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Abstract

We consider risk processes with reinsurance. A general family of reinsurance contracts is
allowed, including proportional and excess-of-loss policies. The claim occurrence is regulated
by a classical compound Poisson process or by a Markov modulated compound Poisson process.
We provide some large deviation results concerning these two risk processes in the small claim
case. Finally we derive the so called Lundberg’s estimate for the ruin probabilities, and we
present a numerical example.
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1 Introduction

The model without reinsurance. We consider the risk process (Xx(t)) defined by

Xx(t) = x + pt− S(t) (1)

where x > 0 is the initial capital, p > 0 is the (constant) premium rate and the aggregate claims
process (S(t)) is a compound Poisson process (classical case) or a Markov modulated compound
Poisson process (Markov modulated case). More precisely we have S(t) =

∑N(t)
k=1 Uk and N(t) =∑

k≥1 1Tk≤t, where (Uk) is a sequence of positive random variables and (N(t)) is a counting process
with points (Tk); further details will be given when we present the classical case and the Markov
modulated case separately. Roughly speaking, when we deal with the Markov modulated case,
claims intensity and claims size distribution depend on the evolution of a finite state space Markov
chains; from the actuarial point of view the Markov chain describes the environmental conditions
that influence the phenomena, such as weather conditions in car insurance.

We assume that the random variables (Uk) have finite expected values and that S(t)
t converges

to some limit value ` as t →∞. The (infinite horizon) ruin probabilities (ψ(x))x>0 are defined by

ψ(x) = P (τx < ∞), where τx = inf{t ≥ 0 : Xx(t) < 0}

and, in order to avoid the trivial case ψ(x) = 1 for all x > 0, the so called net profit condition is
required, i.e. p = (1 + κ)` for some relative safety loading κ > 0.
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Reinsurance policies. In our model reinsurance is allowed, i.e. the insurance company may
insure part of the risk at another company (the reinsurance company) in return for a part of the
premium pt. A reinsurance policy is described by a measurable function R : [0,∞) × [0,∞) →
[0,∞), for which we use the notation R(t, α) = Rt(α); for such a function we require the condition
0 ≤ Rt(α) ≤ α for all t, α ≥ 0. This means that Rt(α) is the part of the claim that the company
pays when a claim of size α occurs at time t. Since the reinsurance policy is chosen dynamically,
the premium rate for the reinsurer is in general not constant in time, as it happen in the classical
risk model. We denote with qR(t) the premium up to time t paid by the insurer to the reinsurer,
and we shall see in detail below its determination. We assume that reinsurer uses the expected
value principle with relative safety loading η > 0 for premium calculation. We shall point out
below that it is interesting to consider η > κ, i.e. the case in which reinsurance is more expensive
than insurance, otherwise the insurer would reinsure the whole portfolio. In conclusion the reserve
process (Xx

R(t)) under the reinsurance policy R is defined by
{

Xx
R(t) = x + pR(t)− SR(t), where

SR(t) =
∑N(t)

k=1 RTk
(Uk) and pR(t) = pt− qR(t).

(2)

Large deviations and outline of the paper. In this paper we present some large deviation
results concerning the risk process under the reinsurance policy R and we refer to the claim surplus
process (ZR(t)) defined by

ZR(t) = x−Xx
R(t) = SR(t)− pR(t).

In particular we refer to the concept of large deviation principle (see e.g. Dembo and Zeitouni
[4], pages 4-5, for the definition); from now on we write LDP for short. We present two kinds of
LDPs. The first one concerns the classical case (section 2) and it is a sample path large deviation
result because it is a LDP on the space of càdlàg functions D[0, 1]; the second one concerns the
Markov modulated case (section 3) and it is a LDP on R. More precisely (we use the standard
notation B◦ for the interior of B and B for the closure of B) in the first case we have

− inf
f∈B◦

IR(f) ≤ lim inf
α→∞

1
α

log P
(ZR(α·)

α
∈ B

)
≤ lim sup

α→∞
1
α

log P
(ZR(α·)

α
∈ B

)
≤ − inf

f∈B
IR(f)

for all Borel set B in D[0, 1], where IR is the rate function; in the second case we have

− inf
y∈B◦

Λ∗R(y) ≤ lim inf
t→∞

1
t

log P
(ZR(t)

t
∈ B

)
≤ lim sup

t→∞
1
t

log P
(ZR(t)

t
∈ B

)
≤ − inf

y∈B
Λ∗R(y)

for all Borel set B in R, where Λ∗R is the rate function. It is useful to point out that IR is a good
rate function, i.e. the level sets of IR

{f ∈ D[0, 1] : IR(f) ≤ c} (for all c > 0)

are compact sets.
The Markov modulated case is a generalization of the classical case. The proof of the sample

path LDP concerning the classical case is based on Proposition 2.1, which is a known result in
the literature. For the Markov modulated case we do not have an analogous sample path large
deviation result, so that we can only prove the LDP on R.

In section 4 we present some results for the ruin probabilities (ψR(x))x>0 under the reinsurance
policy R, which are defined by

ψR(x) = P (τx
R < ∞), where τx

R = inf{t ≥ 0 : Xx
R(t) < 0}. (3)

In subsection 4.1 we prove the so called Lundberg’s estimate for the ruin probabilities in (3); this
estimate shows that, in a sense related to large deviations, ψR(x) decays exponentially as x →∞.
Some comments and a numerical example are presented in subsection 4.2.
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The hypothesis (H) for the reinsurance policies. Since we have in mind two prototype
examples of reinsurance policies presented below, in all the results in this paper we refer to the
following condition:
(H): Let R∞ : [0,∞) → [0,∞) be a measurable function. Then for all ε > 0 there exists tε such
that for all t ≥ tε we have |Rt(α)−R∞(α)| ≤ εmax{α, 1} for all α ≥ 0.

One could consider the bound α + 1 which is simpler than max{α, 1} (but it is larger); in such a
case some details presented in the paper have to be accordingly changed.

We remark that, when (H) holds, we have the pointwise convergence of Rt to R∞ as t →∞:

lim
t→∞Rt(α) = R∞(α) for all α ≥ 0. (4)

Indeed for all ε > 0 and for all α ≥ 0 let tε,α be defined by tε,α := tε/ max{α,1}; then, for all t ≥ tε,α,
we have |Rt(α)−R∞(α)| ≤ ε

max{α,1} max{α, 1} = ε.

Prototype example 1: proportional policies. Set Rt(α) = btα for some bt ∈ [0, 1] and assume
that limt→∞ bt = b∞ ∈ [0, 1]. We check (H) as follows. Set R∞(α) = b∞α. For all ε > 0 there
exists tε such that |bt − b∞| ≤ ε for all t ≥ tε; thus for all t ≥ tε

|Rt(α)−R∞(α)| = |bt − b∞|α ≤ εα ≤ ε max{α, 1} for all α ≥ 0.

Prototype example 2: excess-of-loss policies. Set Rt(α) = min{at, α} for some at ∈ [0,∞) and
assume that limt→∞ at = a∞ ∈ [0,∞). We check (H) as follows. Set R∞(α) = min{a∞, α}. For
all ε > 0 there exists tε such that |at − a∞| ≤ ε for all t ≥ tε; thus for all t ≥ tε

|Rt(α)−R∞(α)| = |min{at, α} −min{a∞, α}| ≤ |at − a∞| ≤ ε ≤ εmax{α, 1} for all α ≥ 0.

2 Classical case

In this section we consider the model (1) where (S(t)) is a compound Poisson process. Thus we
have S(t) =

∑N(t)
k=1 Uk and N(t) =

∑
k≥1 1Tk≤t, where: (Uk) and (N(t)) are independent; (Uk) are

i.i.d.; (N(t)) is a Poisson process with intensity λ, i.e. the random variables (Tk − Tk−1) are i.i.d.
exponentially distributed with expected value 1

λ .
We assume the following superexponential condition for the random variables (Uk):

(S1): E[eθU1 ] < ∞ for all θ ∈ R.
As a consequence of (S1) the (common) expected value µ of the random variables (Uk) is finite
and S(t)

t converges to ` = λµ as t →∞. The reserve process (Xx
R(t)) under the reinsurance policy

R is defined by (2) where

pR(t) = pt− qR(t) = (1 + κ)λµt− (1 + η)λ
∫ t

0

[
E[U1]︸ ︷︷ ︸

=µ

−E[Rs(U1)]
]
ds;

with some easy computations we have

pR(t) = (1 + η)λ
∫ t

0
E[Rs(U1)]ds− (η − κ)λµt.

In all our results we assume that (H) holds; thus we have (4), whence we obtain

lim
t→∞

1
t

∫ t

0
E[Rs(U1)]ds = E[R∞(U1)]; (5)
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then
lim
t→∞

pR(t)
t

= pR, where pR = (1 + η)λE[R∞(U1)]− (η − κ)λµ.

The net profit condition for the insurance company under the reinsurance policy R is pR >
λE[R∞(U1)], i.e.

(1 + η)λE[R∞(U1)]− (η − κ)λµ > λE[R∞(U1)];

thus, after some easy computations, we obtain

E[R∞(U1)] ≥
[
1− κ

η

]
µ. (6)

We point out that (6) always holds when κ ≥ η. We also need to consider the process (ZR(t))
defined by

ZR(t) =
N(t)∑

k=1

R∞(Uk)− pRt.

We remark that the process (ZR(t)) and the net profit condition presented above are a general-
ization of the analogous items presented by Hald and Schmidli [6] (section 2) for the proportional
reinsurance policies; for instance the process (Xb

t ) in eq. (3) in [6] is the analogous of (ZR(t)). The
net profit is the same if we have (ZR(t)) in place of (ZR(t)). Finally we consider the rate function
IR defined by

IR(f) =
{ ∫ 1

0 Λ∗R(ḟ(t))dt if f ∈ AC0[0, 1]
∞ otherwise

, (7)

where
Λ∗R(y) = sup

θ∈R
[θy − ΛR(θ)] and ΛR(θ) = λ(E[eθR∞(U1)]− 1)− pRθ. (8)

Our aim is to prove Proposition 2.3, i.e. the LDP of (ZR(α·)
α ) with rate function IR as in (7). In

order to do that we shall show that (ZR(α·)
α ) is exponentially equivalent to (ZR(α·)

α ) as α →∞ (see
Definition 4.2.10 in [4]); then Proposition 2.3 will be proved by considering Theorem 4.2.13 in [4]
and the next known result of Borovkov [2] (see also de Acosta [3] and the references cited therein).

Proposition 2.1 Assume E[eθR∞(U1)] < ∞ for all θ ∈ R, and (H). Then (ZR(α·)
α ) satisfies the

LDP with rate function IR as in (7). Moreover the rate function IR is good.

Some preliminaries are needed for proving Proposition 2.3. We shall use the symbol [·] to denote
the integer part of a real number. Let (An) be the sequence defined by

An =
n∑

k=1

∣∣∣RTk
(Uk)−R∞(Uk)

∣∣∣

and let us consider the following lemma.

Lemma 2.2 Assume (S1) and (H). Then limn→∞ 1
n logE[eθAn ] = 0 for all θ > 0.

Proof. Let θ > 0 be arbitrarily fixed. We have E[eθAn ] ≥ 1 for all n ≥ 1 since θ > 0 and the
random variable An is nonnegative; thus we can immediately say that lim infn→∞ 1

n logE[eθAn ] ≥ 0.
Thus we complete the proof showing that lim supn→∞

1
n logE[eθAn ] ≤ 0.

The following asymptotic estimate (10) is needed. Let n ≥ 1 and ρ, r, ε > 0 be arbitrarily fixed.
Then we have

P (N(r) ≥ [nε]) ≤ e−ρ[nε]E[eρN(r)] = e−ρ[nε]+λr(eρ−1),
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and therefore lim supn→∞
1
n log P (N(r)) ≥ [nε]) ≤ −ρε; thus, since ρ > 0 is arbitrary,

lim
n→∞

1
n

log P (N(r) ≥ [nε]) = −∞.

In conclusion, since we have P (T[nε] ≤ r) = P (N(r) ≥ [nε]), we obtain

lim
n→∞

1
n

log P (T[nε] ≤ r) = −∞. (9)

Furthermore note that

An =
n∑

k=1

|RTk
(Uk)−R∞(Uk)| ≤

n∑

k=1

[RTk
(Uk) + R∞(Uk)] ≤ 2

n∑

k=1

Uk;

then we have

E[eθAn1T[nε]<r] ≤ E[e2θ
∑n

k=1 Uk1T[nε]<r] = (E[e2θU1 ])nP (T[nε] < r)

since θ > 0, (U1, . . . , Un, T[nε]) are independent and (U1, . . . , Un) are i.i.d.; thus we obtain

lim
n→∞

1
n

logE[eθAn1T[nε]<r] = −∞ (10)

holds by (9) and (S1). Now let us consider the sum

E[eθAn ] = E[eθAn1T[nε]<tε ] + E[eθAn1T[nε]≥tε ],

where tε is the value in (H). As far as the second the addendum is concerned, we obtain

E[eθAn1T[nε]≥tε ] ≤ E[e2θ
∑[nε]−1

k=1 Ukeθε
∑n

k=[nε] max{Uk,1}1T[nε]≥tε ] ≤

≤ (E[e2θU1 ])[nε]−1(E[eθε max{U1,1}])n−[nε]+1.

Thus, by (10) with r = tε, we have

lim sup
n→∞

1
n

logE[eθAn ] ≤ ε logE[e2θU1 ] + (1− ε) logE[eθε max{U1,1}].

In conclusion we have lim supn→∞
1
n logE[eθAn ] ≤ 0 since (S1) holds and ε > 0 can be chosen

arbitrarily small. ¤

Proposition 2.3 Assume (S1) and (H). Then (ZR(α·)
α ) satisfies the LDP with rate function IR

as in (7).

Proof. Proposition 2.1 provides the LDP of (ZR(α·)
α ) and the goodness of the rate function IR in

(7); indeed, when (S1) holds, we have E[eθR∞(U1)] < ∞ for all θ ∈ R. Thus, by Theorem 4.2.13 in
[4], we only need to show that (ZR(α·)

α ) and (ZR(α·)
α ) are exponentially equivalent as α →∞, i.e.

lim
α→∞

1
α

log P
( 1

α
sup

t∈[0,1]
|ZR(αt)− ZR(αt)| > δ

)
= −∞ (for all δ > 0). (11)

Let δ > 0 be arbitrarily fixed. We have
{ 1

α
sup

t∈[0,1]
|ZR(αt)− ZR(αt)| > δ

}
⊂
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⊂
{ 1

α
sup

t∈[0,1]
|pR(αt)− pRαt| > δ

2

}
∪

{ 1
α

sup
t∈[0,1]

∣∣∣
N(αt)∑

k=1

RTk
(Uk)−R∞(Uk)

∣∣∣ >
δ

2

}
⊂

⊂
{ 1

α
sup

t∈[0,1]
|pR(αt)− pRαt| > δ

2

}
∪

{ 1
α

sup
t∈[0,1]

N(αt)∑

k=1

∣∣∣RTk
(Uk)−R∞(Uk)

∣∣∣ >
δ

2

}
;

then { 1
α

sup
t∈[0,1]

|ZR(αt)− ZR(αt)| > δ
}
⊂ Eα

1 ∪ Eα
2

where Eα
1 =

{
1
α supt∈[0,1] |pR(αt)− pRαt| > δ

2

}
and Eα

2 =
{

AN(α)

α > δ
2

}
; thus by the union bound

we obtain
P

( 1
α

sup
t∈[0,1]

|ZR(αt)− ZR(αt)| > δ
)
≤ P (Eα

1 ) + P (Eα
2 ). (12)

In view of what follows it is useful to remark that in general Eα
1 is a deterministic event;

moreover Eα
1 = ∅ and 1

α supt∈[0,1] |pR(αt)−pRαt| ≤ δ
2 are equivalent conditions. For α large enough

we have Eα
1 = ∅ because

lim
α→∞

1
α

sup
t∈[0,1]

|pR(αt)− pRαt| = 0;

indeed

0 ≤ 1
α

sup
t∈[0,1]

|pR(αt)− pRαt| = (1 + η)λ
α

sup
t∈[0,1]

∣∣∣
∫ αt

0
E[Rs(U1)]ds− E[R∞(U1)]αt

∣∣∣ =

=
(1 + η)λ

α
sup

t∈[0,1]

∣∣∣
∫ αt

0
E[Rs(U1)]−E[R∞(U1)]ds

∣∣∣ ≤ (1 + η)λ
α

sup
t∈[0,1]

∫ αt

0
|E[Rs(U1)]−E[R∞(U1)]|ds =

=
(1 + η)λ

α

∫ α

0
|E[Rs(U1)]− E[R∞(U1)]|ds ≤ (1 + η)λ

α

∫ α

0
E[|Rs(U1)−R∞(U1)|]ds,

and limα→∞
(1+η)λ

α

∫ α
0 E[|Rs(U1)−R∞(U1)|]ds = 0 by (4). Thus, for α large enough, (12) becomes

P
( 1

α
sup

t∈[0,1]
|ZR(αt)− ZR(αt)| > δ

)
≤ P (Eα

2 );

then, since Eα
2 =

{
AN(α)

α > δ
2

}
, the exponential equivalence (11) is proved if we show that

lim sup
α→∞

1
α

log P
(
AN(α) > α

δ

2

)
≤ −∞. (13)

Now let ρ > 0 and a positive integer K be arbitrarily fixed. Then, since Tn is the sum of n
exponential random variables with mean 1

λ , we have

P (TK[α] < α) ≤ eραE[e−ρTK[α] ] = eρα
( λ

λ + ρ

)K[α]
,

and therefore
lim

α→∞
1
α

log P (TK[α] < α) ≤ ρ + K log
λ

λ + ρ
. (14)

Furthermore we have {TK[α] ≥ α} = {N(α) ≤ K[α]}; then, since (An) is nondecreasing, we
obtain the inequality

P
(
AN(α) > α

δ

2
, TK[α] ≥ α

)
≤ P

(
AK[α] > α

δ

2

)
.
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Thus, for all θ > 0,

P
(
AN(α) > α

δ

2
, TK[α] ≥ α

)
≤ P

(
AK[α] > α

δ

2

)
≤ e−θα δ

2E[eθAK[α] ]

and, by Lemma 2.2, lim supα→∞
1
α log P (AN(α) > α δ

2 , TK[α] ≥ α) ≤ −θ δ
2 . In conclusion

lim
α→∞

1
α

log P
(
AN(α) > α

δ

2
, TK[α] ≥ α

)
= −∞ (15)

holds since θ > 0 is arbitrarily chosen.
Now we are ready to prove (13). Let ρ > 0 and a positive integer K be arbitrarily fixed, as

before. By the union bound we get

P
(
AN(α) > α

δ

2

)
≤ P

(
AN(α) > α

δ

2
, TK[α] ≥ α

)
+ P (TK[α] < α);

hence, by (14) and (15), we have

lim sup
α→∞

1
α

log P
(
AN(α) > α

δ

2

)
≤ ρ + K log

λ

λ + ρ
.

Moreover, for K > λ, we can set ρ = K − λ and we have

lim sup
α→∞

1
α

log P
(
AN(α) > α

δ

2

)
≤ K − λ−K log

K

λ
;

thus (13) holds by taking K →∞ in the latter right hand side. ¤

3 Markov modulated case

In this section we consider the Markov modulated risk model in [10] (chapter 12, section 3; see also
chapter 12, section 2, subsection 2, example 4 at page 506), i.e. the model (1) where (S(t)) is a
Markov modulated compound Poisson process. Roughly speaking, let J = (J(t)) be an irreducible
continuous time Markov chain with finite state space E and, in any finite time interval in which we
have J(t) = i for some i ∈ E, (S(t)) behaves like a compound Poisson process with claim intensity
λi and claim size distribution Gi. More precisely we have S(t) =

∑N(t)
k=1 Uk and N(t) =

∑
k≥1 1Tk≤t

where: (Uk) and (N(t)) are conditionally independent given J ; (N(t)) is a Markov modulated
Poisson process, i.e. a doubly stochastic Poisson process with intensity (λJ(t)); (Uk) are independent
given J and, for all k ≥ 1, the conditional distribution of Uk given J is GJ(Tk).

In general we shall use the notation Ei[f(U)] to denote the expected value of a random variable
f(U), where U is a random variable with distribution Gi.

In view of what follows it is useful to consider the following function L : RE → R; for details
on this function see Baldi and Piccioni [1] (section 2). Let v = [vi]i∈E be arbitrarily fixed and let
(pij)i,j∈E be the intensity matrix of J ; moreover let us consider the matrix P (v) = (pij +δijvi)i,j∈E ,
where

pij + δijvi =
{

pij + vi if i = j
pij if i 6= j

.

Then Perron Frobenius Theorem guarantees the existence of a simple and positive eigenvalue of the
exponential matrix eP (v), which is equal to the spectral radius of eP (v); then L(v) is the logarithm
of such eigenvalue. It is important to point out that

L(v) = lim
t→∞

1
t

logE[e
∫ t
0 vJ(s)ds] (for all v ∈ RE) (16)
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whatever is the initial distribution of J . The function L(v) is convex, nondecreasing with respect
to each component vi of v and ∇L(0) = π, where 0 is the null vector in RE and π = (πi)i∈E is the
stationary distribution of J .

We assume the following condition (S2) which is a generalization of (S1) presented for the
classical case.
(S2): for all i ∈ E we have Ei[eθU ] < ∞ for all θ ∈ R.
As a consequence of (S2) the expected values (Ei[U ])i∈E are finite and S(t)

t converges to ` =∑
i∈E πiλiEi[U ] as t → ∞. The reserve process (Xx

R(t)) under the reinsurance policy R is defined
by (2) where

pR(t) = pt− qR(t) = (1 + κ)
∑

i∈E

πiλiEi[U ]t− (1 + η)
∑

i∈E

πiλi

∫ t

0

[
Ei[U ]− Ei[Rs(U)]

]
ds;

with some easy computations we have

pR(t) = (1 + η)
∑

i∈E

πiλi

∫ t

0
Ei[Rs(U)]ds− (η − κ)

∑

i∈E

πiλiEi[U ]t.

In all our results we assume that (H) holds. Thus some items presented above can be adapted
to the Markov modulated case. Let us start with the limit (5) and the definition of pR:

lim
t→∞

1
t

∫ t

0
Ei[Rs(U)]ds = Ei[R∞(U)] for all i ∈ E;

lim
t→∞

pR(t)
t

= pR, where pR = (1 + η)
∑

i∈E

πiλiEi[R∞(U)]− (η − κ)
∑

i∈E

πiλiEi[U ]. (17)

The net profit condition for the insurance company under the reinsurance policy R is pR >∑
i∈E πiλiEi[R∞(U)], i.e.

(1 + η)
∑

i∈E

πiλiEi[R∞(U)]− (η − κ)
∑

i∈E

πiλiEi[U ] >
∑

i∈E

πiλiEi[R∞(U)];

thus, with some easy computations, we obtain
∑

i∈E

πiλiEi[R∞(U)] >
[
1− κ

η

] ∑

i∈E

πiλiEi[U ]. (18)

We point out that (18) always holds when κ ≥ η. Finally let us consider the rate function Λ∗R
defined by

Λ∗R(y) = sup
θ∈R

[θy − ΛR(θ)], (19)

where
ΛR(θ) = L([λi(Ei[eθR∞(U)]− 1)]i∈E)− pRθ. (20)

Our aim is to prove Proposition 3.1, i.e. the LDP of (ZR(t)
t ) with rate function Λ∗R as in (19).

In order to do that we shall use Gärtner Ellis Theorem (see section 3 of chapter 2 in [4]).

Proposition 3.1 Assume (S2) and (H). Then (ZR(t)
t ) satisfies the LDP with rate function Λ∗R as

in (19).

Before proving Proposition 3.1 the following Lemma is needed.

Lemma 3.2 We have E[eθ
∑N(t)

k=1 RTk
(Uk)] = E

[
exp

(∫ t
0 λJs(EJs [eθRs(U)]− 1)ds

)]
.
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Proof of Lemma 3.2. This formula can be proved following the lines of the proof of Lemma 2.3
in [9] with ϕ(s, u) = Rs(u)1[0,t](s); more precisely we have to consider the extension considered in
Lemma A.1 in [8]. ¤

Proof of Proposition 3.1. We want to apply Gärtner Ellis Theorem and, for all θ ∈ R, we need
to check the limit

lim
t→∞

1
t

logE[etθ
ZR(t)

t ] = ΛR(θ).

First of all note that, by (S2), we have Ei[eθR∞(U)] < ∞ for all i ∈ E and for all θ ∈ R.
Furthermore we have

E[etθ
ZR(t)

t ] = E[eθ
∑N(t)

k=1 RTk
(Uk)]e−pR(t)θ,

whence we obtain
1
t

logE[etθ
ZR(t)

t ] =
1
t

logE[eθ
∑N(t)

k=1 RTk
(Uk)]− pR(t)

t
θ;

thus, by (17) and (20), we only have to check the following limit for all θ ∈ R:

lim
t→∞

1
t

logE[eθ
∑N(t)

k=1 RTk
(Uk)] = L([λi(Ei[eθR∞(U)]− 1)]i∈E). (21)

One can immediately say that (21) holds when θ = 0 since L([λi(Ei[e0·R∞(U)]−1)]i∈E) = L(0) =
0.

In order to prove (21) when θ 6= 0 we distinguish the cases θ > 0 and θ < 0; moreover in both
the cases we start from Lemma 3.2 with t ≥ tε, where tε is the value in (H):

E[eθ
∑N(t)

k=1 RTk
(Uk)] = E

[
exp

(∫ tε

0
λJs(EJs [e

θRs(U)]− 1)ds +
∫ t

tε

λJs(EJs [e
θRs(U)]− 1)ds

)]
. (22)

Case θ > 0. Set M(θ) = maxi∈E λi(Ei[eθU ]− 1) and, by (22), we have

E
[
exp

(∫ t

tε

λJs(EJs [e
θRs(U)]− 1)ds

)]
≤ E[eθ

∑N(t)
k=1 RTk

(Uk)] ≤

≤ eM(θ)tεE
[
exp

(∫ t

tε

λJs(EJs [e
θRs(U)]− 1)ds

)]
.

Moreover, by (H), we obtain

E
[
exp

(∫ t

tε

λJs(EJs [e
θ(R∞(U)−ε max{U,1})]− 1)ds

)]
≤ E[eθ

∑N(t)
k=1 RTk

(Uk)] ≤

≤ eM(θ)tεE
[
exp

(∫ t

tε

λJs(EJs [e
θ(R∞(U)+ε max{U,1})]− 1)ds

)]
.

Then, by (16),

L([λi(Ei[eθ(R∞(U)−ε max{U,1})]− 1)]i∈E) ≤ lim inf
t→∞

1
t

logE[eθ
∑N(t)

k=1 RTk
(Uk)] ≤

≤ lim sup
t→∞

1
t

logE[eθ
∑N(t)

k=1 RTk
(Uk)] ≤ L([λi(Ei[eθ(R∞(U)+ε max{U,1})]− 1)]i∈E).

In conclusion, by the continuity of L(·), (21) holds since ε > 0 is arbitrary.
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Case θ < 0. We simply adapt the procedure presented for the case θ > 0. Set m = mini∈E −λi;
then, by (22) and (H), we have

em·tεE
[
exp

(∫ t

tε

λJs(EJs [e
θ(R∞(U)+ε max{U,1})]− 1)ds

)]
≤

≤ em·tεE
[
exp

(∫ t

tε

λJs(EJs [e
θRs(U)]− 1)ds

)]
≤ E[eθ

∑N(t)
k=1 RTk

(Uk)] ≤

≤ E
[
exp

(∫ t

tε

λJs(EJs [e
θRs(U)]− 1)ds

)]
≤ E

[
exp

(∫ t

tε

λJs(EJs [e
θ(R∞(U)−ε max{U,1})]− 1)ds

)]
.

In conclusion (21) can be easily checked: we can use (16) in a suitable way, L(·) is continuous and
ε > 0 is arbitrary. ¤

Remark 3.3 The Markov modulated case is a generalization of the classical case. This can be
trivially explained by considering the set E reduced to a single point. A more interesting way
consists to consider the following condition (C) and some consequences:
(C): the distributions (Gi)i∈E are all the same G and the values (λi)i∈E are all the same λ.
A first consequence is that (S(t)) is a compound Poisson process S(t) =

∑N(t)
k=1 Uk according to the

presentation for the classical case, G is the common distribution the random variables (Uk), and
(S(t)) and (J(t)) are independent. Furthermore (S2) coincides with (S1). Finally pR(t), pR and
ΛR coincides with the items denoted by the same symbols for the classical case; for ΛR this fact can
be motivated by noting that, if for some v ∈ R we have vi = v for all i ∈ E, then L([vi]i∈E) = v.

4 Results on ruin probabilities

In this section we focus on the asymptotics of the ruin probability when the initial capital is large.
In subsection 4.1 we derive the so called Lundberg’s estimate for the ruin probabilities in (3), i.e.
the ruin probabilities under the reinsurance policy R. In subsection 4.2 we present some comments
and a numerical example.

4.1 Lundberg’s estimate

The Lundberg’s estimate for the ruin probabilities (ψR(x))x>0 will be proved in the next Proposition
4.1. The Lundberg’s estimate consists of the limit (23) below; roughly speaking this limit shows
that ψR(x) decays exponentially as x →∞ in the fashion of large deviations.

By taking into account Remark 3.3 it is not restrictive to consider the Markov modulated case;
indeed the classical case can be seen as a particular case.

Proposition 4.1 Assume (S2) and (H). Finally assume pR >
∑

i∈E πiλiEi[R∞(U)] > 0. Then
there exists wR > 0 such that ΛR(wR) = 0 and

lim
x→∞

1
x

log ψR(x) = −wR. (23)

Proof. First of all we have Λ′R(0) < 0 by (20), ∇L(0) = π and the net profit condition pR >∑
i∈E πiλiEi[R∞(U)]. Moreover

ΛR(θ) ≥
∑

i∈E

πiλi(Ei[eR∞(U)θ]− 1)− pRθ

by the convexity of L and by ∇L(0) = π, so that the right hand side diverges as θ → ∞ since
πi, λi > 0 for all i ∈ E and at least one of the functions (Ei[eR∞(U)θ] − 1)i∈E diverges by the
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hypothesis
∑

i∈E πiλiEi[R∞(U)] > 0. Thus ΛR(θ) diverges as θ →∞. In conclusion the existence
of wR is guaranteed by the convexity of ΛR, Λ′R(0) < 0, limθ→∞ ΛR(θ) = ∞ and ΛR(θ) < ∞ for all
θ ∈ R (the latter statement holds by (S2)).

In order to prove (23) we refer to Corollary 2.3 and Lemma 2.1 of Duffield and O’Connell [5]
(taking linear scaling functions); thus we have to check that Λ∗R is continuous at every point of
(0,∞) and the inequality

lim sup
n→∞

1
n

logE[eθ(Z∗R(n)−ZR(n))] ≤ 0 (for all θ > 0), (24)

where Z∗R(n) = sup0≤r<1 ZR(n + r).
First of all the function Λ∗R is convex and finite on the set {Λ′R(θ) : θ ∈ R} = (−pR,∞); thus

Λ∗R is continuous on this open set and in particular on (0,∞) ⊂ (−pR,∞).
As far as (24) is concerned, first of all we have

Z∗R(n)− ZR(n) = sup
0≤r<1

{
SR(n + r)− SR(n)− (pR(n + r)− pR(n))

}
;

moreover

SR(n + r)− SR(n) =
N(n+r)∑

k=N(n)+1

RTk
(Uk) ≤

N(n+r)∑

k=N(n)+1

Uk

and

pR(n + r)− pR(n) = (1 + η)
∑

i∈E

πiλi

∫ n+r

n
Ei[Rs(U)]ds

︸ ︷︷ ︸
≥0

−(η − κ)
∑

i∈E

πiλiEi[U ]r ≥

≥ −(η − κ)
∑

i∈E

πiλiEi[U ]r

whence we obtain (we use the notation z+ = max{z, 0})

ZR(n + r)− ZR(n) ≤
N(n+1)∑

k=N(n)+1

Uk + (η − κ)+
∑

i∈E

πiλiEi[U ] (for all 0 ≤ r < 1).

Now let θ > 0 be arbitrarily fixed. Then we have

E[eθ(Z∗R(n)−ZR(n))] ≤ E[eθ
∑N(n+1)

k=N(n)+1
Uk ]eθ(η−κ)+

∑
i∈E πiλiEi[U ].

Moreover, by Lemma 3.2 (slightly changed), we have

E[eθ
∑N(n+1)

k=N(n)+1
Uk ] = E

[
exp

(∫ n+1

n
λJs(EJs [e

θU ]− 1)ds
)]

and, if we set M(θ) = maxi∈E λi(Ei[eθU ]− 1) as in the proof of Proposition 3.1, we obtain

E
[
exp

(∫ n+1

n
λJs(EJs [e

θU ]− 1)ds
)]
≤ eM(θ).

In conclusion
E[eθ(Z∗R(n)−ZR(n))] ≤ eM(θ)+θ(η−κ)+

∑
i∈E πiλiEi[U ]

and (24) holds since M(θ) < ∞ by (S2). ¤
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4.2 Comments and a numerical example

In this subsection we present some comments and a numerical example. In particular, by taking into
account our prototype examples presented at the end of section 1, we mainly refer to proportional
and excess-of-loss policies.

In the classical case, Schmidli [12] provides the Cramér-Lundberg approximation for propor-
tional reinsurance strategy, that is an estimate sharper than the one presented in Proposition 4.1.
Moreover, he asserts that other types of reinsurance can be treated similarly. For Markov modu-
lated risk processes, Hald and Schmidli [6] (section 4.2) treat the problem of how to calculate the
proportional reinsurance strategy maximizing the adjustment coefficient. As far as we know, there
are no asymptotic results for Markov modulated risk processes with excess-of-loss reinsurance.

A question of interest is the choice of a dynamic reinsurance strategy in order to minimize the
infinite time ruin probability. In the case when the risk process is approximated by a Brownian
motion with drift, Schmidli [11] determines explicitely the optimal proportional reinsurance policy
and the corresponding ruin probability function. The optimal retention level turns out to be
a constant. In the case of the classical Cramér-Lundberg risk process, Schmidli [11] and Hipp
and Vogt [7] analyze proportional reinsurance and excess-of-loss reinsurance respectively. They
prove the existence of a smooth solution of the Hamilton-Jacobi-Bellman (HJB) equation as well
as a verification theorem, but it seems that no explicit solution of the HJB equation exists. In
both papers it is conjectured that for exponentially distributed claim sizes the optimal reinsurance
strategy becomes constant for large values of the initial capital. Thus, in general, it is hard to find
an explicit solution for the control problem for the Cramér-Lundberg risk process.

A number of papers focuse their analysis on giving asymptotic results for the ruin probability.
Waters [14] considers constant reinsurance strategies. He finds that in the case of proportional
reinsurance there exists a unique constant strategy that maximizes the adjustment coefficient.
In the case of excess of loss reinsurance strategies, he argues that the same result holds if the
premium is calculated according to the expected value principle. Schmidli studies the asymptotics
for risk processes under optimal proportional reinsurance in the small claim case (see [12]) and
large claim case (see [13]). In both case, he provides the Cramér-Lundberg approximation as well
as the convergence of the optimal strategies. In particular, in the small claim case he proves that
the optimal reinsurance strategy converges to the asymptotically optimal strategy as the initial
capital increases to infinity. In conclusion, after all this discussion, the existence of the limit of the
strategies Rt as t →∞ (i.e. the strategy R∞ in (H); see (4)) may be considered realistic.

It is interesting to determine the asymptotically optimal reinsurance strategy, that is, by taking
into account Proposition 4.1, the reinsurance strategy R that maximizes the adjustment coefficient
wR. First of all, consider the complete reinsurance case where all the claims are entirely paid by
the reinsurer (obviously (H) holds in this case; moreover this can be seen as a proportional policy
and as an excess-of-loss policy):

R
(0)
t (α) = 0 for all t, α ≥ 0. (25)

The reserve process (2) becomes

Xx
R(0)(t) = x + (κ− η)

∑

i∈E

πiλiEi[U ]t.

Notice that if κ ≥ η then ψR(0)(x) = 0 for all x > 0. Thus, as pointed out in [6] (section 2) for
proportional policies concerning the classical case, the inequality κ ≥ η leads to a trivial situation
because the reinsurance policy (25) minimizes the ruin probability. In conclusion it is interesting to
consider the inequality η > κ, i.e. the case in which reinsurance is more expensive than insurance;
on the other hand, when (H) holds, we already pointed out that κ ≥ η trivially provides (6) for
the classical case and (18) for the Markov modulated case.
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In general it is hard to maximize the adjustment coefficient. Here we present a numerical ex-
ample and we consider proportional and excess-of-loss policies.

Numerical example. Let J be a two state Markov chain, and then set E = {1, 2}. Let λ1 = 1
and λ2 = 2 be the claim intensities and let G1 and G2 be the claim size distributions which are
assumed to be both exponential with expected values 1 and 2 respectively. Let

(
p11 p12

p21 p22

)
=

( −1 + 1
+1 − 1

)

be the intensity matrix of J ; then the corresponding stationary distribution is (π1, π2) = (1
2 , 1

2). Fi-
nally let η = 5 and κ = 4 be the relative safety loading for the reinsurer and the insurer respectively.

In the Figure 1, we have depicted the adjustment coefficient wR as a function of the retention
level in the case of proportional reinsurance as well as in the case of excess-of-loss reinsurance. In
both cases, the graphs suggest that wR is an uni-modal function of the retention level.
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Figure 1: The adjustment coefficient as a function of the retention level in the case of proportional
reinsurance and excess of loss reinsurance respectively

We point out that wR = 0 when (18) fails (in the classical case when (6) fails). In the propor-
tional case (18) is

1
2
[1 · b∞ + 2 · 2b∞] >

[
1− 4

5

]1
2
[1 · 1 + 2 · 2], i.e. b∞ > 0.2.

In the excess-of-loss case (18) is

1
2
[1 · (1− e−a∞) + 2 · 2(1− e−a∞/2)] >

[
1− 4

5

]1
2
[1 · 1 + 2 · 2],

and, with some easy computations, we obtain

e−a∞/2 < 2
√

2− 2, i.e. a∞ > −2 log(2
√

2− 2) = 0.38.
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51 (1995), 75–115.

[4] Dembo A. and Zeitouni O., Large Deviations Techniques and Applications, Jones and
Bartlett, Boston 1993.

[5] Duffield N.G. and O’Connell N., Large deviations and overflow probabilities for a single
server queue, with applications, Math. Proc. Camb. Phil. Soc. 118 (1995), 363–374.

[6] Hald M. and Schmidli H., On the maximisation of the adjustment coefficient under pro-
portional reinsurance, Astin Bull. 34 (2004), 75–83.

[7] Hipp C. and Vogt M., Optimal dynamic XL reinsurance, Astin Bull. 33 (2003), 193–207.

[8] Macci C., Stabile G. and Torrisi G.L., Lundberg parameters for non standard risk
processes, Scand. Actuarial J. 2005, n. 6, 417–432.

[9] Macci C. and Torrisi G.L., Asymptotic results for perturbed risk processes with delayed
claims, Insurance Math. Econom. 34 (2004), 307–320.

[10] Rolski T., Schmidli H., Schmidt V. and Teugels J.L., Stochastic Processes for Insur-
ance and Finance, Wiley, Chichester 1999.

[11] Schmidli H., Optimal Proportional Reinsurance Policies in a Dynamic Setting, Scand. Ac-
tuarial J. 2001, n. 1, 55–68.

[12] Schmidli H., Asymptotics of Ruin Probabilities for Risk Processes under Optimal Reinsur-
ance policies: the Small Claim case, Working Paper 180, Laboratory of Actuarial Mathemat-
ics, University of Copenhagen (2004).

[13] Schmidli H., Asymptotics of Ruin Probabilities for Risk Processes under Optimal Reinsur-
ance and Investment Policies: the Large Claim case, Queueing Systems 46 (2004), 149–157.

[14] Waters H.R., Some mathematical aspects of reinsurance, Insurance Math. Econom. 2 (1983),
17–26.

14


