
flagsP (�(m)

ij ) [eqns. (5) and (6)]. The second one corresponding to
the weights updating (7). We used two distinct circuits for these two
stages of computation.

The first circuit is shown in Fig. 6(a). Each component of a pat-
tern is represented with 1/0 corresponding respectively to+1=�1. The
weights are represented using two’s complement fixed-point binary
format with six bits: one sign bit, two bits for the integer part, and
three bits for the fractional part(� = 2�3). The producty(m)

ij y
(m)
k`

in (5) is implemented with the XOR function. The result(S) is S = 0

if y(m)
ij y

(m)
k` = �1, S = 1 otherwise. The value ofS controls the

sign ofAij; k`. Using a multiplexer, the value ofAij; k` or its two’s
complement are selected. The two’s complement ofAij; k` is obtained
by reversing the bits and adding one. The output of the multiplexer is
the input of an 4+2 bit adders (74 283, 7482) which implement ex-
pression (5). Using eight clock cycles, the eight weights of the cell
C(i; j) are added (or subtracted) to the content of an accumulation
register (74 174), initially zeroed. Finally, the value� = 2�3 is sub-
tracted from the result using a second adder. The sign bit of the result
now represents the flagP (�(m)

ij ). The same computation is repeated
form = 1; . . . ; L, and the computed flags are stored in a flag register.

Then, the second stage (7) is executed [Fig. 6(b)]. The XOR is per-
formed to compute the sign ofy(m)

ij y
(m)
k` . The result(S) controls the

output of a multiplexer whose inputs are2�B and its complement. The
output of the multiplexer is used as input of an adder (74 283 + 7482)
which implements expression (7), adding (or subtracting) theL terms
to the content of the accumulation register (74 174). The input to the
adder is zeroed, using six AND ports, whenP (�(m)

ij ) = 0. Initially,
the accumulator containsAij; k` (old); at the end of the computation it
containsAij; k` (new).

We tested the hardware implementation using the Example 4 above,
with the same values for� and�. The computation of eachP (�(m)

ij )
requires eight clock cycles (3�3 neighborhood, self-feedback fixed).
The weight adaptation requiresL clock cycles for each weight. Hence,
the updating of the weights for a cell requires8L+8L = 16L cycles. In
our exampleL = 8, then 128 cycles. The learning algorithm converges
in four iterations, so the computation requires 128�4�25 ns=12.8
�s. We used the same circuits in Fig. 6 for the whole CNN, with a
total computation time of 144�12.8=1843�s=1.843 ms. Using two
circuits for each cell we could complete the learning in 12.8�s!

VI. DISCUSSION

It is useful to compare the present method to similar existing tech-
niques for associative memories design. The present method is an evo-
lution of that proposed in [2] to design Hopfield neural networks, and
then revisited and applied to BSB neural networks [5]. The main dif-
ferences are: the continuous-time dynamics of the network, the local
connectivity, the absence of symmetries, and above all the digital rep-
resentation (finite precision) of weights. As a consequence of this last
variant, convergence cannot be proved as in [2], [5].

In [7] the authors propose the same method to design CNNs with
analog weights. The present approach differ from [7] in two aspects:
the digital representation of weights, and the value ofAij; ij , here fixed
at one. As concerns this last point, we note that ifAij; ij is allowed to
increase, inequalities (4) always have a solution, for every value of�.
In [7] the authors useAij; ij as a design parameter to guarantee the
storage of the desired patterns. However, increasing the self-feedback
entails an increment in the number of spurious states, and then a reduc-
tion of error correction capability [7]. So, a trade-off must be pursued
between these two conflicting aspects. We preferred to fix the value of
the self-feedback in order to guarantee saturated outputs, and to keep

at a minimum the number of spurious stable states, i.e.,Aij; ij = 1.
In fact, only if Aij; ij � 1 all the stable states of the CNN are into
the saturation regions, namely with outputs+1 and�1. Otherwise the
CNN dynamics could converge to stable states with nonsaturated out-
puts, that are necessarily spurious states. Adopting this strategy, storage
capacity is the main issue, since the given patterns are not necessarily
stored, and the error correction is the better we can get with the given
assumptions. However, the proposed algorithm can easily be modified
to include different values of self-feedback, or symmetric weights, pre-
serving the advantages in computation.
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