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In a recent paper [ETMC, P. Boucaud et al., Phys. Lett. B 650 (2007) 304, hep-lat/0701012] we presented
precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by
employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper
we give details on our simulations and the computation of physical observables. In particular, we discuss
the problem of tuning to maximal twist, the techniques we have used to compute correlators and error
estimates. In addition, we provide more information on the algorithm used, the autocorrelation times
and scale determination, the evaluation of disconnected contributions and the description of our data by
means of chiral perturbation theory formulae.

© 2008 Elsevier B.V. All rights reserved.
1. Twisted mass fermions

Dynamical Wilson twisted mass fermions, when tuned to
maximal twist [2,3], have been demonstrated to lead to pre-
cise results for mesonic quantities down to pseudo scalar masses
mPS � 300 MeV. Results in the quenched case were discussed in
Refs. [4–6] and in the case of two mass-degenerate flavours of
quarks in Ref. [1]. Preparatory simulations with twisted mass dy-
namical fermions were performed in [7–10]. In Ref. [1] many of
the details of our computations had to be omitted and it is the
purpose of the present paper to supplement those and fill this
gap.

* Corresponding author.
E-mail address: gregorio.herdoiza@desy.de (G. Herdoiza).
0010-4655/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2008.06.013
This paper is organised as follows. In this section we introduce
twisted mass fermions and discuss the important issue of tuning
to maximal twist. In Section 2, we give details about our tech-
niques to compute charged correlators and in Section 3 to compute
neutral correlators and quark-disconnected contributions. In Sec-
tion 4 we discuss the algorithm details and explain our analysis
techniques for obtaining reliable error estimates. In Section 5 we
provide details of our computation of the force parameter r0 and
in Section 6 we give some results for the pseudoscalar mass and
decay constant, the untwisted PCAC quark mass and the renormal-
isation constant ZV. We use chiral perturbation theory to fit our
data and we detail this procedure in Section 7. We end with a
short summary in Section 8.

We begin with the Wilson twisted mass fermionic lattice ac-
tion for two flavours of mass degenerate quarks, which reads (in
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the so-called twisted basis [2,3] and with fermion fields having
continuum dimensions)

SF
tm = a4

∑
x

{
χ̄x[DW + m0 + iγ5τ3μq]χx

}
,

DW = 1

2
γμ

(∇μ + ∇∗
μ

) − ar

2
∇μ∇∗

μ, (1)

where m0 is the bare untwisted quark mass and μq the bare
twisted quark mass, τ3 is the third Pauli matrix acting in flavour
space and r is the Wilson parameter, which we set to r = 1 in
our simulations. We denote by ∇μ and ∇∗

μ the gauge covariant
nearest neighbour forward and backward lattice derivatives. The
bare quark mass m0 is related to the so-called hopping parame-
ter κ , which we will often use in this paper, by κ = 1/(8 + 2am0).
Twisted mass fermions are said to be at maximal twist if the bare
untwisted mass is tuned to its critical value, mcrit. We will discuss
later how this can be achieved in practice.

In the gauge sector we use, for reasons explained in [1], the
so-called tree-level Symanzik improved gauge action (tlSym) [11]
which includes besides the plaquette term U 1×1

x,μ,ν also rectangular

(1 × 2) Wilson loops U 1×2
x,μ,ν . It reads

S g = β

3

∑
x

(
b0

4∑
μ,ν=1

1�μ<ν

{
1 − Re Tr

(
U 1×1

x,μ,ν

)}

+ b1

4∑
μ,ν=1
μ �=ν

{
1 − Re Tr

(
U 1×2

x,μ,ν

)})
, (2)

where β is the bare inverse coupling and we set b1 = −1/12 (with
b0 = 1 − 8b1 as dictated by the requirement of continuum limit
normalisation). Note that at b1 = 0 this action becomes the usual
Wilson plaquette gauge action.

1.1. Tuning to maximal twist

One of the main virtues of Wilson twisted mass fermions is
that by tuning the bare quark mass m0 to its critical value an
automatic O(a) improvement can be achieved such that expecta-
tion values of parity even operators scale to their continuum limit
with O(a2) discretisation errors [3]. It was shown in the scaling
test study carried out in [4–6] in the quenched case that O(a)

improvement works extremely well for maximally twisted mass
quarks. In this context, the method to tune to maximal twist by
setting the so-called (untwisted) PCAC mass to zero (in the limit
μq → 0) was found to be very successful, in agreement with theo-
retical considerations [12–14]. In the present paper essentially the
same approach to set to zero the (untwisted) PCAC mass

mPCAC =
∑

x〈∂0 Aa
0(x, t)P a(0)〉

2
∑

x〈P a(x, t)P a(0)〉 , a = 1,2, (3)

was followed, by evaluating (3) at large enough time separation,
so that the pion ground state is dominant. For a definition of the
(twisted basis) operators appearing in Eq. (3) see Eq. (A.1) of Ap-
pendix A.

In principle one could think of determining amcrit at each value
of aμq at which simulations are carried out and then perform an
extrapolation to vanishing aμq based on data satisfying the bound
aμq � a3Λ3

QCD [14]. This method is, however, rather CPU-time ex-
pensive. We therefore prefer to determine the value of amcrit (at
each fixed value of β) from the simulation at the lowest avail-
able value, aμq,min � aΛQCD. This choice simply affects the critical
quark mass by O(aμq,minΛQCD) terms. Therefore O(a) improve-
ment is still guaranteed [3]. Furthermore, and most importantly,
with such a determination of amcrit also the O(a2) cutoff effects
remain small as long as μq � a2Λ3

QCD [14]. We recall below the
line of arguments leading to this conclusion.

1.2. Maximal twist and residual O(a2) artifacts

To start the discussion let us assume that m0 = 1/(2κ) − 4 has
been set to a value corresponding to some sensible lattice esti-
mate of the critical mass, while μq is non-zero. In this situation
one is already at maximal twist. However the unavoidable O(a)

terms affecting any determination of the critical mass can be fur-
ther tuned in an “optimal way”, i.e. in a way such that the residual
O(a2) lattice artifacts in physical quantities remain under control
as the pion mass is decreased. We briefly explain how this can
be achieved in practice and to what accuracy, following the work
of Ref. [14]. In the Symanzik expansion of the lattice expectation
value 〈O (x)〉|μq of a multilocal operator O computed at a bare
quark mass μq there will appear at O(a2) terms which are pro-
portional to[

1

m2
π

]2

ξ2
π (μq) ∝ 1

μ2
q
ξ2
π (μq), (4)

where

ξπ (μq) = ∣∣〈Ω|Lodd
∣∣π0(0)

〉∣∣cont
μq

. (5)

Here 〈Ω| and |π0(0)〉 denote the vacuum and the one-pion neutral
state at zero three-momentum, respectively. With the symbol

Lodd = aL5 + a3 L7 + · · · (6)

we indicate the set of operators of odd dimension in the Symanzik
local effective Lagrangian that describes the maximally twisted lat-
tice theory. From Eq. (4) one recognises that cut-off effects may
become large when m2

π gets small.
The general strategy to avoid these large cut-off effects is to

tune ξπ (μq) to zero, or at least to reduce it to O(am2
πΛ2

QCD) by
adjusting the value of κcrit. One way to realise this is precisely to
tune mPCAC = 0 as explained above. In particular it is sufficient to
impose the vanishing of the PCAC mass at μq = μq,min [14]. An
analysis à la Symanzik of the correlator in the numerator of Eq. (3)
shows that, if κ is such that mPCAC vanishes at a given value of μq

(provided μq < ΛQCD), then ξπ (μq) is suppressed in a sufficiently
strong way, namely one gets (note that ξπ has mass dimension
three)

ξπ (μq) = O
(
aμqΛ

3
QCD

) + O
(
aμ2

qΛ2
QCD

) + O
(
a3Λ6

QCD

)
, (7)

and thus (see Eq. (4))

ξπ (μq)

μqΛ
2
QCD

= O(aΛQCD) + O(aμq) + O

(
aΛQCD

a2Λ3
QCD

μq

)
. (8)

In this situation, the ratio ξπ (μq)/μqΛ
2
QCD remains small as long

as μq � a2Λ3
QCD.

For each value of μq in the region a2Λ3
QCD � μq < ΛQCD � a−1

the value of κ at which mPCAC vanishes provides a legitimate es-
timate of κcrit and hence of mcrit. Estimates of mcrit corresponding
to different values of μq differ by O(aμqΛQCD) from each other.
In particular, working at κcrit(μq,min) leads to O(a2) cutoff effects
which are at worst of the form a2(μq,min/μq)

2 and thus per-
fectly tolerable as long as μq � μq,min > a2Λ3

QCD. This result can
be checked by expanding ξπ (μq) around μq,min in Eq. (8) and us-
ing the expression of ξπ (μq,min) from Eq. (7).
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1.3. Numerical precision for tuning to maximal twist

It remains to be discussed to what numerical precision the con-
dition mPCAC = 0 has to be fulfilled. This question is important
if one wants to avoid that numerical uncertainties jeopardise the
tuning procedure. Suppose |amPCAC| = aε �= 0, where aε denotes a
small deviation, due to numerical limitations, from the condition
of vanishing PCAC mass. As a rule of thumb the value of aε can
be taken as the maximum (in modulus) between the finite statis-
tics central value of amPCAC and its (estimated) standard deviation.
It then follows by expanding ξπ = ξπ (μq, ε) around ε = 0

ξπ (μq, ε) = ξπ (μq) + O
(
Λ2

QCDε
)

≈ O
(
aμqΛ

3
QCD

) + O
(
aμ2

qΛ2
QCD

) + O
(
Λ2

QCDε
)
. (9)

Thus for the relative size of ξπ compared to the actual value of the
quark mass, one gets

ξπ (μq, ε)

μqΛ
2
QCD

= O(aΛQCD) + O(aμq) + O

(
ε

μq

)
. (10)

A smooth approach to the continuum is, of course, guaranteed
when |ε/μq| is of order aΛQCD or smaller. In fact, from the form
of the dimension five term in the Symanzik effective Lagrangian
of the twisted mass lattice QCD, it follows that, close to maximal
twist, aΛQCD|ε/μq| is the expected order of magnitude of the (un-
wanted) relative O(a) cutoff effects stemming from violations of
the condition of vanishing PCAC mass. The requirement |ε/μq| �
aΛQCD thus implies that the relative magnitude of these unwanted
cutoff effects satisfies the constraint aΛQCD|ε/μq| � a2Λ2

QCD, which
is consistent with O(a) improvement.

In practice, since we are interested in simulations performed at
lattice spacings about (or slightly below) 0.1 fm, where aΛQCD ∼
0.1, a value of |ε/μq| � 0.1 (and ideally decreasing with a) will
represent an acceptable level of precision in the procedure of de-
termining the critical mass. This condition is not too restrictive as
in actual simulations it is sufficient that it holds at μq,min. We also
remark that in order to check scaling and perform a reliable con-
tinuum extrapolation, the value of μq,min should be kept roughly
fixed in physical units as the lattice spacing is decreased.

Although these theoretical arguments show that we can work
in conditions such that we are effectively left with only O(a2) lat-
tice artefacts, numerical computations are required to check the
scaling behaviour and determine the order of magnitude of the
coefficient multiplying a2 terms for the observables of interest. In
this paper, where data at only one value of a are analysed, we can-
not evaluate these coefficients. Nevertheless, for the observables
we discuss here preliminary results from our collaboration pre-
sented in Refs. [15,16] indicate that the residual cutoff effects are
indeed small and consistent with O(a) improvement.

2. Computations in the charged meson sector

In this paper we will be mainly using the twisted quark basis
where the fermionic action takes the form (1). Even though there
is no fundamental reason for this choice, employing the twisted
quark basis makes immediately transparent the way several com-
putational methods, which have been invented for, or widely ap-
plied to, untwisted Wilson fermions, carry over to the case of
maximally twisted Wilson quarks. Of course, in such an unphysical
basis, the two flavour components of the fermion field χ = (u,d)T

appearing in the action do not coincide with the canonical quark
fields in the “physical” basis, ψ = (uphys,dphys)

T , rather the former
are related to the latter by the axial rotation

χ = e−iγ5τ3ω/2|ω=π/2ψ ⇔ u = e−iγ5π/4uphys,

d = eiγ5π/4dphys, (11)
which we write here in the case of maximal twist, ω = π/2. Since
the axial transformation above is flavour diagonal, the names of
the components (u,d) of the twisted basis field χ are still ap-
propriate to their flavour content. In spite of that, the correct
interpretation of gauge invariant composite bare operators in the
(χ, χ̄ ) basis is obtained only once they are expressed in terms of
the physical basis bare fields (ψ, ψ̄ ). Examples concerning quark
bilinear fields can be found in Appendix A.

In this context it may be useful to remark that, since parity and
isospin are no longer exact symmetries (recall however that I3, the
third isospin component, is unbroken), a physical basis bare com-
posite operator with given formal parity and isospin properties can
interpolate a hadron with opposite parity and/or different isospin.
As a consequence in the quantum-mechanical representation of
the correlators there will be contributions containing matrix ele-
ments of a physical basis composite operator with given formal
parity and isospin between the vacuum and a state with oppo-
site parity and/or different isospin, as well as between a neutral
pion state (which has the same lattice quantum numbers as the
vacuum) and a state with the same parity and isospin properties
as the considered operator. Such parity- and/or isospin-violating
matrix elements are of course of order a. Their occurrence in the
quantum-mechanical representation of correlators is not in con-
tradiction with the O(a) improvement of the expectation values of
parity-even, or isospin-invariant, multilocal operators [3]. For these
specific correlators, indeed, an analysis à la Symanzik shows that
each term of their quantum-mechanical representation can con-
tain only an even number of O(a) factors given by parity- and/or
isospin-violating matrix elements.1

From the formulae in Appendix A, it is clear that at maximal
twist, ω = π/2, the operator d̄γ5u is associated to the π+ meson,
in the sense that (d̄γ5u)† creates the π+ state from the vacuum.
The two-point π+ meson correlator receives contributions only
from (fermionically) connected diagrams, and after integration over
fermion fields, it is given by

C(t) = 〈
tr

[
Gu(0, t)γ5Gd(t,0)γ5

]〉
, (12)

where 〈. . .〉 means average over the gauge ensemble, the trace
tr[. . .] is restricted to spin and colour indices only, and we de-
note by Gu(0, t) the propagator for a u-quark from 0 to t , and
correspondingly by Gd the similar propagator for the d-quark.
Here three-space indices are understood as at this stage we
need not specify the spatial separation, or equivalently the three-
momentum. We can use the identity2 Gd(y, z) = γ5Gu(z, y)+γ5 to
relate the connected correlator (12) to propagators from a common
source (at time x0 = 0) through

C(t) = 〈
tr

[
Gu(0, t)Gu(0, t)+

]〉
. (13)

Thus only propagators for one flavour at one source point are
needed for the computation of the charged meson correlator. As
we discuss later, it is more efficient, however, to evaluate correla-
tion functions from a wider set of sources.

In Table 1 we give the correspondence between bilinear oper-
ators of the form d̄Γ u, where Γ is an hermitian combination of
Dirac γ -matrices, and the mesonic state that is associated with
each of them (in the limit a → 0, i.e. neglecting O(a) contamina-
tion from states of different parity and isospin).

In this table, X±
1 labels an isotriplet state with J P = 0+ , for

which there is no experimental candidate. We note that the asso-

1 This result essentially follows from the property that, at maximal twist, the or-
der a piece of the Symanzik effective Lagrangian, aL5, is odd under parity and the
flavour exchange u ↔ d.

2 Here (with a little abuse of notation) by + we mean complex conjugation and
transposition with respect to spin-colour indices only, while y = (y, y0) and z =
(z, z0) are the space–time coordinates.
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Table 1

Meson Operator

π± , π± , X±
1 d̄γ5u, d̄γ0u, d̄iγ0γ5u

ρ± , ρ± , a±
1 d̄iγiγ0u, d̄iγiγ5u, d̄γi u

b±
1 d̄iγiγ0γ5u

a±
0 d̄u

ciated operator is in the continuum a component of a conserved
current in the theory with two mass degenerate quarks.

We evaluate the two-point (connected) correlators for all the
pairs of operators in the same line of Table 1. In view of the
symmetries of the lattice theory at maximal twist [2,3], such cor-
relators are in general non-zero: e.g., the correlator obtained from
the insertion of the first (or second) operator in the second line of
Table 1 with the third operator in the same line is an O(a) quantity
(in fact ρ± and a±

1 carry different continuum quantum numbers).
Since we also use a local and extended (fuzzed) source and sink in
all cases we consider, we will have either 6 × 6 or 2 × 2 matrices
of correlators available.

Therefore, we measure in general correlation functions of sev-
eral different pairs of operators (〈Oα O β 〉, with α,β = 1, . . . , N) at
source and sink. We then use a factorising fit expression where
i = 1, . . . , M states (with energy denoted by Ei ) are included

Cαβ(t) =
M∑

i=1

ci
αci

β

(
e−Eit ± e−Ei(T −t)). (14)

Here T is the lattice temporal extent and the ± sign is determined
by the properties of the chosen operators under time-reflection.
By simultaneously fitting N × N correlators with M states, we can
optimally determine energies and couplings. From them we eval-
uate other quantities of interest, such as afπ and amPCAC. We use
conventional methods to determine the optimal t range, N- and
M-values to be employed in the fits. We take into account statis-
tical correlations among observables [17] through correlated fits to
establish that the χ2 value is acceptable. Our final fitted values are
obtained from uncorrelated fits, since that introduces less bias [17],
although the χ2 values are smaller than those obtained including
correlations. We also checked that the fits are stable when taking
into account correlations. For pseudoscalar mesons we use mainly
M = 1 as well as N = 4 or 6, and select the minimum value of t
such that the effective masses (or energies) from different matrix
elements agree.

We conclude by recalling that, owing to reflection invariance of
the lattice action (the Euclidean analog of the Minkowski complex-
conjugation, a symmetry that is preserved by Wilson fermions, ei-
ther chirally twisted or not, see Ref. [3]), all the correlators that are
expectation values of fields with definite reflection properties are
either real or purely imaginary, depending on whether the whole
field product has even or odd reflection-parity. In particular, the
expectation values of multilocal fields with negative spatial parity,
which are O(a) quantities, come out to be purely imaginary if one
does not take care of inserting the i-factors that are needed to ren-
der the multilocal field even (rather than odd) under the reflection.

2.1. Quark propagators from stochastic sources

Although it is feasible to use u-quark propagators from 12
colour-spin sources (with each source being non-zero only for
one colour-spin combination) at one space–time point to evaluate
mesonic correlators, it is preferable to use the information con-
tained in the gauge configurations more fully, especially in the case
of such CPU-time expensive simulations as dynamical quark simu-
lations. One efficient way to achieve this goal is to use stochastic
sources. To keep the noise-to-signal ratio reasonable, it is manda-
tory to use time-slice sources rather than full volume sources.
A great reduction of the noise-to-signal ratio over conventional
stochastic methods (see Ref. [18] for a review) can be obtained
[19,20] by using the “one-end-trick” which is described below.
A similar method, called random wall, was used by MILC [21].

The starting point of all stochastic methods for computing
quark propagators is the introduction of random sources, ξ r

i , where
i = 1, . . . , V s spans the set of the source degrees of freedom
(colour, spin, space, time) and r = 1, . . . , R labels the noise samples
generated for each gauge configuration. The corresponding average
satisfies

lim
R→∞

[
ξ∗

i ξ j
]

R = δi j, lim
R→∞[ξiξ j]R = 0, (15)

which can be achieved by various different noise choices, such as
ξ r

i = (±1 ± i)/
√

2 or Gaussian (complex) noise.
As a next step, we invert the lattice Dirac matrix M (for one

given quark flavour) on each sample of this source,

φr
j = M−1

jk ξ r
k , (16)

so that averaging over r (R samples) gives[
ξ r∗

i φr
j

]
R = [

ξ r∗
i M−1

jk ξ r
k

]
R = M−1

ji + noise, (17)

where j can be arbitrary and i belongs to the set of indices for
which the source is non-vanishing, which we assume to be of size
V s . The quantity (17) is an unbiased estimator of the quark prop-
agator from i to j. Unfortunately, here the noise is expected to be
as ≈ √

V s/
√

R whereas the signal is ≈ 1 at best. Variance reduc-
tion is thus very necessary. Furthermore for a meson correlator,
the signal behaves as exp(−mmesont) which decreases rapidly with
increasing t .

The ‘one-end-trick’ allows [19,20] a more favourable signal-to-
noise ratio. Consider the product φr∗

i φr
j where the stochastic source

is now non-zero for all colour-spin indices and all space points at
only one time, denoted by t0 (time-slice source). Then upon aver-
aging over r one has[
φr∗

i φr
j

]
R = [(

M−1
ik ξ r

k

)∗
M−1

jm ξ r
m

]
R

= M−1∗
ik M−1

jk + noise, (18)

where the sum over k includes all source components. This quan-
tity is an unbiased estimator for the product of the quark propaga-
tors M−1

jk M−1+
ki from the source to sites i and j on each gauge con-

figuration. Then contracting with δi j and summing over space at
fixed time-slice t yields the full zero three-momentum (π±-chan-
nel) correlator from t0 to t . The noise counting is now more
favourable. There are V 2

s noise terms, which yield a standard devi-
ation of order V s , but the signal itself is of order V s . This is such
big an advantage that it is sufficient to employ just one sample of
noise per gauge configuration (R = 1). As we discuss below, the
optimal way to choose the time-slice (t0) at which the stochastic
source is located, is to change it randomly as the gauge configu-
ration is changed. It should be remarked that the ‘one-end-trick’,
as formulated above, only works for the case of a zero three-
momentum interpolating field of the form d̄γ5u at the source time
(t0).

A convenient extension of the ‘one-end-trick’, that allows
meson-to-meson correlators with any Dirac structure at the source
to be evaluated, requires consideration of four (β = 1,2,3,4)
“linked” sources of the form

ξ
(β;t0)
α,c,x,x0 = δαβδx0t0ηc,x,

where α and c are Dirac and colour indices respectively, while η
is a non-vanishing noise field. Such sources, which are non-zero
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only on a given time-slice (t0) and when the Dirac index value
equals β , are called “linked” because they involve a common noise
field η.3 One can check that by replacing ξ and ξ∗ in the left-
hand side of Eq. (18) by two of these linked sources, say ξ (β;t0)

and ξ (γ ;t0)∗ , and choosing appropriately β and γ , it is possible to
evaluate the two-point correlators with a field of the form d̄Γ u at
the source (x0 = t0) with any Dirac matrix Γ . This very useful ex-
tension, which we have thoroughly exploited in the present paper,
comes at a moderate price. One must in fact only perform four
separate inversions (per gauge configuration and per noise sam-
ple), one for each of the four linked sources ξ (β;t0) , β = 1, . . . ,4.

To further extend the one-end trick with linked sources to non-
zero three-momentum or to spatially non-local mesonic operators
is completely straightforward, at the cost of more inversions. One
creates further linked sources F ξ (where F denotes a product of
links) with the desired spatial properties, and computes the quark
propagators originating from them, φF = M−1 F ξ . Combining the
latter with the quark propagator stemming from ξ , i.e. φ = M−1ξ ,
yields the product φ∗φF , from which, upon averaging over the
noise, one can evaluate a set of correlators with the meson field
d̄γ5 F u inserted at the source (and all possible spatial structures at
the sink). Employing linked sources, as explained above, one can
finally evaluate correlators with the meson field d̄Γ F u inserted at
the source with any spatial structure F and Dirac matrix Γ , while
retaining all advantages of the one-end trick.

In this work we use fuzzing, see Appendix D.2 and Ref. [23],
to create spatially non-local meson operators, since this procedure
is computationally fast also at the sink. The fuzzed meson source
is constructed from a sum of straight paths of length 6a, in the
six spatial directions, between quark and antiquark. These straight
paths are products of fuzzed gauge links. Here for the fuzzed links
we use the iterative procedure defined in Appendix D.2 with λs =
0.25 and n = 5.

In principle one could hope to extend the approach described
above to baryonic correlators (choosing ξ as a cubic root of 1) but
the signal to noise ratio will be less favourable (noise induced stan-
dard deviation will be ≈ V 3/2

s versus signal ≈ V s). Unfortunately
one finds that this extension of the stochastic method to baryons
is not any improvement over using point-like sources. In general,
the choice of the optimal stochastic methods needs to be investi-
gated on a case by case basis.

2.2. On the way of choosing the source time-slice

As discussed above, we invert on spatial-volume stochastic
sources located at time t0, where 0 � t0 < T can be chosen dif-
ferently for each gauge configuration. We have explored two ways
of changing the source time-slice t0. One consists in moving t0
cyclically through the lattice. This means that we choose n equally
spaced values for the source time locations, t(i)

0 , 0 � i < n. Then we
invert on the jth gauge configuration using sources that are non-
vanishing only at the time-slices t0 = t( j mod n)

0 . Hence, we invert
from the same time-slice only every n configurations, i.e. after one
cycle. Even though this method should decorrelate the measure-
ment on two consecutive gauge configurations better than when
the time-slices are kept fixed, it has the drawback that after a rel-
atively short number of configurations the same time-slice is used
again. Actually, at least for the mesonic correlators studied in this
paper, it turns out that two measurements from the same time-
slice, but 8 trajectories apart, are much more correlated than two
measurements from different time-slices, but only two trajectories

3 Note that “linked” sources are different than “spin-diluted” sources [18,22] since
these require different random numbers for each spin.
apart. Furthermore the analysis with the Γ method of Ref. [24] de-
scribed in Section 4.1 and Appendix C becomes ill-defined, because
translational invariance is broken. This invariance can be recovered,
however, by averaging over cycles and using the Γ method on the
cycle-averaged ensemble.

The second way of moving the time-slice we explored was to
choose the value of t0 randomly for every gauge configuration we
inverted on. This method also maintains translational invariance
properly for a large enough configuration ensemble. It is therefore
expected to work better than the aforementioned cyclical way. This
will indeed turn out to be the case, as we shall see below, where
we discuss in more detail the effects of these two ways of gener-
ating source time-slices.

3. Computations in the neutral meson sector

Lattice QCD with maximally twisted Wilson fermions enjoys the
remarkable property that, even if the action is not O(a) improved,
all the physically relevant observables are affected by cutoff ef-
fects only at order a2 (and higher). Among these O(a2) cutoff
effects will be a violation of parity and (in part) isospin. Isospin
and parity violations have several consequences for meson spec-
troscopy. For instance, (1) neutral and charged mesons can have
different masses, (2) quark-disconnected contributions are needed
for neutral isovector mesons and (3) correlators receive contribu-
tions from states that in the continuum limit carry different par-
ity and isospin quantum numbers [3]. Here we discuss how we
compute the correlators for neutral mesons and, in particular, the
quark-disconnected (for brevity called simply “disconnected” be-
low) contributions. We illustrate our approach in the relevant case
of the neutral pseudo-scalar meson.

The neutral pion can be created by the operator
√

2ψ̄γ5τ3ψ

which, at maximal twist, in the twisted quark basis reads (i/
√

2 )×
χ̄χ = (i/

√
2 )(ūu + d̄d). When this operator is inserted at source

and sink, we will have to consider the correlators

Ctot(t) = 〈
(ūu + d̄d)(t)(ūu + d̄d)(0)

〉
/2, (19)

where again three-space indices are understood. The latter can be
rewritten in the form

Ctot(t) = C̃(t) + D̃(t), (20)

C̃(t) = −〈
tr

[
Gu(0, t)Gu(t,0)

] + tr
[
Gd(0, t)Gd(t,0)

]〉
/2, (21)

D̃(t) = 〈
tr

[
Gu(0,0) + Gd(0,0)

]
tr

[
(Gu(t, t) + Gd(t, t)

]〉
/2, (22)

with the trace tr[. . .] running only over spin and colour indices. As
usual, we can relate the connected contribution (C̃ ) to propagators
from a common source (at time x0 = 0) through

C̃(t) = −〈
tr

[
γ5Gu(0, t)γ5Gd(0, t)+

]
+ tr

[
γ5Gd(0, t)γ5Gu(0, t)+

]〉
/2. (23)

The disconnected contribution can be expressed as

D̃(t) = 〈
tr

[
Gu(0,0) + Gu(0,0)+

]
tr

[
Gu(t, t) + Gu(t, t)+

]〉
/2. (24)

Thus we see that to evaluate the correlation (19) we need both u-
and d-quark sources for the connected contribution as well as an
evaluation of the disconnected contribution for u-quarks at both
initial and final t-value. This is at variance with the π+ corre-
lator which can be evaluated from a u-quark source alone and
which has no disconnected contribution. The evaluation of the dis-
connected loops is detailed in Appendix B, including discussion
of both the hopping-parameter method for the reduction of the
stochastic noise [25] and a new powerful method of variance re-
duction applicable in many cases.

In Table 2 we give the correspondence between bilinear opera-
tors of the form ūΓ u ± d̄Γ d, where Γ is an hermitian combination
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Table 2

Meson Operator

π0, π0, f0 χ̄ iγ0γ5τ3χ , χ̄χ , χ̄γ5τ3χ

η, η, a0
0 χ̄ iγ0γ5χ , χ̄τ3χ , χ̄γ5χ

ρ0, ρ0, h1 χ̄γiτ3χ , χ̄ iγiγ0γ5χ , χ̄ iγiγ0τ3χ

ω, ω, b0
1 χ̄γiχ , χ̄ iγiγ0γ5τ3χ , χ̄ iγiγ0χ

a0
1 χ̄ iγiγ5τ3χ

f1 χ̄ iγiγ5χ

X0
1 χ̄γ0τ3χ

X0
0 χ̄γ0χ

of γ -matrices, and the neutral mesonic state that is associated
with each of them in the limit a → 0 (i.e. ignoring O(a) contami-
nations from states of different parity and isospin).

Here X0
1 (X0

0 ) labels an isotriplet (isosinglet) state with J P C =
0+− , for which no experimental candidate is known. We remark
that these operators are conserved isotriplet (isosinglet) currents
in the continuum theory with two mass degenerate quarks.

As in the charged channel, we evaluate the two-point correla-
tors where only pairs of meson operators appearing in the same
line of Table 2 above are inserted. Since we use a local and ex-
tended (fuzzed) source and sink in each case, we have either 6 × 6
or 2×2 matrices of correlators available. The connected correlators
are actually the same for certain states of different isospin (e.g., η
or π ). The same ‘one-end-trick’ discussed above, based on the use
of stochastic time-slice sources with random choice of its position
on each gauge configuration, can be used for the connected neutral
correlator.

In more detail, we use four “linked” sources (ξ (β) , see Sec-
tion 2.1) and further four fuzzed sources based on the same noise
field (F ξ (β)) to compute ordinary and fuzzed u-quark propagators
from one time-slice to all points. This set of eight sources is just
the same we used to evaluate correlators of charged mesons. For
neutral mesons, we inverted the lattice Dirac matrix of the d-quark
on the same (non-fuzzed) four stochastic sources (ξ (β)) as above
and on the corresponding four stochastic sources with the low-
est possible three-momentum (2π/L, for simplicity taken always
in the x-direction). In principle mesonic operators with non-zero
anisotropic three-momentum have less symmetry then their coun-
terparts with vanishing three-momentum, implying that more cor-
relators may take non-zero values. Here we do not evaluate these
additional correlators. We do take care, however, to distinguish be-
tween the vector meson correlators with three-momentum parallel
to spin and those with three-momentum perpendicular to it. As
shown elsewhere [26], a study of the difference between these cor-
relators can shed some light on the mixing of ρ mesons with their
decay products (ππ ).

4. Simulation algorithm and error analysis

In this section we provide details on the algorithms we used to
generate the gauge configurations and information on the methods
employed for the estimate of statistical errors.

In Table 3 we give the list of the key parameters characterising
the simulations we are going to use in this paper. All simula-
tions B1–B5 have been performed at a fixed value of the gauge
coupling β = 3.9 and a fixed value of the hopping parameter
κ = (8 + 2am0)

−1 = 0.160856 on 243 × 48 lattices. In addition to
the values of aμq we provide in Table 3 the number of trajectories,
Ntraj, produced after allowing for 1500 equilibration trajectories,
and the number of gauge configurations, Ncfg, that were saved on
disk (one every second trajectory). For every value of aμq we have
reached ∼5000 equilibrated trajectories.
Table 3
Summary of all simulation points

Run L3 × T aμq Ntraj Ncfg

B1a 243 × 48 0.0040 5000 2500
B1b 0.0040 1341 670
B1c 0.0040 3380 1690
B2 0.0064 5192 2500
B3a 0.0085 3753 1876
B3b 0.0085 940 470
B4 0.0100 5000 2500
B5a,b 0.0150 2500 1250

We give the lattice size L3 × T and the value of the twisted mass aμq . In the last
two columns we quote the number of equilibrated trajectories Ntraj produced and
the number of configurations Ncfg saved to disk and finally stored within ILDG, see
the review [27] for further links and references. All runs listed in the table have
been performed at β = 3.9 and κ = 0.160856.

Table 4
HMC algorithm parameters

Run Int. N0,1,2 μ̃1 λ0,1,2 Ncsg
1,2 Pacc τint(P )

B1a,b 2MNp 2,3,6 0.018 0.19,0.20,0.21 0,0 0.85 47(15)

B1c SW 2,3,6 0.018 – 0,0 0.90 43(15)

B2 2MNp 2,3,6 0.025 0.19,0.20,0.21 0,0 0.90 23(7)

B3a,b 2MN 2,3,5 0.020 0.19,0.20,0.21 7,1 0.90 13(3)

B4 2MNp 2,3,6 0.035 0.19,0.20,0.21 0,0 0.90 15(4)

B5a,b SW 2,2,6 0.050 – 0,0 0.90 30(8)

For all ensembles we specify the integration scheme, the number of time steps on
each time scale N0,1,2, the precondition mass μ̃1 = 2κμ1, the λ-values for the 2MN
integration scheme, the number of saved solutions Ncsg for the chronological solver
guess, the acceptance rate Pacc observed in the run and the integrated autocorrela-
tion time of the plaquette τint(P ). The trajectory length was set to τ = 1/2 for all
runs and we used always NPF = 2 pseudo-fermion fields.

In case we have several ensembles (as for instance for B1) or
several replicas (as for instance for B5) for the same lattice pa-
rameter set, we denote this by adding an extra subscript, a,b, . . . .
For our smallest value aμq = 0.004 we extended our statistic from
about 5000 trajectories (ensemble B1a) to ∼10000 trajectories (if
also trajectories from ensembles B1b and B1c are counted).

The algorithm we used is a HMC algorithm [28] with mass
preconditioning [29,30] and multiple time scale integration, as de-
scribed in detail in Refs. [31,32]. The algorithm parameters we
employed for the various runs can be found in Table 4, where we
mostly follow the notation of Ref. [31]. The integration schemes
we used are the Sexton–Weingarten (SW) scheme [33], the second
order minimal norm scheme (2MN) [34] and its position version
(2MNp). We also list the number of integration steps Ni for time-
scale i (for details see Ref. [31]). We recall that N2 represents
the number of integration steps of the outermost (largest) time-
scale. Thus the number of integration steps of the smallest (i.e.
innermost) time-scale (the one referring to the gauge field integra-
tion) is given by N2 · N1 · N0. The preconditioning mass is given by
μ̃1 = 2κμ1, with μ1 typically larger than μq by a factor O(10).

The second order minimal norm integration scheme on time-
scale i is parametrised by one real number, λi . We also give the
number, Ncsg

i , of solutions of the Dirac equation we save for the
chronological solver guess [35] with the purpose of evaluating the
two force terms (i = 1,2) associated to pseudo-fermion integra-
tion (i = 0 refers to the pure gauge force). The notation Ncsg

1,2 = 0
means that no chronological solver guess was used there. Finally,
we quote the acceptance rate Pacc observed in the simulation and
the integrated autocorrelation time τint(P ) of the plaquette expec-
tation value. The trajectory length was set to τ = 1/2 in all our
runs and we always used NPF = 2 pseudo-fermion fields. For de-
tails on the linear solvers we employed to invert the Dirac matrix
we refer to Ref. [36].

To give guidance on the computational cost of such simulations,
we specify the resource used at our lightest μq-value where the
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CG iterations for one trajectory cost about 115 Tflop. The produc-
tion of 5000 trajectories amounted to about 17 rack days on the
BlueGene/L installation in Jülich, with our code running with an
efficiency of about 18% for the B1 parameter set.

4.1. Statistical error analysis

A reliable estimate of the statistical errors on the measured
quantities is extremely important for many reasons. We discuss
here only the points which are of special relevance in our analysis.
If the basic systematic effects in the lattice simulation, originat-
ing from the lattice discretisation, the finite volume and the mass
of the dynamical quarks are to be addressed, the statistical accu-
racy on all the relevant quantities has to be understood very well.
In fact, on the one hand, relevant but tiny systematic effects can
only be detected with high statistical accuracy, on the other hand
underestimated statistical errors can artificially increase the signif-
icance of systematic effects. The PCAC quark mass, though not a
physical quantity, plays here a special role, since the precision by
which it is set to zero is related to the accuracy (see Sections 1.2
and 1.3) by which we can expect to be at maximal twist. Sec-
ondly, small statistical errors in low-energy hadronic quantities is
an expected virtue of the twisted mass formulation, where a sharp
infra-red cut-off ensures a stable MC evolution of the lattice sys-
tem. Of course we have to make sure that an apparently small
statistical error does not come as a result of large unnoticed auto-
correlations in the MC history. So autocorrelations in the measured
quantities must be accurately analysed. Finally, a detailed analysis
of the statistical errors delivers as a by-product the integrated au-
tocorrelation time τint of the studied observable, from which the
efficiency of the employed algorithm as a function of the simula-
tion parameters can be quantified (see Section 4.2).

Given the importance of getting a reliable estimate of statistical
errors, results have been cross-checked using different approaches.
As for the estimate of autocorrelation times two different kinds
of analyses have been performed: one based on a standard data-
blocking (or binning) procedure and another one relying on the
so-called Γ -method [24,37]. In order to keep self-contained this
paper we discuss these methods in some detail in Appendix C.
Since there are arguments [24] supporting the superiority of the
Γ -method over data-blocking, the former will be our method of
choice in the evaluation of τint and the error on it, for several ob-
servables. In particular the Γ -method has been used to estimate
the statistical error on the plaquette and mPCAC, which turn out to
have large autocorrelation times. For all the other observables hav-
ing significantly smaller autocorrelation times data-blocking and
Γ -method typically give quite similar error estimates.

Cross-correlations among different observables are properly
taken into account in our error analysis by using standard jack-
knife or bootstrap [38] or performing fits based on a definition of
χ2 that involves the inverse covariance matrix (see Eq. (42) and
the discussion of Method A in Section 7.1).

4.2. Autocorrelation times

For a primary observable O , i.e. one that can be viewed as a
linear combination of expectation values of multi-local operators,
the integrated autocorrelation time is in principle given by

τint(O ) = 1

2
+

∞∑
n=1

ΓO (n)

ΓO (0)
, (25)

where ΓO (n) is the autocorrelation function of the observable
O (see Eq. (C.2)). The autocorrelation times for the plaquette
and fermionic quantities, like amPS, afPS and amPCAC, were de-
termined using the Γ -method as described in Ref. [24] (see also
Appendix C). This method allows the determination of τint also
Table 5
Estimated integrated autocorrelation times for amPS, afPS and amPCAC

Run τint(amPS) τint(afPS) τint(amPCAC)

Bcyc
1a 7(1) 13(4) 60(24)

Brnd
1a 6.6(1.1) 8(1) 20(5)

Brnd
1a,b,c 5.9(7) 7(1) 23(5)

Bcyc
2 17(4) 33(8) 43(14)

Bcyc
3 10(2) 11(2) 66(27)

Bcyc
4 7(2) 14(4) 54(23)

Bcyc
5a,b 20(6) 14(3) 105(51)

The labels cyc and rnd refer to the cyclic and random choice of the source, see text.
All integrated autocorrelation times are given in units of trajectories of length 1/2.
The fact that for the ensemble Bcyc

5 we find a rather large autocorrelation time with,
however, a large error we attribute to the usage of 2 replica in the analysis.

Table 6
Measurement methods for fermionic quantities

Run Method tp Time-slices χ2/d.o.f.

B1a cyclic 8 0,12,24,36 0.12/39
B1a,b,c random 10 – 2.50/39
B2 cyclic 16 0,6,12,18,24,30,36,42 1.15/39
B3 cyclic 8 0,12,24,36 2.38/39
B4 cyclic 8 0,12,24,36 1.85/39
B5a,b cyclic 8 0,12,24,36 0.99/39

The source time-slices are either chosen in a cyclic way or randomly. For the cyclic
way, tp denotes the number of trajectories between two configurations for which
the same time-slice was used. For the random way, it specifies the number of tra-
jectories between two measured configurations. In the cyclic case we also specify
the time-slices where the source was located. Finally, the fit range we chose to de-
termine afPS and amPS was always 10–23 and the corresponding values of χ2/d.o.f.
for a 2 × 2 factorising fit (see Eq. (14)) are quoted in the last column.

for non-primary quantities, as the aforementioned fermionic ob-
servables. The values for the plaquette integrated autocorrelation
time are collected in Table 4, those for amPS, afPS and amPCAC
in Table 5. All quoted values are given in units of trajectories of
length 1/2.

In the case of the ensemble B1a we employed the two ways
of moving the stochastic source through the lattice described in
Section 2.2. As can be seen in Table 5, indeed the random way
performs better. This is especially significant for amPCAC, for which
we observe the longest autocorrelation time among the fermionic
quantities. For amPS and afPS the difference between the two
methods is not significant. The somewhat larger autocorrelation
time of Bcyc

2 , in particular for mPS and fPS, stems presumably from
the fact that the time slice sources were chosen closer to each
other than at the other ensembles.

Table 6 gives details on the computational methods employed
to extract the various fermionic quantities. In the case where the
random way of moving the source is used, the value of tp re-
ported there represents the number of trajectories (of length 1/2)
between two consecutively measured gauge configurations. We
also give in this table the value of χ2/d.o.f. obtained when the
charged pion correlators (for Euclidean time separations in the
range 10 � t/a � 23) are fitted using the Ansatz (14).

Looking at the three fermionic observables reported in Table 5,
we observe that the integrated autocorrelation times of amPCAC
are significantly larger than those of amPS and afPS. We attribute
the large value of the autocorrelation time of amPCAC to the pecu-
liar phase structure of twisted mass lattice QCD with Wilson type
quarks as discussed in Ref. [7]. The simulated values of μq are not
in a region where the phase transition occurs. However, the system
may still feel the presence of this phase transition. The situation is
similar for the plaquette value, as also discussed in Ref. [7], and
indeed the integrated autocorrelation times for the plaquette and
amPCAC are rather similar.

We show the Monte Carlo (MC) history of an estimator of
amPCAC, see Eq. (32), for our lightest quark mass (aμq = 0.0040)
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Fig. 1. The Monte Carlo history of the ratio of correlators defining the PCAC quark
mass estimator described in the text on the configurations of the ensemble B1. The
configuration number corresponds to the number of trajectories divided by two.

Fig. 2. The autocorrelation function (see Eq. (C.2)) from the data presented in Fig. 1.
The vertical line shows the window W from Eq. (C.3) used to evaluate the inte-
grated autocorrelation function.

in Fig. 1. More precisely, we plot for each gauge configuration the
axial-pseudoscalar correlator at t/a = 10 (where the pion ground
state is dominant) multiplied by the factor 0.5amPS/CPP(10), where
the average over all gauge configurations is used in CPP(10).4 The
plot in Fig. 1 shows long-ranged fluctuations in MC time. The au-
tocorrelation function in Eq. (C.2) from this data set is reported in
Fig. 2.

From it an integrated autocorrelation equal to 32(9) trajectories
is obtained, in agreement with the result quoted in Table 5 (third
line).

Concerning the neutral pseudoscalar meson, a study of the cor-
responding correlators indicates that the autocorrelations are def-
initely shorter than 100 (length 1/2) trajectories. Thus our error
estimates, coming from a bootstrap analysis on blocked data with
blocks made of measurements taken from 80 trajectories, are ex-
pected to be reliable.

Within the relatively large errors of our estimates of the au-
tocorrelation times, it is actually not possible to find a significant
dependence on the value of the twisted mass aμq for any of the
fermionic quantities discussed here.

4 Note that the average of this quantity over all gauges is not our best estimator
of amPCAC, since it does not exploit the possibility of averaging over t (the Euclidean
time separation).
5. The scale from the static potential

A convenient way to set the scale in lattice simulations is
through measurements of the static potential and the associated
hadronic scale r0 [39]. Although we will finally not use r0 to set
the scale in our dynamical simulations, we will use it for a scaling
analysis towards the continuum limit and its reliable determina-
tion is therefore important for us. The scale r0 is defined via the
force between static quarks at intermediate distance

r2
0 F (r0) = 1.65, (26)

where numerical calculations are most reliable and hence are ex-
pected to lead to very accurate results. We measure the static
quark–antiquark potential by determining expectation values of
Wilson loops of size r × t on our ensembles of configurations.
Unfortunately, the relative errors of the Wilson loop expectation
values increase exponentially with the temporal extension t . To re-
duce these statistical fluctuations one can employ improved static
actions amounting to use modified temporal links for building Wil-
son loops.5 However, it is also important to enhance the overlap
with the physical ground state of the static system and this can
be achieved by invoking iterative spatial smearing techniques to-
gether with a variational method to extract the ground state. The
computational details for calculating the static potential are given
in Appendix D while in the following we want to concentrate on
analysis details and physical results.

5.1. Analysis details and results

In order to extract the physical scale through Eq. (26) we need
an interpolation of the potential and correspondingly of the force
between the quarks for arbitrary distances r. This interpolation is
achieved by fitting the form of V (r) with the ansatz6

V (r) = V 0 + α

r
+ σ r. (27)

We employ a two step procedure to perform the interpolation.
First we extract the values of the potential V (r) for each r sepa-
rately using standard variational techniques. In a second step we fit
directly the potential ansatz in Eq. (27) to the Wilson loop correla-
tors taking into account all spatial and temporal cross-correlations
in the data. These two steps are now described in more detail (see
also [41]).

We use five spatial smearing levels SnU , n = 8,16,24,32,40,
and hence we end up measuring a 5 × 5 correlation matrix C(r, t)
of spatially smeared and temporally improved Wilson loops (see
Appendix D). The variational method results in a linear combi-
nation of the string operators, which projects sufficiently well to
the ground state of the string, i.e. has the effect of eliminating the
closest excited string states. This is done by solving the generalised
eigenvalue problem

C(r, t1)vi = λi(r; t0, t1)C(r, t0)vi, λ1 � · · · � λ5, (28)

with t0 = 3a and t1 = 4a and projecting the correlation matrix
to the eigenspace corresponding to the largest eigenvalue, i.e. the
ground state,

C̄(r, t) = (
v1, C(r, t)v1

)
. (29)

Based on effective masses and on a χ2-test which takes the tem-
poral cross-correlations between C̄(r, t) and C̄(r, t′) into account,
we choose a plateau region from tmin to tmax. Too small t values
distort the results due to contamination of excited states, while too

5 See Ref. [40] for a first use of this idea.
6 Note that we do not use tree level improved distances.
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Fig. 3. Effective masses for the ground state energy of the Wilson loop at quark–
antiquark separation r/a = 4, for ensembles B1 to B5.

Table 7
Fit parameters for the Wilson loop correlators for run B1

r/a tmin tmax aV (r) χ2/d.o.f.

4 9 11 0.3308(10) 1.09
5 8 10 0.3974(15) 0.09
6 7 9 0.4577(26) 2.48
7 7 9 0.5126(31) 1.60

Table 8
Fit parameters for the Wilson loop correlators for run B2

r/a tmin tmax aV (r) χ2/d.o.f.

4 9 11 0.3319(07) 1.56
5 8 10 0.3994(09) 3.27
6 7 9 0.4589(12) 0.16
7 7 9 0.5129(21) 0.13

large values introduce noise. Examples of effective mass plateaus
and the chosen fit ranges are provided in Fig. 3 for the Wilson
loop correlators of the five ensembles B1,...,5 at quark–antiquark
separation r/a = 4.

The results of our fits are collected in Tables 7–11 where we list
the plateau regions (fit range), the values of the extracted poten-
tial, V (r), and the χ2 per degree of freedom. The uncertainties in
the extracted values of V (r) are calculated using a non-parametric
bootstrap method [38].

This first step allows to determine for each r the value of the
potential V (r). A straightforward strategy to evaluate the scale
r0/a is then to fit the numbers so obtained with the ansatz (27).
However, one can diminish the errors on the fit parameters by ex-
ploiting the fact that data at different values of r are correlated.
Table 9
Fit parameters for the Wilson loop correlators for run B3

r/a tmin tmax aV (r) χ2/d.o.f.

4 9 11 0.3321(08) 0.75
5 8 10 0.4002(11) 4.39
6 7 9 0.4617(17) 0.40
7 7 9 0.5177(22) 0.02

Table 10
Fit parameters for the Wilson loop correlators for run B4

r/a tmin tmax aV (r) χ2/d.o.f.

4 9 11 0.3335(06) 1.40
5 8 10 0.4013(12) 0.41
6 7 9 0.4616(15) 0.37
7 7 9 0.5177(25) 0.98

Table 11
Fit parameters for the Wilson loop correlators for run B5

r/a tmin tmax aV (r) χ2/d.o.f.

4 9 11 0.3373(07) 1.01
5 8 10 0.4062(08) 3.21
6 7 9 0.4692(14) 1.24
7 7 9 0.5272(22) 2.28

Table 12
Results of the fits for the scale r0/a from the static potential

Run Nmeas d.o.f. χ2/d.o.f. r0/a

B1 625 5 1.44 5.196(28)
B2 695 5 1.80 5.216(27)
B3 598 5 2.58 5.130(28)
B4 602 5 0.57 5.143(25)
B5 645 5 1.92 5.038(24)

The fit range was always r/a = 4–7. The number of measurements, Nmeas, and
χ2/d.o.f. are also reported.

Therefore, in a second step we use the ground state projected cor-
relator C̄(r, t) to estimate the covariance matrix

Cov(r, t; r′, t′) ≡ 〈
C̄(r, t)C̄(r′, t′)

〉 − 〈
C̄(r, t)

〉〈
C̄(r′, t′)

〉
from the bootstrap samples of C̄(r, t) and use Cov(r, t; r′, t′) to con-
struct the χ2 function (see the discussion in Section 7.1). The r and
t dependence of C̄(r, t) is fitted with the formula (see Eq. (27))

C̄(r, t) ∼ Z(r)exp
[−tV (r)

]
= Z(r)exp

[−t(V 0 + α/r + σ r)
]
. (30)

For the temporal fit interval we use the fit ranges tmin(r) to tmax(r)
determined in the first step. The fit range in r is chosen so as to
include only a few values of r closest to r0 in order to minimise
both the statistical error and the systematic error coming from the
choice of the interpolation formula. Once the best fit parameters
(V 0, α and σ ) in Eq. (30) are found, the value of r0/a is obtained
straightforwardly by computing the static force from the derivative
with respect to r of Eq. (27) and imposing the condition (26) that
defines r0.

A compilation of the results of our fits is provided in Table 12
where we give the number of measurements Nmeas and the χ2

per degree of freedom, in addition to the results for r0/a. The final
error on r0/a is estimated through jackknife and bootstrap proce-
dures using binning to take residual autocorrelations into account.
In Table 12 we give the errors from the jackknife procedure using
a binning factor equal to 4.
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5.2. Discussion

There are several sources of systematic effects which can dis-
tort a precise and accurate determination of the scale r0/a. Here
we would like to discuss a few checks that we have performed
in order to asses these systematic effects and some procedures to
minimise their influence.

5.2.1. Excited states
First of all there are contaminations of the ground state en-

ergy of the Wilson loops from excited states. We expect that these
should be eliminated by our variational calculation of the ground
state and our choice of the fit range in t , and we have carefully
checked the stability of the results under variation of the fit pa-
rameters (see Fig. 4). In particular we have checked that we can
resolve the first excited state and that the ground state energy re-
mains stable under this procedure. Moreover we have also checked
the stability of the ground state under a truncation of the vari-
ational operator basis. We would also like to point out that the
fit ranges in t were not chosen independently for each value of
μq and r, rather we chose them after taking a global view of
the effective mass data for all values of μq at given fixed r (see
Fig. 3 for the case r = 4a). This procedure makes sense since the
μq-dependence of the Wilson loop correlators is expected to be
rather weak (see below) and is particularly useful in cases where
the choice of the fit range for the effective masses cannot be de-
termined unambiguously given the available statistics. Finally we
note that contaminations from excited states tend to increase the
potential energies and the effect will be more pronounced for the
larger Wilson loops. As a consequence, residual contributions from
excited states will tend to decrease the value of r0/a.

5.2.2. Interpolation error
The interpolation of the potential (or the force) as a function

of r is not unique. Here we would like to emphasise that we
use Eq. (27) only locally as a simple interpolation ansatz without
attaching to it any special physical meaning. As a check of this
interpolation ansatz, one can use separately the matrices of corre-
lators computed for r/a = 4–6 and for 5–7 to obtain two different
determinations of r0/a. Their difference then provides an estimate
of the error coming from the interpolation procedure. It turns out
that our choice of the fit range r/a = 4–7 covers this spread typi-
cally within 1–2 standard deviations of our final result (see Fig. 4).

5.2.3. Correlations
We have already pointed out that it is important to take both

the spatial and temporal cross-correlations of the Wilson loop op-
erators into account when fitting them to the ansatz (30). Our
finite statistics limits ourselves to short fit ranges in order to ob-
tain a stable covariance matrix, and this is one of the motivations
for the rather narrow fit ranges in t in Tables 7–11. In order to as-
sess the effect arising from Wilson loop autocorrelations, we form
bins of the data of various sizes, though this reduces the amount
of data available for estimating the covariance matrix even further.
In fact, it turns out that the fits become unreliable beyond bin size
4 and before the binning error becomes stable. As a consequence
we cannot exclude that the errors on r0/a are somewhat underes-
timated due to residual autocorrelations.

5.2.4. Mass dependence
Our results for (r0/a) are plotted in Fig. 4. We note that the

aμq dependence appears to be rather weak, and hence we expect
the data for the (purely gluonic) observable r0/a(aμq) to be well
described by polynomials of low order in aμq . In Table 13 we col-
lect the results obtained by fitting our data at different values of
aμq (see Table 12) to few simple functional forms, namely
Fig. 4. Mass dependence of r0/a. The shaded area shows the error band of the
quadratic fit (full line) to the data (circles). The additional plus symbols are fur-
ther determinations of r0/a corresponding to different values of the fit parameters
to the ansatz (30). The spread provides an indication of the systematic error due to
interpolation (see text) in r0/a.

Table 13
Results of the fits of the aμq dependence of r0/a according to the ansatz (I), (II)
and (III) in the text

r0/a c1 × 10−2 c2 × 10−4 Fit range χ2/d.o.f.

5.22(2) – −0.08(2) B1–B5 0.85
5.22(3) – −0.09(4) B1–B4 1.26

5.28(3) −0.16(3) – B1–B5 1.10
5.26(5) −0.12(6) – B1–B4 1.37

5.22(8) −0.01(18) −0.08(9) B1–B5 1.28

(I) r0/a + c2(aμq)
2,

(II) r0/a + c1(aμq),

(III) r0/a + c1(aμq) + c2(aμq)
2.

The ansatz (I) is inspired by the fact that with maximally twisted
(unlike the case of untwisted) Wilson quarks the lattice fermionic
determinant of the N f = 2 theory depends only quadratically on
the bare quark mass. A weaker dependence on the bare quark
mass can only appear via the effects of spontaneous chiral sym-
metry breaking on the static quark potential and would actually be
a dependence7 on |aμq|. This is the motivation for the fit ansatz
(II), if it can be assumed that aμq is sufficiently small to make the
(aμq)

2-dependence negligible, and (III), if the (aμq)
2-dependence

is instead statistically significant.
The fit based on the ansatz (I) describes our data rather well,

as shown in Fig. 4, suggesting that possible effects of sponta-
neous chiral symmetry breaking in the static potential at distances
around 0.5 fm are negligible within our statistical errors. This in-
terpretation is supported also by the other two fits: even if a
μq-dependence of the type (II) cannot be ruled out completely,
we observe that not only the χ2/d.o.f. of the fit (I) compared to
(II) is better, but also the best-fit values of c2 from fits (I) and
(III) are more consistent between themselves (and less consistent
with zero) than the best-fit values of c1 coming from fits (II) and
(III). We would like to note that these findings are corroborated
by analogous fits of the aμq dependence of the static potential at
fixed values of r/a, i.e. in situations where no interpolation in r/a
is involved.

7 We are indebted to R. Sommer for very useful discussions on this point.
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Table 14
Results for masses and decay constants in the charged pseudoscalar channel, PCAC
quark mass and ZV

Run aμq amPS afPS amPCAC ZV(μq)

B1a 0.0040 0.13587(68) 0.06531(40) −0.00001(27) 0.6114(85)

B1 0.0040 0.13623(65) 0.06459(37) +0.00017(17) 0.6136(19)

B2 0.0064 0.16937(36) 0.07051(35) −0.00009(17) 0.6096(21)

B3 0.0085 0.19403(50) 0.07420(24) −0.00037(20) 0.6115(22)

B4 0.0100 0.21004(52) 0.07591(40) −0.00097(26) 0.6209(25)

B5 0.0150 0.25864(70) 0.08307(34) −0.00145(42) 0.6165(22)

The results for the first three quantities come from a fit to a 4 × 4 submatrix with
operators d̄γ5u and id̄γ0γ5u, while for ZV we used the full 6 × 6 matrix. Note that
the difference between the first two rows is just the length of the simulation. The
time range of the fit was always 10–23 and the χ2/d.o.f. was always smaller than
one.

We conclude that the mass dependence is well described by
the ansatz (I) and remark that an almost identical central value
for r0/a at the chiral point is obtained from the ansatz (III), which
also allows for a linear term in aμq . The ansatz (II) gives a central
value for r0/a at the chiral point lying two standard deviations
above that from the ansatz (I). Finally we note that, if the ansatz
(I) for the μq-dependence of r0/a is used, the relative statistical
accuracy of our determination of r0/a in the chiral limit is better
than 1%.

6. Some selected results

In this section we present results for quantities related to the
pseudoscalar (PS) channel. This includes, apart from charged and
neutral PS masses and decay constants, also the renormalisation
constant ZV, which is specifically relevant to maximally twisted
mass QCD.

6.1. Charged and neutral pseudoscalar masses

6.1.1. Charged pseudoscalar meson mass
To extract the charged PS mass mPS we consider the correla-

tion functions discussed in Section 2.1. We refer to this section and
Section 4.1 for a detailed discussion of how the correlation func-
tions are evaluated and the errors are estimated. The results for
the charged PS masses can be found in Table 14.

In order to make the effect of the longest runs at μ = 0.004
visible, we quote the results for run B1a and the complete run B1
separately. While for B1a we have 1811 measurements made in the
cyclic way explained in Section 4.2, there are 895 measurements
for B1 performed moving the source time-slice randomly through
the lattice. Even though in the latter case we have fewer measure-
ments, they are more decorrelated because the single measure-
ments are more separated in Monte Carlo time and because the
distance of the position of the sources in Euclidean time for two
consecutive measurements is on average larger. It is reassuring to
see that results and errors are consistent between the two sets of
data within errors. From this comparison it is also clear that mov-
ing the source time-slice randomly through the lattice is the most
convenient of the two methods.

In Fig. 5 we show examples for effective masses in the PS chan-
nel at our lightest quark mass, extracted from the PS correlation
function (with insertion of the d̄γ5u operator) only. We plot the
data for the three different choices of the interpolating operators,
namely local–local, local–fuzzed, and fuzzed–fuzzed. One can see
in Fig. 5 that the three different operators give compatible results
from t/a ≈ 10 on. Hence we are confident that the ground state
energy dominates for t/a > 9 and we chose the fit range accord-
ingly.

We also attempted to determine the energy of the first excited
state of the PS meson from a 2-state fit to the 6 × 6 matrix of
Fig. 5. Effective mass for the pseudoscalar channel from B1 lattice data. The effective
masses obtained using 3 different interpolating operators as described in the text
are shown.

Table 15
Neutral pseudo scalar meson masses and decay constants at β = 3.9 measured from
every 10 trajectories at μq = 0.004 and every 20 at μq = 0.0085, as indicated;
am0

PS,conn is the mass extracted from the quark-connected correlators only

Run aμq Nmeas am0
PS,conn am0

PS af 0
PS/ZA

B1 0.0040 888 0.212(3) 0.109(7) 0.089(3)
B3 0.0085 249 0.259(3) 0.169(11) 0.106(4)

correlators. Even though we were unable to determine the first
excited level in a reliable way from an unconstrained fit, fixing it to
the theoretical value (3 times the ground state mass), as expected
in the continuum limit, does allow an acceptable fit.

This result is quite interesting, as with maximally twisted Wil-
son quarks one expects on general grounds also an O(a2) contami-
nation from the π0(0)π±(0) two-pion state. Such a contamination
becomes negligible, if compared to the expected three-pion state
one in the continuum limit (taken at fixed quark mass). It should
also be observed that when the pion mass is decreased, the two-
pion contribution remains negligible with respect to the three-pion
one until a2Λ2

QCD � e−mPSt . For the range of mPS and t values rele-
vant for our data we find that two-pion contamination effects can
hardly be detected despite our (small) statistical errors (see Fig. 5).

6.1.2. Neutral pseudoscalar meson mass
As discussed in Section 3, the neutral PS meson can be created

by interpolating fields that at maximal twist and in the twisted
basis are of the form χ̄χ and χ̄γ0γ5χ . We evaluate the correlator
(both quark-connected and quark-disconnected pieces) with each
of these operators at source and sink (also with local and fuzzed
variants, thus giving a 4 × 4 matrix of correlators) as described
above and in Appendix B. We fit this correlator matrix to one or
more states in the usual way. Based on our study of autocorrela-
tions (see Section 4), we compute statistical errors by a bootstrap
analysis on blocked data where each block includes measurements
taken on configurations corresponding to a segment of MC history
80 trajectories long.

Our results for the neutral PS meson are shown in Table 15.
Compared to Ref. [1], we have increased statistics at μq = 0.004
and we have employed the more refined fitting procedure ex-
plained above. In particular we used 4 × 4 matrix of correlators
rather than a 2 × 2 matrix. We also include results at a second
μq value, μq = 0.0085. In order to show the contribution of the
quark-disconnected component to the neutral PS meson mass de-
termination, we show appropriate ratios in Fig. 6.
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Fig. 6. Ratios of correlators of neutral to charged pseudoscalar (PS) mesons. The
connected component of the neutral meson correlator is shown, as well as the to-
tal, which includes the disconnected contribution. The dotted curve illustrates the
behaviour of the ratio of the correlator as obtained from our fitted values of the
charged and neutral PS masses.

We have also evaluated the energies of neutral PS mesons with
momentum 2π/L (recall L/a = 24), obtaining (by use of the con-
tinuum dispersion relation E2 = (2π/L)2 + m2) mass values con-
sistent with those shown in Table 15.

The non-zero momentum results have the advantage that no
vacuum subtraction is needed for the neutral PS meson correlator
and this provides a crosscheck of the approach we employed. For
example, at μq = 0.004 we obtain an energy of 0.309(27) which
correspond to a mass 0.164+47

−60 in lattice units.

6.1.3. Pseudoscalar meson mass splitting and related topics
Concerning the PS meson mass, it is well known that with max-

imally twisted Wilson fermions, even in the theory with N f = 2
degenerate quarks we consider here, there is difference of order a2

(at fixed quark mass) between the neutral and the charged PS me-
son mass. Moreover the latter is very mildly affected by cutoff
effects, once maximal twist is implemented in the optimal way
of Section 1.1, as it follows from the formula m2

PS − m2
PS|cont =

O(a2μq) + O(a4) proved in Refs. [13,14,42]. Finally a lattice chiral
perturbation theory analysis (see, e.g., Refs. [13,43,44]) shows that
in the small μq region the difference between the squared neutral
and charged PS masses tends to an O(a2) quantity

r2
0

((
m0

PS

)2 − (mPS)
2) � c(a/r0)

2, (31)

which can be related to one coefficient (usually called c2) of
the chiral effective Lagrangian of (twisted and untwisted) Wilson
fermion lattice QCD. From our results we estimate c = −5.0(1.2)

and c = −6.7(2.8) respectively at μq = 0.004 and μq = 0.0085.
These determinations are consistent within errors, as expected.
Moreover, unlike in the case of lattice formulations with differ-
ent gluonic actions [45], the sign of c is now in agreement with
the first order phase transition scenario [44,46,47], as predicted by
lattice chiral perturbation theory.

Some results for the coupling of the neutral PS meson field to
the divergence of the neutral axial current are also given in Ta-
ble 15. The values of f 0

PS are found to be quite close to those
obtained for the charged PS meson (see fPS in Table 14), if the es-
timate Z A = 0.76(2) [48,49] is employed. The differences between
the central values are compatible with zero within 1 to 1.5 stan-
dard deviations of f 0

PS (which is the least precise result of the two).
This good consistency between the two channels is in striking

contrast with the large cutoff effect present in m0
PS, which we ob-

serve as a large difference (about 50 MeV at aμq = 0.0040 and
Fig. 7. PCAC quark masses versus time separation (from Eq. (3)) for three values of
the mass parameter, μq = 0.004, μq = 0.0064 and μq = 0.0085. The lines represent
the central values of the PCAC quark mass from a fit to a 4×4 matrix of observables
for a t-range 10–23.

aμq = 0.0085) between its value and that of its charged counter-
part, mPS. Theoretical arguments providing an explanation for the
reasons why a large lattice artifact affects only m0

PS were presented
in Ref. [42] and will be further discussed in a forthcoming publi-
cation [50].

6.2. PCAC mass

As discussed in Section 1.1, we attempt to tune the value of
mPCAC (see Eq. (3)) to zero at our minimal μq value, namely at
aμq = 0.004. A definition of mPCAC equivalent to Eq. (3) for time
separations so large that the lowest PS meson state dominates, is
given by

mPCAC = mPS

2

〈0|Aa
0|P S〉

〈0|P a|P S〉 , a = 1,2. (32)

These two matrix elements can be directly determined from a fit
to the 4 × 4 matrix involving the interpolating operators d̄γ5u and
id̄γ0γ5u (or from the fit to the full 6 × 6 matrix, see Section 2).
The results we obtain when a 4 ×4 matrix is used are summarised
in Table 14 and shown as a horizontal line in Fig. 7. It is important
to notice that the condition discussed around Eq. (10) is fulfilled
for all our simulation points, and in particular for aμq = 0.004.

In Fig. 7, we also illustrate the time dependence of the local
determination of the PCAC quark mass through Eq. (3). We see
that the values of mPCAC determined using Eq. (3) in this way and
Eq. (32) agree very well between themselves, in the t-region where
the ground state pseudoscalar meson dominates, as expected.

Compared to Ref. [1] we now have a result for amPCAC available
for the large statistics run B1. It is reassuring that there is full
consistency between the 5000 trajectory run and the run extended
up to 10000 trajectories. This makes us confident that our error
estimate is realistic. Our results for amPCAC as a function of the
bare quark mass aμq are illustrated in Fig. 8, where results from
the full ensemble, B1, and those from the smaller ensemble, B1a ,
are separately shown.

6.3. Pseudoscalar decay constant and ZV

Using the exact lattice (twisted basis) PCVC relation8〈
∂∗
μ Ṽ a

μ(x)O (0)
〉 = −2μqε

3ab〈P b(x)O (0)
〉
, a = 1,2, (33)

8 We recall that at maximal twist the twisted basis vector current V a
μ corre-

sponds to the axial current ε3ba A′b
μ (a,b = 1,2) in the physical quark basis.
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Fig. 8. The PCAC quark mass amPCAC as a function of aμq .

where ∂∗
μ is the lattice backward derivative, O a local lattice oper-

ator and Ṽ a
μ(x) the 1-point-split vector current

Ṽ a
μ(x) = 1

4

[
χ(x)τaUμ(x)(γμ − r)χ(x + μ̂)

+ χ(x + μ̂)τaU †
μ(x)(γμ + r)χμ(x)

]
, (34)

we can also compute (in the charged meson channel) the pseu-
doscalar meson decay constant with no need of any renormalisa-
tion constant (see [2,4,51]) from the formula

fPS = 2μq

m2
PS

∣∣〈0|P a|P S〉∣∣, a = 1,2. (35)

Based on the exact relation (33) and noting that

∂∗
μ Ṽ a

μ(x) = ZV∂̃μV a
μ(x) + O(a2), (36)

where V a
μ is the naive current defined in Eq. (A.1) and ∂̃μ the sym-

metric lattice derivative, we can determine the (scale-independent)
renormalisation constant ZV through (a,b = 1,2 and x0 �= 0)

ZV(aμq) = −2μq
∑

x ε3ab〈P b(x)P b(0)〉∑
x ∂̃0〈V a

0(x)P b(0)〉 and

ZV = lim
μq→0

ZV(aμq) (37)

with only O(a2) cutoff effects. The results for afPS extracted using
Eq. (35) are collected in Table 14 and will be discussed further in
the next section.

In the same table we quote the results for the determination
of ZV that is based on fitting the large time behaviour of Eq. (37)
where the pion state dominates

−2μq
∑

x ε3ab〈P b(x)P b(0)〉∑
x ∂̃0〈V a

0(x)P b(0)〉
x0 large−−−−−→ 2μqε

3ab〈Ω|P b|πb(0)〉
mPS〈Ω|V a|πb(0)〉 . (38)

In practice the relevant matrix elements are extracted from a fac-
torising fit (see Eq. (14)) to a (4 × 4) matrix of correlators, with
entries given by the expectation values of

∑
x P 1(x)P 1(0) and∑

x V 2
0 (x)P 1(0) with local–local and local–fuzzed operators.

The aμq dependence of ZV is everywhere very weak (see
Fig. 9), which makes the extrapolation to the chiral point easy
and almost irrelevant, and leads to a rather precise result: ZV =
0.615(5). The quoted error is a conservative estimate of the total
uncertainty on ZV, inferred from the data in the last column of
Table 14 and their statistical errors.
Fig. 9. Extrapolation of ZV to zero quark mass at β = 3.9. The data are consistent
within errors with the constant behaviour shown in the figure.

Another determination of ZV(aμq) is obtained by evaluating the
ratios of correlators in the right-hand side of Eq. (37) for a num-
ber of time separations (x0/a � 10) and taking the average over
them. This alternative method to evaluate ZV has been presented
in Ref. [48]. Applying it, for instance, to the available (∼900) cor-
relators computed on the whole ensemble B1 yields the result
ZV(aμq = 0.0040) = 0.6101(2). Both approaches, the one discussed
in some detail above and the one of Ref. [48], provide precise
determinations for ZV and the virtues of both methods will be fur-
ther discussed in Ref. [49].

7. Chiral Perturbation Theory analysis of fPS and mPS

In this section we present the details of the comparison of our
data with Chiral Perturbation Theory (χPT) predictions. The main
results have been already published in Ref. [1]. Here we provide
further information about our fitting procedure and error analysis.
The main goal of this section is to explain the fitting procedure
and error determination using chiral perturbation theory. We will
therefore only use the ensembles B1–B5, i.e. the ensembles that
have already been discussed in Ref. [1]. For this limited set of data
at only one value of the lattice spacing of a = 0.087 fm, we are
not sensitive to higher order effects of chiral perturbation theory.
We will therefore restrict ourselves to a 1-loop analysis of the data
on MPS and fPS. Nevertheless, we use the 2-loop chiral perturba-
tion theory expressions and vary parameters of the corresponding
formulae to see the possible effects, if the 2-loop order would be
important to describe our data. In particular, this 2-loop investiga-
tion confirms that the here chosen dataset is indeed not sensitive
to higher loop corrections.

Some preliminary results at larger volumes (L/a = 32) and finer
lattice spacing (β = 4.05) have been already presented [15,16].
However, the present work is focused on the details of the analysis
of the data points presented in Ref. [1]. The study of the volume
and scaling dependence will be presented elsewhere. Notice, how-
ever, that, with respect to Ref. [1] we have a larger statistics at the
smallest quark mass.

Our raw data for amPS and afPS are determined as described in
Section 4.1. Results are reported in Table 14. As said above, there
is no need to compute any renormalisation constant in order to
make contact with the corresponding physical quantities.

In our χPT based analysis we have to take into account finite
size corrections because on our lattices at the lowest and next-to-
lowest μq-values they turn out to affect amPS and, especially, afPS
in a significant way.
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We have used continuum χPT to describe consistently the de-
pendence of the data both on the finite spatial size (L) and on the
bare quark mass (μq). This might look inappropriate in view of
the existence of a large additive O(a2) artifact in the neutral pion
mass squared.9 However this is not so, because theoretical analy-
ses carried out in the framework of lattice χPT [13] and Symanzik
expansion (complemented with soft pion theorems in the contin-
uum theory) [14,42] show that, if maximal twist is implemented
as discussed in Section 7.2, the charged pion squared mass differs
from its continuum counterpart only by O(a2μ) and O(a4) terms,
while the charged pion decay constant is affected by (chirally non-
enhanced) discretisation errors of order a2. Moreover the Symanzik
expansion analysis is applicable for all spatial volumes L3, pro-
vided L is large enough to justify the use of soft pion theorems
in the continuum theory at the quark mass of interest. This en-
tails that also the L-dependence of the charged pion squared mass
and decay constant is expected to be essentially continuum-like.
These expectations are also supported by preliminary and still par-
tial results we obtain at different lattice resolutions and different
physical volumes [15,16]. Last but not least, the continuum χPT
formulae appear to describe well our data, as we are going to show
below.

We fit the appropriate (N f = 2) next-to-leading-order (NLO)
χPT formulae [52,53]

m2
PS(L) = 2B0μq

[
1 + 1

2
ξ g̃1(λ)

]2[
1 + ξ log

(
2B0μq/Λ

2
3

)]
, (39)

fPS(L) = F
[
1 − 2ξ g̃1(λ)

][
1 − 2ξ log

(
2B0μq/Λ

2
4

)]
, (40)

to our raw data for mPS and fPS simultaneously. Here10

ξ = 2B0μq/(4π F )2, λ =
√

2B0μq L2. (41)

The finite size correction function g̃1(λ) was first computed by
Gasser and Leutwyler in Ref. [52] and is also discussed in Ref. [53]
from which we take our notation (except that our normalisation of
fπ is 130.7 MeV). In Eqs. (39) and (40) next-to-next-to-leading or-
der (NNLO) χPT corrections are assumed to be negligible (this as-
sumption is critically discussed in Section 7.1). The formulae above
depend on four unknown parameters, B0, F , Λ3 and Λ4, which
will be determined by fitting to our data.

7.1. Statistical errors

In order to estimate the errors on the fit parameters it is im-
portant to account for both autocorrelation and cross-correlation
of the data. We have exploited two different methods to do so.

7.1.1. Method A
The first method (see also [10]) consists in computing the full

covariance matrix of our data for afPS and (amPS)
2 and include it

in the computation of χ2

χ2 =
∑
i, j

(yi − Fi)V −1
i, j (y j − F j), (42)

where V is the covariance matrix 11

V i, j = cov(yi, y j) = cov
(
(yi − Fi)(y j − F j)

)
, (43)

9 Theoretical arguments have been presented [42] suggesting that this lattice ar-
tifact is an exceptional, though important, case, because it is related to the large
value of a continuum matrix element appearing in the Symanzik expansion of the
π0-mass and does not stem from large coefficients multiplying the dimension five
and six terms of the Symanzik effective Lagrangian.
10 We stress that ξ defined here should not be confused with the continuum ma-

trix element ξπ introduced in Eq. (5).
11 As we have data from independent simulations (ensembles B1 to B5), in the

present case the covariance matrix will be block-diagonal with five blocks.
normalised so that the diagonal elements coincide with the
squared standard error, and we have expressed the χPT ansatz,
Eqs. (39) and (40), in the form

yi = Fi(�x, �θ). (44)

Here we denote by yi the primary measured quantities (in this
section: y1 = (amPS|B1 )

2, y2 = afPS|B1 , y3 = (amPS|B2 )
2, . . .), by �x

the independent (error-free) variables (in this section: only x =
aμq) and by �θ the parameters to be determined by the fit (here:
θ1 = 2aB0, θ2 = aF , θ3,4 = log(a2Λ2

3,4)). The error on the parame-
ters are thus given by

(�θα)2 = (∇θα F T V −1∇θα F
)−1

. (45)

The autocorrelations of (amPS)
2 and afPS have been estimated

both by data-blocking and by means of the Γ -method, as dis-
cussed in Section 4.1. Both approaches indicate (see Table 5) that
by combining data into blocks of 32 measurements each (this cor-
responds always to more than 60 MC trajectories) the resulting
blocked data are safely uncorrelated. These blocked data are thus
used to evaluate the covariance matrix, the χ2 and the errors
on the fit parameters as discussed above (Eqs. (42)–(45)). In this
way the possible effect of cross-correlations among the observ-
ables is included in the covariance matrix and therefore properly
accounted for in the fit procedure.

In some of the checks that we are going to present below
it will not always be possible to reduce the χPT formulae to
the form of Eq. (44). This happens in particular in the follow-
ing cases: when computing directly afPS as a function of amPS,
when including the effects due to a non-vanishing amPCAC, when
including higher orders in Finite Size Effects (FSE) calculations,
as computed in [53], or when we will eventually study the scal-
ing dependence for different lattice spacings a. In all these cases
the χPT formulae can be expressed in the more general form
Gi(�y, �x, �θ) = 0 and the errors are given by the formula [54]:
(�θα)2 = (∇θα G T (∇y G V ∇y G T )−1∇θα G)−1. These errors are ob-
tained as propagation from the known errors on �x, therefore they
do not depend on how good the fit is. The quality of the fit is ex-
pressed as usual by the quantity χ2/d.o.f.

To provide a further check of possible effects of cross-correla-
tion, the fits were also performed by dividing the data set into
two subgroups each of half the size. The data for amPS were taken
from one subgroup of gauge configurations and those for afPS from
the other, ensuring in this way absence of cross-correlation. Errors
scale as

√
2, i.e. as expected from halving the statistic, which in-

dicates a negligible effect of cross-correlations in the full data set.
Stability was also checked against different choices of subgroups.
This result is confirmed by the observation that if we suppress the
off-diagonal terms in the covariance matrix, our error bars are af-
fected only at the percent level.

7.1.2. Method B
Method A is standard, and of course unbiased if for all ob-

servables the data are distributed in a Gaussian way (which we
checked explicitly to be the case to a good approximation) and if
the functions F (or G) have a sufficiently linear behaviour around
the relevant values of their arguments. An even safer estimate of
the final errors can be obtained with the bootstrap method [38,55].

To apply the bootstrap analysis method to our data set we pro-
ceed as follows. In order to account for autocorrelations we first
form bins of 32 gauge configurations for each value of μq . Out
of the blocked data we generate 1000 bootstrap samples. The size
of each sample is chosen as large as the full (blocked) data set.
From the 1000 bootstrap samples we obtained 1000 observations
for 2aB0, aF , log(a2Λ2

3,4), and l̄3,4 ≡ log(Λ2
3,4/m2

π ), respectively.
Error estimates are then computed as prescribed by the bootstrap



Ph. Boucaud et al. / Computer Physics Communications 179 (2008) 695–715 709
Table 16
Comparison of fit results from Methods A and B

Method A Method B

2aB0 5.04(7) 5.04(7)

aF 0.0522(7) 0.0522(7)

log(a2Λ2
3) −1.90(11) −1.91(10)

log(a2Λ2
4) −1.00(4) −1.00(4)

χ2/d.o.f. 1.0/4 0.9/4
Q 0.91 0.92

method, i.e. by the standard deviation over the (equally weighted)
1000 samples. Incidentally we remark that this procedure takes
the cross correlation between am2

PS and afPS correctly into account.
In the 1000 fits we performed we have hence always used only
the diagonal elements of the covariance matrix (fixed to their cen-
tral values, i.e. to the square of the statistical errors on am2

PS and
afPS, see Table 14) as weights to evaluate the χ2 formula (42).
In this specific application of the bootstrap method the error bars
on the basic quantities am2

PS and afPS are still needed, since the
observables of interest, the low energy constants (LEC), are de-
fined through minimisation of the χ2 of the simultaneous fit to
the χPT formulae (39)–(40). Note that to safely employ the boot-
strap method data need not have a Gaussian distribution, nor do
the constraints, defined by the χPT formulae, need to be linear.
The bootstrap method may become expensive if single fits are sig-
nificantly computer time demanding.

Both Methods A and B give consistent results, as shown in Ta-
ble 16. In this paper we use the same setup as in Ref. [1], but we
employ a somewhat larger statistics. The results are consistent. In
addition to the error estimates we quote the value of χ2 and the
merit figure of the fit defined via

Q = 1 − P
(
χ2/2,d.o.f./2

)
,

where P is the incomplete Gamma function [56].

7.2. Discussion of systematic errors

The error bars quoted in Table 16 are only statistical. As we also
stressed in Ref. [1], a number of systematic effects are expected.
Here we present some checks we performed in order to estimate
the actual magnitude of these systematic effects.

As a first, simple check on the possible impact of neglected
NNLO terms on the results presented in Table 16, we have also
included the heaviest point (the one at aμq = 0.0150) in the stan-
dard fit to the formulae (39)–(40). In this case the results are still
compatible with those in Table 16 within 1.7 standard deviations,
but the χ2/d.o.f. of the fit jumps from 0.24 to 1.7. This increase of
χ2/d.o.f. is mainly due to the point at afPS at aμq = 0.0150, as we
noted already in Ref. [1]. The results of the fit are displayed in the
second column of Table 17. This suggests that only the first four
quark mass points should be used when comparing our data for
afPS and amPS with NLO χPT, as was done in Ref. [1].

It is also very interesting to see how much the tiny deviations
from maximal twist corresponding to the (statistically compati-
ble with zero) measured central values of mPCAC affect our re-
sults for the low energy constants discussed in this section. To
address this question we introduce the definition of bare quark

mass, mq =
√

(Z AmPCAC)2 + μ2
q , which holds for generic twist an-

gle up to neglected O(amPCAC) and O(a2) terms. Moreover, in order
to take into account the axial-τ3 transformation properties of the
current entering the formal definition of fPS, at the same level of
accuracy, the value of afPS should be corrected into afPSmq/μq . We
remark that this is obtained automatically if fPS is evaluated from
Eq. (35) with μq replaced by mq—this can be related to the invari-
ance of the operator P 1,2, a matrix element of which appears on
Table 17
Comparison of fit results from different setups, as explained in the text

Including aμq = 0.015 mq =
√

(ZAmPCAC)2 + μ2
q

2aB0 5.06(5) 5.05(6)

aF 0.0508(5) 0.0521(7)

log(a2Λ2
3) −1.93(6) −1.87(11)

log(a2Λ2
4) −0.89(2) −0.99(4)

χ2/d.o.f. 10.3/6 0.55/4
Q 0.11 0.97

Table 18
Percent Finite Size deviation (mPS(L) − mPS(∞))/mPS(∞) predicted by χPT for our
data points. Note that nlo and nnlo include only the last order and not the previ-
ous one(s). According to Ref. [57], comparing nlo and nnlo (not lo and nlo) gives a
reliable indication about the convergence of the expansion

aμq lo [52] lo [53] nlo [53] nnlo [53]

0.0040 0.64% 0.42% 0.50% 0.21%
0.0064 0.29% 0.16% 0.21% 0.10%
0.0085 0.16% 0.08% 0.12% 0.06%
0.0100 0.11% 0.05% 0.08% 0.04%

Table 19
Same as in Table 18, but for ( fPS(L) − fPS(∞))/ fPS(∞)

aμq lo [52] lo [53] nlo [53]

0.0040 −2.57% −1.68% −0.76%
0.0064 −1.15% −0.63% −0.30%
0.0085 −0.64% −0.32% −0.16%
0.0100 −0.44% −0.21% −0.11%

the right-hand side of Eq. (35), under axial-τ3 rotations. The results
of this analysis, where we set Z A = 0.76(2), as found at β = 3.9 in
Ref. [48], are shown in the last column of Table 17. It is reassuring
to see that, thanks to the good precision we could reach in setting
mPCAC to zero, the low energy constants of interest here are left
essentially unaffected by this kind of correction.

We now consider the finite size corrections. In Ref. [1] we es-
timated them with the help of the formulae of Ref. [52]. A nice
feature of these formulae is that they introduce no new parame-
ter. However, they are only the first term of an expansion. Hence,
the question is: how large is the residual uncertainty in FSE due to
this truncation? To go beyond the first term in the framework of
Ref. [52] is difficult. For the pseudo scalar mass the FSE corrections
at two loops in χPT have been computed in Ref. [53]. However,
one can do better using the kind of χPT expansion suggested in
Ref. [57], for which results are also given in Ref. [53].

With the help of the results from Ref. [53] we can assess the
stability of the prediction both by comparing the two approaches
and by studying the convergence of the expansion of Refs. [53,57].
One should also notice that higher orders do introduce new pa-
rameters. Since it is not realistic to fit them, we will instead look
at the stability of the prediction while changing those parame-
ters in a “reasonable” range. The “reasonable” range is suggested
in Ref. [53] and is based on phenomenological grounds.

To avoid confusion, we remark that the results of Ref. [52] are
given as an expansion in powers of 1/F0, while Ref. [53] uses an
expansion in 1/Fπ . This is the only reason why the first term of
Ref. [53] does not coincide with Ref. [52].

In Tables 18 and 19 we show the percent deviation obtained us-
ing the formulae from Refs. [52] and [53] at different orders. Note
that the new low energy constants (LECs) that at higher orders
of χPT are relevant for FSE are fixed to their central values esti-
mated in Ref. [53]. See the comment below about their impact. To
distinguish the expansion of the FSE effects from the usual χPT
expansion we will use a lower case notation (lo, nlo, nnlo) to de-
note the former one. The two expansions are of course related, but



710 Ph. Boucaud et al. / Computer Physics Communications 179 (2008) 695–715
since the FSE also depend on the lattice size L, there is no reason
to truncate the chiral expansion for FSE at the same order as the
usual χPT expansion. Here, for instance, we will use the NLO χPT
formulae, but we will compare FSE at lo, nlo and nnlo.

The convergence of the FSE expansion is expected to be good
for all our data points since the smallest value of mPSL is larger
than 3. We recall that, according to Ref. [57], the comparison of lo
and nlo is not a good indicator of the convergence of the expan-
sion. This should be rather checked by comparing nlo and nnlo.
According to all our estimates only the FSE at the lightest point
(aμq = 0.004) are relevant, while those at larger quark masses are
always smaller than statistical errors. For instance, the deviations
in mPS are barely larger than its statistical errors (which amount to
about 0.5%). In order to check the dependence of the predicted FSE
corrections on the LECs entering only at nlo, we changed randomly
the value of the latter within the “reasonable” range suggested in
Ref. [53]. We saw that nlo and nnlo FSE corrections are affected
only at the level of about 20% (lo corrections are obviously unaf-
fected) by such changes.

Up to this point we have only considered the χPT at NLO (how-
ever corrections as high as nnlo are included in FSE calculations)
implicitly assuming that NNLO contributions are negligible. This is
reasonable, since χPT formulae with only NLO corrections yield a
very good fit of the data at the lightest four quark masses, in spite
of the fact that the expansion parameter, ξ = 2B0μq/(4π F )2, is
not always very small. It is thus important to assess how much
NNLO terms would affect our results.

The NNLO corrections relevant for mPS and fPS have been cal-
culated in Ref. [58]. Here we use an expression which is easier to
compare with lattice data, namely the one of Refs. [59,60] which
reads

m2
PS = M2

{
1 + ξ log

M2

Λ2
3

+ 17

2
ξ2

[
log

M2

Λ2
M

]2

+ 4ξ2kM + O
(
ξ3)},

fPS = F

{
1 − 2ξ log

M2

Λ2
4

− 5ξ2
[

log
M2

Λ2
F

]2

+ 4ξ2kF + O
(
ξ3)}, (46)

where ξ = 2B0μq/(4π F )2 as before, M2 = 2B0μq and

log
Λ2

M

M2
= 1

51

(
28 log

Λ2
1

M2
+ 32 log

Λ2
2

M2
− 9 log

Λ2
3

M2
+ 49

)
,

log
Λ2

F

M2
= 1

30

(
14 log

Λ2
1

M2
+ 16 log

Λ2
2

M2
+ 6 log

Λ2
3

M2
− 6 log

Λ2
4

M2
+ 23

)
.

It is not realistic to attempt a fit of all the coefficients involved
in the full NNLO expressions at least with the limited set of data
used here. Rather we fix the parameters Λ1, Λ2, kF and kM to
the values suggested in Ref. [53]. Since no estimate for kM,F is
available, we take kM,F = 0. Redoing the fit in these conditions
we can check how much NNLO terms change the results of Ta-
ble 16. The new fit results are shown in the second column of
Table 20. In order to further estimate to which extent these num-
bers are sensitive to a change in the parameters which were held
fixed, we decided to change them one by one within the range
proposed in Refs. [53,57], and perform a new fit for each one of
these values. As for kM and kF , it is difficult to tell what is a rea-
sonable range, since, as we said, no estimate is available for them.
On general grounds the values of kM,F are expected to be of O(1)
and somewhat arbitrarily we assume a variability range kM,F = ±1.
This choice is also justified by the fact that larger variations quickly
lead to very bad χ2. The results of this elaborated procedure are
shown in columns 3 to 6 of Table 20. Most effects are not signifi-
cant if compared to statistical errors, as they are never larger than
a few standard deviations. It should be noted, however, that Λ3
appears to be rather sensitive to kM and similarly Λ4 to kF . These
LECs can deviate by about 25% when setting kM,F to +1 or to −1.
Table 20
Fit results, including NNLO χPT

NNLO as in [53] δΛ1 = ±33% δΛ2 = ±5% kM = ±1 kF = ±1

2aB0 4.80(6) −0.66% −0.20% 3.2% 0.07%
3.44% 0.26% −2.5% −0.12%

aF 0.0536(6) 0.60% 0.16% −0.19% 1.9%
−1.7% −0.19% 0.21% −2.1%

log(a2Λ2
3) −2.13(12) −9.6% −1.2% −29% −1.3%

−5.9% 0.87% 26% 1.5%

log(a2Λ2
4) −1.00(5) −4.6% −0.50% 1.3% 24%

−0.35% 0.34% −1.3% −26%

χ2/d.o.f. 0.085 1.7 1.1 0.48 1.4
0.15 0.82 1.8 0.73

The second column shows the results obtained with the choice of Λ1,2 suggested in
[53] and kM,F = 0. The other columns give the percent correction due to changing
the corresponding parameter in the indicated range. For each line, the upper (lower)
number corresponds to the higher (smaller) boundary value of the interval.

We mention that changes of the LECs similar to those reported
in Table 20 are also obtained if the NNLO terms in Eq. (46) are
replaced by simple polynomial terms, like ρM,F ξ2 (with no log-
arithms), and the free parameters ρM,F are set to their best fit
values.

7.3. Comments

In summary the discussion developed in this section shows that
at least the systematic errors coming from the unknown NNLO
terms involving kM,F may be significantly larger than the statisti-
cal ones, mostly because the adopted range of values was, to some
degree, arbitrarily chosen. However, as already said above, using
only the datasets B1–B5 a reliable estimate of systematic uncer-
tainties on B , F , Λ3 and Λ4 from the NNLO corrections is not
possible. A better assessment about the magnitude of NNLO effects
will be attempted elsewhere [61] using ETMC data at different lat-
tice spacings.

Although FSE to our simulation data turn out to be less than a
few percent, we have made a special effort to compute them quite
accurately, because their impact on LECs cannot be neglected, as
their magnitude is comparable to the size of our statistical errors.
The computation of FSE made in Ref. [53] represents a considerable
improvement on the classical estimate of Ref. [52], as uncertain-
ties on the extra LECs entering the former computation at high
orders have little impact on the results. Actually, the validity of the
predictions of FSE from χPT can be checked by performing simu-
lations on lattices of increasing size in physical units. Preliminary
results have been presented in Ref. [15].

8. Summary

In this paper we have illustrated and discussed a number of
details concerning unquenched simulations of N f = 2 mass degen-
erate Wilson quarks at maximal twist. We have explained in Sec-
tion 1 our criterion on how to tune the theory to maximal twist.
In particular, we provided theoretical arguments for our choice of
mPCAC/μq � 0.1 and showed that an error �mPCAC/μq � 0.1 is ap-
propriate for this purpose. Useful formulae for quark bilinears and
their physical interpretation in different quark bases (twisted and
physical) are collected in Appendix A.

We have then discussed in Section 2 the methods we have
used to compute charged meson correlators emphasising the effec-
tiveness of employing (fuzzed) stochastic time-slice sources in the
so-called “one-end trick”. We have demonstrated that this method
complemented by a random choice of the source location leads to
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a significant noise reduction, at least for two-point correlators in
the meson sector.

The computation of neutral mesons and, in particular, quark-
disconnected contributions has been described in Section 3 and in
the corresponding Appendix B. We have spelled out the reasons for
using stochastic volume sources which can be employed in combi-
nation with efficient variance reduction methods. All these techni-
cal improvements have allowed us to compute quark-disconnected
contributions on our sets of unquenched gauge configurations to
an acceptable accuracy.

In Section 4 we have illustrated the main features of the MC
algorithms used in our simulations showing that the resulting au-
tocorrelation times are small enough to allow for a trustworthy
error analysis of physical observables. We also explain how our er-
ror analysis of the data was performed owing to the use of Γ - and
binning-methods.

The force parameter r0 can serve as an important physical
quantity to check the scaling behaviour towards the continuum
limit. We have provided in Section 5 a comprehensive discussion
of the methods we have used to extract r0 on our configurations.
It turns out that with the present data an accuracy of better than
1% can be reached for r0 in the chiral limit. It is also found that r0
has a mild quark mass dependence which is consistent with being
quadratic in μq .

Various results for the charged and neutral pseudoscalar masses,
the untwisted PCAC quark mass and the renormalisation constant
ZV are collected in Section 6. In particular, we show “effective
mass” plots demonstrating the stability of the Euclidean time
plateaux, which enables us to extract precise results for mesonic
quantities.

Finally, we have detailed in Section 7 how our χPT analysis of
the data on mPS and fPS has been carried out, explaining how we
get errors on the fitted low energy constants of the effective chiral
Lagrangian, B0, F , Λ3 and Λ4. In addition, we have analysed the
effects of higher orders in χPT on the stability of fit parameters
and discussed the finite size effects.

We consider the present paper as a technical reference work of
our collaboration. The methods described here have been and will
be extensively used in our ongoing future research on lattice QCD
employing maximally twisted Wilson fermions.
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Appendix A. Quark bilinear operators in the twisted basis

We give in this appendix the expression of a number of bare
quark bilinear operators that are relevant for the topics of this pa-
per. The operators are expressed in terms of (i) simple composite
fields (recall γ5 = γ0γ1γ2γ3 and σμν = i/2[γμ,γν ]) in the twisted
quark basis, where the fermionic action takes the form (1),

S0(x) = χ̄ (x)χ(x), Pα(x) = χ̄ (x)γ5
τα

2
χ(x),

Aα
μ(x) = χ̄ (x)γμγ5

τα

2
χ(x), V α

μ(x) = χ̄ (x)γμ
τα

2
χ(x),

T α
μν(x) = χ̄ (x)σμν

τ a

2
χ(x), T 0

μν(x) = χ̄ (x)σμνχ(x) (A.1)

and (ii) the twist angle ω, where tanω = μq/(m0 − mcrit) and
amcrit is determined as discussed in Section 1.1. The expressions
we get are

A′α
μ =

{
cos(ω)Aα

μ + ε3αβ sin(ω)V β
μ (α = 1,2),

A3
μ (α = 3),

(A.2)

V ′α
μ =

{
cos(ω)V α

μ + ε3αβ sin(ω)Aβ
μ (α = 1,2),

V 3
μ (α = 3),

(A.3)

P ′α =
{

cos(ω)P 3 + i 1
2 sin(ω)S0 (α = 3),

Pα (α = 1,2),
(A.4)

S ′ 0 = cos(ω)S0 + 2i sin(ω)P 3, (A.5)

T ′α
μν =

{
T α
μν (α = 1,2),

cos(ω)T 3
μν − i 1

2 εμνλρ sin(ω)T 0
λρ (α = 3).

(A.6)

These expressions follow from the relation between twisted basis
(χ ) and physical basis (ψ ) quark fields, which (see Eq. (1) and
Ref. [3]) reads

χ = e−iγ5τ
3ω/2ψ, χ̄ = ψ̄e−iγ5τ

3ω/2, (A.7)

and the (obvious) definitions of the bare primed operators in terms
of physical basis quark fields (α = 1,2,3)

A′α
μ = ψ̄(x)γμγ5

τα

2
ψ(x), V ′α

μ = ψ̄(x)γμ
τα

2
ψ(x),

P ′α = ψ̄(x)γ5
τα

2
ψ(x), T ′α

μν(x) = ψ̄(x)σμμ
τ a

2
ψ(x),

S ′ 0 = ψ̄(x)ψ(x). (A.8)

All these bare operators renormalise multiplicatively, with the ex-
ceptions of P ′ 3 and S ′ 0, which undergo an additive mixing with
the identity (cubically divergent for P ′ 3, quadratically divergent
and vanishing as μq → 0 for S ′ 0). For the expression of renor-
malisation constants as functions of ω and the renormalisation
constants of standard Wilson quark bilinears and further details,
see Ref. [3]. It should be remarked that substantial simplifications
occur for ω = ±π/2 (maximal twist) in almost all formulae above.
Moreover at maximal twist also the formulae for renormalisation
constants [3] get much simpler than at generic ω.

Appendix B. Evaluation of disconnected loops

The quark-disconnected (simply “disconnected” in the following
for brevity) components of correlators are intrinsically noisier than
the connected components, so it is essential to evaluate them as
accurately as possible. For this purpose we need to compute the
disconnected loops at every t value and for as many gauge config-
urations as possible. This can be achieved by using the stochastic
source methods as we now discuss. The goal of the approach is
to have an error arising from the stochastic nature of the method

http://www.bsc.es
http://www.deisa.org
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which is smaller than the intrinsic variability associated with vary-
ing t and gauge configuration. If this is achieved, then the stochas-
tic error is negligible in the sense that any further improvement in
the signal can only be obtained if more gauge configurations are
employed.

As discussed in Section 2.1, the basic idea is to use stochas-
tic sources (ξ ) having in general support on the whole lattice and
solve the linear system for the quantities

φ = M−1ξ, (B.1)

where M is the lattice Dirac matrix for a given flavour. The equa-
tion above is the same as Eq. (16), with the omission of the noise
sample label r (to lighten notation). Note also that in this appendix
the normalisation of M is taken such that, if D latt denotes the two-
flavour Dirac matrix in Eq. (1), then

Mu = 2κ tr
[
aD latt(1 + τ3)/2

] = A + H, A = 1 + 2κaμqiγ5,

(B.2)

with H the usual Wilson first-neighbour hopping matrix. It follows
that∑[

ξ∗ Xφ
]

R =
∑

X M−1 + noise (B.3)

where the symbol [. . .]R refers (as in Section 2.1) to the average
over R samples of the stochastic source, the symbol

∑
denotes

the sum over colour, spin and space-time indices and X can be
(almost) any structure we wish to evaluate, like γ -matrix, gauge
links, Fourier factor, cos(kx), etc. It should be observed that in
evaluating the disconnected contributions to the neutral meson
correlators each one of the two quark loops arising from Wick con-
tractions must be averaged over completely independent samples
of stochastic sources for the purpose of avoiding unwanted biases.
Moreover, for each quark loop diagram, the sum in Eq. (B.3) is re-
stricted to one single time-slice, while still ranging over all colour,
spin and space indices.

A method we employed to reduce the variance of the stochas-
tic noise without much additional computational effort is the
hopping-parameter method [25]. This relies on the observations
that the first four terms in the hopping parameter expansion of∑

X M−1 can be easily evaluated exactly on each gauge configu-
ration and that replacing their stochastic estimates with the exact
values significantly reduces the variance. In fact, writing Mu (see
Eq. (B.2)) in the form Mu = (1 + H B)A, where B = 1/A, one easily
obtains the identity

1/Mu = B − B H B + B(H B)2 − B(H B)3 + (1/Mu)(H B)4, (B.4)

which can be used to give∑
X/Mu =

∑{
X
(

B − B H B + B(H B)2 − B(H B)3

+ (1/Mu)(H B)4)}. (B.5)

The last term in Eq. (B.5) can be evaluated stochastically because

X(1/Mu)(H B)4 = lim
R→∞

[
ξ∗(H B)4 Xφ

]
R . (B.6)

Since H† = γ5 Hγ5 and γ5 commutes with B , the last formula can
be rewritten in the form

X(1/Mu)(H B)4 = lim
R→∞

[(
γ5

(
B† H

)4
γ5ξ

)∗
Xφ

]
R . (B.7)

Thus four extra multiplications of the source ξ by B† H are needed.
This is a negligible overhead compared to the inversion needed to
obtain φ. The first four terms in Eq. (B.5) do not involve 1/Mu and
can be, as said above, evaluated straightforwardly for any choice
of X . For a local operator X , the only non-zero contributions are
from the first term if X is proportional to 1 or γ5 and the third
term if X is proportional to γ5. For a non-local operator X whose
length of spatial path is more than four lattice hops (as used in
this paper), the first four terms are all zero.

This variance reduction method reduces the standard error of
the stochastic samples by a factor of 1.5 or more in our case. This
is valuable (it saves a factor 2–3 in computational time), but for
twisted mass QCD a much more powerful method is also avail-
able, although it applies only to the case

∑
X(1/Mu − 1/Md). This

last method can be, and has been indeed, used in many impor-
tant applications, essentially all those where one has to evaluate
correlators with insertions of neutral meson operators of the form
(in the twisted basis) χ̄Γ τ3χ , with any Dirac matrix Γ and the
flavour matrix τ3. Interpolating fields of this type occur, e.g., in the
two-point correlators for η′ , f0 and π0 mesons (actually only one
of the possible operators for π0), as one can see from the table for
the (twisted basis) neutral meson operators reported in Section 3.

The powerful method alluded above relies on combining the
identities

(Md − Mu) = −4iκaμqγ5 (B.8)

and

(1/Md)(Md − Mu)(1/Mu) = 1/Mu − 1/Md (B.9)

to get

1/Mu − 1/Md = −4iκaμq(1/Md)γ5(1/Mu). (B.10)

The latter relation already serves as a method of variance reduc-
tion because the explicit (small, in our simulations) factor of aμq

reduces the magnitude of the fluctuations. On top of that, an even
more important point is that the right-hand side of Eq. (B.10) can
be evaluated very effectively with the help of the “one-end-trick”
[19,20] and no further inversions. In fact, since M†

u = γ5Mdγ5, one
has∑

X(1/Mu − 1/Md) = −4iκaμq

∑
Xγ5(1/Mu)†(1/Mu), (B.11)

which can be evaluated with noise/signal ratio of O(1) via∑
X(1/Mu − 1/Md) = −4iκaμq

∑[
φ∗ Xγ5φ

]
R + noise, (B.12)

where (we recall) φ = (1/Mu)ξ and φ∗ = ξ∗(1/Mu)†. Apart from
the explicit sum denoted by

∑
, the right-hand side of this for-

mula contains an implicit sum over the space–time indices of the
stochastic source ξ in φ and φ∗ , which contributes to reduce the
variance as it receives contributions from the whole lattice (space–
time) volume.

To give an idea of the effectiveness of the method based on
Eq. (B.12) we consider, as an example, the special case X = iγ5,
where one obtains∑

iγ5(1/Mu − 1/Md) = 4κaμq

∑[
φ∗φ

]
R + noise. (B.13)

At β = 3.9 and μq = 0.004 (ensemble B1) the method based on
Eq. (B.13) yields an error which turns out to be 6 times smaller
than what would be obtained with a conventional stochastic vol-
ume source. From the measured stochastic contribution to the sig-
nal, as well as the observed total fluctuation, one can extract the
intrinsic variation stemming from the statistical fluctuations of the
gauge field. The goal of the stochastic method is to have errors
arising from the stochastic method which are negligible compared
to the intrinsic (gauge) noise. This we achieve, finding that the
stochastic contribution to the total error has a standard deviation
which is 2/3 of the standard deviation arising from the intrinsic
variation of the signal. In the example, above we employed 24
stochastic sources (with no components set to zero), resulting in a
cost of 24 inversions, per gauge configuration. Note that a similar
number of inversions is needed to compute the (quark-connected)
charged meson correlators.
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We thus find that this variance reduction method, where appli-
cable, is very powerful and effectively reduces the stochastic noise
in the neutral meson correlators, making it smaller than the intrin-
sic noise coming from the fluctuations of the gauge field.

Appendix C. Γ -method and data-blocking

In this appendix, we discuss the Γ -method and the data-
blocking procedure we have used to estimate the statistical errors
of our physical observables.

C.1. Γ -method

In this section, for completeness, we just recall the basis of the
Γ -method introduced in [24]. In the case of a primary stochastic
variable with “true value” A (the symbol A will also be used to
denote the observable itself), a suitable estimator of the error on
the ensemble average ā, i.e. its standard deviation σā , is given by12

σ 2
ā = 1

N

W∑
n=−W

Γā(n), (C.1)

where N is the number of measurements, 2W +1 � N is the num-
ber of consecutive measurements used in the estimation (measure-
ment “window”) and

Γā(n) = 1

N − |n|
N−|n|∑

i=1

(
ai − ā

)(
ai+|n| − ā

)
. (C.2)

Here Γā(n) represents the straightforward estimator of the auto-
correlation function ΓA(n) = 〈(ai − A)(ai+|n| − A)〉 (the index i in
ai labels the individual measurements, while 〈. . .〉 denotes the the-
oretical expectation value).

The integrated autocorrelation time is conventionally defined
for primary quantities as in Eq. (25) and estimated by (see
Eq. (C.1))

τint(ā) = 1

2Γā(0)

W∑
n=−W

Γā(n) ≡ Nσ 2
ā

2σ̄ 2
a

, (C.3)

Note that Γā(0) ≡ σ̄ 2
a , see Eq. (C.2), is an estimate of the a priori

variance of A.
The Γ -method can also be applied to the analysis of secondary

observables, F = f (A), where f denotes a non-linear function of
several primary observables, A ≡ {A1, A2, . . .}. A typical example is
the case where A is given by the values of two-point hadron corre-
lators at different time separations, with different smearing levels,
etc., while F is a suitable estimator of the hadron mass; of course,
the details of the function F = f (A) depend on the specific choice
of the estimator, e.g., on the form of the fit ansatz for the corre-
lators and the range of time separations employed in the fit. The
main point here is that the deviation of any given finite-statistics
estimate of F , F̄ ≡ f (ā), from the true value f (A) can be approxi-
mated, in the limit of large statistics, by retaining the first term of
the Taylor expansion of f (ā) around f (A), i.e. by writing

f (ā) − f (A) �
∑
α

∂ f (A)

∂ Aα
(āα − Aα), (C.4)

where α is the index labelling the primary quantities, Aα , upon
which f depends. This remark suggests to define a new quantity,
A f , which is a simple linear combination of primary quantities,
and the corresponding finite-statistics estimate, ā f , via the formula

A f ≡
∑
α

∂ f (A)

∂ Aα
Aα, ā f ≡

∑
α

∂ f (A)

∂ Aα
āα, (C.5)

12 For a discussion of these issues, see [65] and references therein.
where āα is the ensemble average of the primary stochastic vari-
able aα (with “true value” Aα , as above). The variance of F̄ = f (ā)

will be given by

σ 2
F̄

≡ 〈(
f (ā) − f (A)

)2〉 � 〈
(ā f − A f )

2〉, (C.6)

where the truncation of the Taylor series produces a relative bias
O(N−1) which can be neglected if the number of measurements
N is sufficiently large. A further bias of the same order of mag-
nitude arises from the replacement ∂ f (A)

∂ Aα
→ ∂ f (A)

∂ Aα
|A=ā in Eq. (C.5),

which is done in practice to evaluate the first derivatives of f with
respect to the Aα ’s. At this point σ 2

F̄
is estimated by the formula

that is obtained from Eq. (C.1) by replacing Γā(n) with

Γā f (n) = 1

N − |n|
N−|n|∑

i=1

(
ai

f − ā f
)(

ai+|n|
f − ā f

)
. (C.7)

C.2. Binning method

In the case where a data-blocking (also called binning) proce-
dure is instead adopted to account for autocorrelations, the bin-
size B plays a role similar to that of the window W in the
Γ -method. The integrated autocorrelation time can thus be esti-
mated, for sufficiently large values of B , by

τint( F̄ ) � σ 2
F̄
(B)

2σ 2
F̄
(1)

, (C.8)

where σ F̄ (B) denotes the jackknife estimate of the error on F̄ (the
mean value of F ) that is obtained upon binning the measurements
into blocks of size B .

C.3. Error on the error: Γ -method vs data-blocking

The estimator of Eq. (C.1) allows to reach the optimal compro-
mise between the relative statistical error on σ̄ā raising with

√
W ,

i.e. δstat(σ̄ā)/σ̄ā ∼ √
W /N , and the relative systematic error (bias)

decreasing exponentially with W , i.e. δsyst(σ̄ā) ∼ 1/2 exp(−W /τ ),
where τ is the characteristic time of slowest exponential mode of
Γ (n) (exponential autocorrelation time). An “optimal” value, Wopt,
to be used as upper and lower bound for the sum in Eq. (C.1) can
be obtained, e.g., by gradually increasing W and inspecting “by
eye” the onset of a plateau for σ̄ā as a function of W , or requir-
ing minimisation of the total error δtot = δstat + δsyst [24]. Any valid
criterion to truncate the sum necessarily corresponds to values of
Wopt for which the truncation errors become comparable with the
statistical noise level on σ̄ā . This choice corresponds to an uncer-
tainty on the error on σ̄ā decreasing like ∼ O(N−1/2). For compari-
son we recall that the error on σ̄ā upon use of the binning method
would decrease only like ∼ O(N−1/3) [24]. In this case in fact
the optimal choice corresponds to find a compromise between the
relative statistical error on σ̄ā (i.e. δstat(σ̄ā)/σ̄ā ∼ √

B/2N) which
increases with

√
B , and the relative systematic error (bias) (i.e.

δsyst(σ̄ā) ∼ τ/2B) which decreases with B−1.

C.4. Further remarks

In our error analysis carried out using the Γ -method, we de-
cided to compare different criteria for the windowing procedure in
order to test in this respect the robustness of our estimates. One
method is given by the algorithm proposed in [24] which is close
to optimal. A second criterion, which is slightly more conserva-
tive, consists in stopping the procedure as soon as Γ̄ (n) becomes
negative due to statistical fluctuations. In the 15 analysed cases
(5 simulation points times 3 quantities), no systematic trend could
be detected, with the two methods giving in most of the cases sim-
ilar results. In the cases where we cyclically vary the time the wall
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source over the lattice (see Section 2.1) in order to restore transla-
tion invariance in the MC time, as required by the Γ -method, we
average beforehand correlators over source cycles.13 We recall that
the time-slice sequences used for the different ensembles and the
value of n = tp are specified in Table 6.

As already mentioned, the results of the Γ -method have been
checked against binning procedures. For observables that are non-
linear functions of the primary quantities, the error estimates
were obtained by combining the binning procedure with either
bootstrap-sampling (with bin sizes B = 4,8,16,32 in trajectory
units) or standard jackknife. In the latter case the optimal bin size
Bopt was determined by requiring stabilisation of the estimate of
the error (with Bopt/τint ≈ 10 or larger).

Different methods give in general comparable results. In the
case of the binning+bootstrap procedure stabilisation of the error
is however not always evident at the maximal bin size (32 in tra-
jectory units). In particular the PCAC quark mass turns out to be
affected by significant autocorrelations (see Section 4.2) and the
binning procedure seems not to be able to give reliable estimates
of the error. In this case indeed the results lie systematically be-
low the estimates from the Γ -method. This can be understood
recalling that the Γ -method leads to a more favourable depen-
dence upon the number of measurements in the error attributed
to the autocorrelation time than the binning method.

In view of these findings we have decided to use the Γ -method
for the estimates of the errors on the plaquette and amPCAC. Also
the error estimates for fermionic quantities (other than amPCAC)
quoted in Section 6 come from this method. However, similar re-
sults are obtained if a binning based procedure is employed.

Appendix D. Details of the static potential calculation

In this appendix we provide some details on the way we
compute the static quark–antiquark potential from our dynamical
gauge configurations.

D.1. Improved static action

An improvement on the signal-to-noise ratio in the measure-
ments of the Wilson loop can be obtained by employing suitably
smeared temporal links. This can be viewed as a convenient mod-
ification (or improvement) of the action for static quarks [66,67]
as long as gauge invariance, cubic and parity symmetries as well
as the local conservation of the static quark number and the static
quark spin symmetry are preserved. Under these conditions it is
still guaranteed that the static quark action is free from O(a) cutoff
effects [68]. The statistical improvement alluded above comes from
a reduction of the noise-to-signal ratio essentially stemming from
the fact that the modified static quark action obtained via the use
of smeared temporal links induces a self-energy mass term with a
significantly reduced coefficient in front of the a−1 term [67]. For
our measurements we use the so-called HYP-improved static quark
action, which is obtained by replacing the temporal links U4(�x, x0)

in the Wilson loop by HYP-smeared links [69]

U4(�x, x0) → V HYP
4 (�x, x0). (D.1)

The HYP-smearing requires the specification of three parame-
ters �α = (α1,α2,α3) and, following Ref. [67], we choose �α =
(1.0,1.0,0.5) throughout our calculation.

13 We generically find correlations between consecutive measurements taken on
well separated time-slices (e.g., by �t = 12a) to be negligible.
D.2. Spatial smearing

The smoothing of the spatial links has the effect of reducing
excited-state contamination in the correlation functions of the Wil-
son loops in the potential measurements. The operators which we
measured in the simulations are constructed using the spatial APE
smearing of Ref. [70]. The smoothing procedure we use consists in
replacing every spatial link U j(x), j = 1,2,3, by itself plus a sum
of its neighbouring spatial staples and then projecting back to the
nearest element in the SU(3) group, i.e. we write

S1U j(x) ≡ PSU(3)

{
U j(x) + λs

∑
k �= j

(
Uk(x)U j(x + k̂)U †

k(x + ĵ)

+ U †
k(x − k̂)U j(x − k̂)Uk(x − k̂ + ĵ)

)}
. (D.2)

Here, PSU(3) Q denotes the unique projection onto the SU(3) group
element W , which maximises Re Tr(W Q †) for any 3 × 3 ma-
trix Q . The smeared and SU(3) projected link S1U j(x) retains all
the symmetry properties of the original link U j(x) under gauge
transformations, charge conjugation, reflections and permutations
of the coordinate axes. The whole set of spatially smeared links,
{S1U j(x), x ∈ L4}, forms the spatially smeared gauge field config-
uration. An operator O which is measured on a n-times itera-
tively smeared gauge field configuration is called an operator at
smearing level Sn , indicated by the symbol Sn O. From our expe-
rience a good choice is to use M = 5 different smearing levels Sn ,
with n = 8,16,24,32,40, and in all cases a smearing parameter
λs = 0.25.

D.3. Static quark–antiquark pair correlators

The matrix of static quark–antiquark pair correlation func-
tions, each of which from a technical viewpoint corresponds to a
spatially smeared and temporally improved Wilson loop, is con-
structed in the following way. At fixed x0 we first form smeared
string (i.e. quark–antiquark pair) operators along the three spatial
axes, connecting �x with �x + rî, given by

Sn V i(�x, �x + rî; x0) = SnUi(�x, x0)SnUi(�x + aî, x0) . . .

SnUi
(�x + (r − a)î, x0

)
, i = 1,2,3, (D.3)

and improved temporal links at fixed �x, connecting x0 with x0 + t ,
given by

V 4(x0, x0 + t; �x) = V HYP
4 (�x, x0)V HYP

4 (�x, x0 + a) . . .

V HYP
4

(�x, x0 + (t − a)
)
. (D.4)

The smeared Wilson loop14 is then obtained by computing

Wlm(r, t) =
∑
�x,x0

3∑
i=1

Tr Sl V i(�x, �x + rî; x0)V 4(x0, x0 + t; �x + rî)

× Sm V †
i (�x, �x + rî; x0 + t)V †

4(x0, x0 + t; �x). (D.5)

Finally we define the matrix of static quark–antiquark pair correla-
tors according to the formula

Clm(r, t) = 〈
Wlm(r, t)

〉 = Cml(r, t), (D.6)

where the average is over the configurations of the ensemble. Since
we have chosen to employ M = 5 different string operators (as

14 Let us remark that we measure the on-axis potential only, i.e. the potential ex-
tracted from Wilson loops having spatial extent in the direction of the lattice axes
î, i = 1,2,3 only.
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discussed above) and we are concerned with correlators where two
such operators are inserted, we end up with a 5×5 matrix of static
quark–antiquark pair correlators.
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