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Abstract

Exponential tightness plays a crucial role in large deviations; in fact this condition is often re-
quired to obtain the large deviation principle for a sequence of random variables taking values
on an infinite dimensional topological space. In this paper we present some conditions which
yield the exponential tightness of a sequence of continuous Gaussian processes. Moreover we
check these conditions for some sequences of weighted means.
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1 Introduction

Large deviations give an asymptotic computation of small probabilities on an exponential scale (see
e.g. [4] as a reference on this topic). We recall some basic definitions (see e.g. Section 1.2 in [4]).
Throughout this paper a speed function is a sequence {vn : n ≥ 1} such that limn→∞ vn = ∞. A
sequence of random variables {Zn : n ≥ 1}, taking values on a topological space X, satisfies the
large deviation principle (LDP for short) with rate function I and speed function vn if the following
conditions hold: the function I : X→ [0,∞] is lower semicontinuous,

lim inf
n→∞

1

vn
logP (Zn ∈ O) ≥ − inf

x∈O
I(x)

for all open sets O, and

lim sup
n→∞

1

vn
logP (Zn ∈ C) ≤ − inf

x∈C
I(x)

for all closed sets C. A rate function is said to be good if all its level sets {{z ∈ Z : I(z) ≤ η} : η ≥ 0}
are compact. Moreover {Zn : n ≥ 1} is exponentially tight with respect to the speed function vn
if, for all b > 0, there exists a compact Kb ⊂ X such that

lim sup
n→∞

1

vn
logP (Zn /∈ Kb) ≤ −b.

The concept of exponential tightness plays a crucial role in large deviations; in fact this condition
is often required to establish that the large deviation principle holds for a sequence of random
variables taking values on an infinite dimensional topological space. In this paper we refer to
Conditions (i) and (ii) in Theorem 1.1 which yield the exponential tightness when the topological
space X is C[0, 1] equipped with the topology of the uniform convergence.
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Theorem 1.1 A sequence of random variables {Zn : n ≥ 1}, taking values on C[0, 1] (equipped with
the topology of the uniform convergence), is exponentially tight with respect to the speed function
vn if the two following conditions hold.
Condition (i) for increments: for some n0 ∈ N and α, γ, κ > 0,

E
[
exp

(
γvn
|t− s|α

|Zn(t)− Zn(s)|
)]
≤ κvn for all t, s ∈ [0, 1] with t 6= s.

Condition (ii) for t = 0:

lim
R→∞

lim sup
n→∞

1

vn
logP (|Zn(0)| > R) = −∞.

A reference for this result is Theorem 3 in [17] which is proved as a consequence of Theorems 1 and
2 in the same reference; see also [5] (Theorem A.1 in [5] coincides with Theorem 1 in [17]) and [18].

The aim of this paper is to present Proposition 2.1 which yields the exponential tightness of a
sequence of continuous Gaussian processes {Zn : n ≥ 1} as a consequence of Theorem 1.1. Moreover
these conditions are used to check the exponential tightness of some sequences {Zn : n ≥ 1} defined
by

Zn(t) :=
1

An

n∑
k=1

akX(k + t) (for all t ∈ [0, 1]), (1)

where {an : n ≥ 1} is a sequence of positive numbers,

An :=
n∑
k=1

ak (for all n ≥ 1)

and {X(t) : t ≥ 1} is a continuous real valued Gaussian process defined on a probability space
(Ω,F, P ). Thus, in some sense, we give a completion of the results presented in [11].

The sequence {Zn : n ≥ 1} defined by (1) is a sequence of weighted means and, as we see below,
arithmetic and logarithmic means are allowed. Our interest in these weighted means is motivated
by the strict analogy between the logarithmic means and the sequences of random measures which
appear in the almost sure limit theorems. Here we recall the almost sure central limit theorem
where, for L(n) :=

∑n
k=1

1
k (or, equivalently, L(n) := log n for n ≥ 2), we have{

1

L(n)

n∑
k=1

1

k
1{U1+···+Un√

n
∈·} : n ≥ 1

}

for a sequence of i.i.d. centered random variables with unit variance {Un : n ≥ 1}. The almost
sure central limit theorem was proved independently in [1], [9] and [16] under stronger moment
assumptions; successive refinements appear in [10] and [13], in which only finite variance is required.

We remark that, if we consider the notation

µ(t) := E[X(t)] and ϕ(t, s) := Cov(X(t), X(s))

for the mean and the covariance functions of the process {X(t) : t ≥ 1}, the mean and the covariance
functions of the process Zn in (1) are

mn(t) := E[Zn(t)] =
1

An

n∑
k=1

akµ(k + t)

and

kn(t, s) := Cov(Zn(t), Zn(s)) =
1

A2
n

n∑
k,h=1

ahakϕ(k + t, h+ s).
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We consider different hypotheses on ϕ(·, ·) and {an : n ≥ 1}; however we always assume that

lim
n→∞

An =∞. (2)

More precisely we consider two conditions for the covariance function ϕ(·, ·), i.e. Conditions 3.1
and 4.1. Under Condition 3.1, we present two classes of coefficients {an : n ≥ 1}: for the first class
we have

lim
n→∞

∑n
k=1 a

2
k

An
= `, for some ` ∈ (0,∞), (3)

i.e. a generalization of the arithmetic means (i.e. an = 1 for all n ≥ 1, where (3) holds with ` = 1);
for the second class we have

C := sup{nan : n ≥ 1} ∈ (0,∞), (4)

i.e. a generalization of the logarithmic means (i.e. an = 1
n for all n ≥ 1, where (4) holds with

C = 1). Under Condition 4.1 we consider only the second class of coefficients. Thus, if we combine
the conditions on the covariance function ϕ(·, ·) and on the coefficients {an : n ≥ 1}, we have three
cases which can be related to Propositions 3.1, 3.2(i) and 3.3 in [11]. Those propositions in [11]
show the existence of a covariance function c(·, ·) such that

lim
n→∞

vn
A2
n

Var

[
n∑
k=1

ak

∫ 1

0
X(k + t)dθ(t)

]
=

∫ 1

0

∫ 1

0
c(t, s)dθ(t)dθ(s) (5)

for all signed measures θ on [0, 1] with bounded variation. Here the limit (5) is briefly discussed
(see Remarks 3.2 and 4.2) in terms of the conditions presented in this paper (for the covariance
function ϕ(·, ·) and the coefficients {an : n ≥ 1}). Finally, as in [11], we present some examples: in
some cases the examples in this paper are more general than the ones in [11], and often they are
formulated in terms of self-similar processes.

We conclude with the outline of the paper. In Section 2 we present Proposition 2.1 (which yields
the exponential tightness of a sequence of continuous Gaussian processes {Zn : n ≥ 1}). Results
for Conditions 3.1 and 4.1 (concerning the covariance function ϕ(·, ·)) are presented in Sections 3
and 4, respectively. Some examples are presented in Section 5 (actually the first example appears
in Section 3).

2 Exponential tightness for continuous Gaussian processes

The aim of this section is to present Proposition 2.1 which yields the exponential tightness of a
sequence of continuous Gaussian process {Zn : n ≥ 1} as a consequence of Theorem 1.1.

We start with the following lemma where we recall some estimates for Gaussian random variables
(for the sake of completeness, we give some details on their proofs in the Appendix).

Lemma 2.1 Let X be a real Gaussian distributed random variable X with mean µ and variance
σ2. Then we have

E[eγ|X−µ|] ≤ 2e|µ|γe
σ2

2
γ2 (for all γ ≥ 0) (6)

and

P (|X| > R) ≤ 2σ√
2π(R− |µ|)

e−
(R−|µ|)2

2σ2 (for all R > |µ|). (7)

Now we present Proposition 2.1 where we give conditions which yield (i) and (ii) in Theorem
1.1. Such conditions are given in terms of the mean functions {mn(·) : n ≥ 1} and covariance
functions {kn(·, ·) : n ≥ 1} of the processes {Zn : n ≥ 1}.
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Proposition 2.1 Condition (i) in Theorem 1.1 holds if there exist α,M1,M2 > 0 such that

sup

{
|mn(t)−mn(s)|
|t− s|α

: n ≥ 1, s, t ∈ [0, 1], s 6= t

}
≤M1 (8)

and

sup

{
vn
|kn(t, t)− 2kn(t, s) + kn(s, s)|

|t− s|2α
: n ≥ 1, s, t ∈ [0, 1], s 6= t

}
≤M2. (9)

Condition (ii) in Theorem 1.1 holds if there exists L1, L2 > 0 such that

lim sup
n→∞

|mn(0)| ≤ L1 (10)

and
lim sup
n→∞

vnkn(0, 0) ≤ L2. (11)

Remark 2.1 (On the conditions in Proposition 2.1) Conditions (8) and (10) do not depend
on the speed function vn; the constant α > 0 appears in both (8) and (9).

Proof of Proposition 2.1. For the first part of the proof we consider an arbitrarily fixed γ > 0 and
we take α > 0 as in (8) and (9). Then we have

E
[
exp

(
γvn
|t− s|α

|Zn(t)− Zn(s)|
)]
≤2 exp

(
vnγ
|mn(t)−mn(s)|
|t− s|α

+
v2
nγ

2

2

|kn(t, t)− 2kn(t, s) + kn(s, s)|
|t− s|2α

)
≤2evn(γM1+ γ2

2
M2)

by (6), (8) and (9). Thus Condition (i) in Theorem 1.1 holds; in fact we can take n0 such that

vn ≥ 1 for n ≥ n0, and κ = 2eγM1+ γ2

2
M2 .

Now the second part of the proof. For any δ > 0 we take n large enough to have |mn(0)| ≤ L1+δ
and vnkn(0, 0) ≤ L2 + δ. Then, for R > L1 + δ, we have

P (|Zn(0)| > R) ≤
2
√
kn(0, 0)√

2π(R− (L1 + δ))
e
− (R−(L1+δ))

2

2kn(0,0)

by (7); therefore

1

vn
logP (|Zn(0)| > R) ≤ 1

vn
log

(
2
√
kn(0, 0)√

2π(R− (L1 + δ))

)
− (R− (L1 + δ))2

2vnkn(0, 0)

≤ 1

vn
log

(
2
√
L2 + δ√

2π
√
vn(R− (L1 + δ))

)
− (R− (L1 + δ))2

2(L2 + δ)
,

and we easily get Condition (ii) in Theorem 1.1 by letting n and R go to infinity. �

In view of what follows it is useful to check (8), (9), (10) and (11) by referring to the following
conditions concerning the mean and covariance functions of the process {X(t) : t ≥ 1}; we remark
that (13) yields (9), while (12), (14) and (15) are equivalent to (8), (10) and (11), respectively.
Then we have:

sup

{
1

An

n∑
k=1

ak
|µ(k + t)− µ(k + s)|

|t− s|α
: n ≥ 1, s, t ∈ [0, 1], s 6= t

}
≤M1; (12)
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sup

{
vn
A2
n

B
(n)
1 (t, s) +B

(n)
2 (t, s) +B

(n)
3 (t, s)

|t− s|2α
: n ≥ 1, s, t ∈ [0, 1], s 6= t

}
≤M2, (13)

where

B
(n)
1 :=

n∑
k=1

a2
kξ(k, k, t, s), B

(n)
2 :=

n∑
k=2

k−1∑
h=1

ahakξ(k, h, t, s), B
(n)
3 :=

n∑
h=2

h−1∑
k=1

ahakξ(k, h, t, s)

and
ξ(k, h, t, s) := |ϕ(k + t, k + t)− 2ϕ(k + t, k + s) + ϕ(k + s, k + s)|;

lim sup
n→∞

1

An

n∑
k=1

ak|µ(k)| ≤ L1; (14)

lim sup
n→∞

vn
A2
n

n∑
k,h=1

ahakϕ(k, h) ≤ L2. (15)

As far as (15) is concerned, we remark that

n∑
k,h=1

ahakϕ(k, h) =
n∑
k=1

a2
kϕ(k, k) + 2

n∑
k=2

ak

k−1∑
h=1

ahϕ(k, h). (16)

Remark 2.2 (On (12) and (14)) As we said in Remark 2.1 for (8) and (10), conditions (12)
and (14) do not depend depend on the speed function vn. Moreover, in view of the examples
presented below (see Example 3.1 in Section 3, and Section 5), note that (12) and (14) hold if
the mean function µ(·) is differentiable and bounded (therefore, as a particular case, if the process
{X(t) : t ≥ 1} is centered, i.e. µ(t) = 0 for all t ≥ 1).

3 Results for the first class of covariance functions

We start with a condition on the covariance function ϕ(·, ·) and we compare it with a similar
condition in [11] (see Remark 3.1).

Condition 3.1 There exist two functions f1, f2 : [0, 1] → R such that: f1(0) = f2(0) = 0, f1

and f2 satisfy the Hölder condition, i.e. there exist M ∈ (0,∞) and γ1, γ2 ∈ (0, 1] such that, for
k ∈ {1, 2}, we have

|fk(x)− fk(y)| ≤M |x− y|γk (for all x, y ∈ [0, 1]), (17)

and
ϕ(t, s) = b1f1(qt+s) + b2f2(q|t−s|) (for all t, s ∈ [1,∞)) (18)

for some b1 ∈ R, b2 ≥ 0 and q ∈ (0, 1).

Remark 3.1 (Connections with hypothesis (exp) in [11]) If we consider Condition 3.1 with
f1(x) = f2(x) = x (for all x ∈ [0, 1]), and if we also allow the case q = 0, we recover condition
(exp) in [11] by setting (u and w are nonnegative constants which appear in [11])

b1 := u− w and b2 := w.

We also remark that: the continuity of the covariance function in (18) fails if we allow the case
q = 0 in Condition 3.1; if f1(x) = f2(x) = x (for all x ∈ [0, 1]), then we have f1(0) = f2(0) = 0
and (17) (with γ1 = γ2 = 1).
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Now we present the exponential tightness results. More precisely we obtain conditions (13) and
(15) for some α and some vn; thus, if (12) and (14) also hold (we recall that we have the same
constant α in (12) and (13)), we have the exponential tightness of {Zn : n ≥ 1} (with respect to
vn) by Proposition 2.1.

Proposition 3.1 Assume that Condition 3.1 holds, and that

sup

{
k−1∑
h=1

ahq
(γ1∧γ2)(k−h) : k ≥ 1

}
<∞. (19)

Then:
(i) if (3) holds, conditions (13) and (15) hold with α = (γ1 ∧ γ2)/2 and vn = An;
(ii) if (4) holds, conditions (13) and (15) hold with α = (γ1 ∧ γ2)/2 and vn = A2

n.

Proof. We start with the proof of (13). Firstly, by (18) and after some manipulations with the
triangle inequality, we have

|ϕ(k + t, h+ t)−2ϕ(k + t, h+ s) + ϕ(k + s, h+ s)|
=|b1f1(qk+h+2t) + b2f2(q|k−h|)− 2(b1f1(qk+h+t+s) + b2f2(q|k+t−(h+s)|))

+ b1f1(qk+h+2s) + b2f2(q|k−h|)|
≤|b1|(|f1(qk+h+2t)− f1(qk+h+t+s)|+ |f1(qk+h+t+s)− f1(qk+h+2s)|)

+ 2b2|f2(q|k−h|)− f2(q|k+t−(h+s)|)|;

therefore, by (17) and after some computations, we obtain

|ϕ(k + t, h+ t)−2ϕ(k + t, h+ s) + ϕ(k + s, h+ s)|
=|b1|Mqγ1(k+h+t+s)(|qt−s − 1|γ1 + |1− qs−t|γ1) + 2b2M |q|k−h| − q|k+t−(h+s)||γ2 .

Moreover we remark that qγ1(k+h+t+s) ≤ qγ1|k−h| and

|q|k−h| − q|k+t−(h+s)||γ2 = qγ2|k−h||1− q|k+t−(h+s)|−|k−h||γ2

where

|k + t− (h+ s)| − |k − h| =


|t− s| if k = h
t− s if k > h
s− t if k < h.

Therefore condition (13) can be easily checked with α = (γ1 ∧ γ2)/2 if we show that

sup

 vn
A2
n

n∑
k,h=1

akahq
γi|k−h| : n ≥ 1

 <∞ (for i ∈ {1, 2});

to this aim it is enough to check that

sup

{
vn
A2
n

n∑
k=1

a2
k : n ≥ 1

}
<∞ and sup

{
vn
A2
n

n∑
k=2

ak

k−1∑
h=1

ahq
(γ1∧γ2)(k−h) : n ≥ 1

}
<∞. (20)

Now we distinguish the cases (i) and (ii). In the first case (where we have vn = An) the first
quantity is finite by taking into account (3), and the second one is finite by taking into account
(19). In the second case (where we have vn = A2

n) the first quantity is finite by taking into account
(4) and the finiteness of

∑∞
k=1

1
k2

, and the second one is finite by (17) in [11].
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We conclude with the proof of (15). Firstly we have

|ϕ(k, h)| ≤ |b1|Mqγ1(k+h) + b2Mqγ2|k−h| ≤ (|b1|+ b2)Mq(γ1∧γ2)|k−h|

with some standard manipulations where we take into account (18), f1(0) = f2(0) = 0, k+h ≥ |k−h|
and (17). Then, if we set M̃ := (|b1|+ b2)M , by (16) we have

n∑
k,h=1

ahakϕ(k, h) ≤ M̃
n∑
k=1

a2
k + 2M̃

n∑
k=2

ak

k−1∑
h=1

ahq
(γ1∧γ2)(k−h).

Therefore condition (15) can be easily checked if we show that

lim sup
n→∞

vn
A2
n

n∑
k=1

a2
k <∞ and lim sup

n→∞

vn
A2
n

n∑
k=2

ak

k−1∑
h=1

ahq
(γ1∧γ2)(k−h) <∞.

These two conditions hold (under both conditions (i) and (ii)) because we already show that (20)
hold. �

Remark 3.2 Now we briefly discuss Propositions 3.1 and 3.2(i) in [11], i.e. the proof of the limit
(5), in terms of Condition 3.1. The proofs can be repeated under some slightly different hypotheses:
f1(x) = f2(x) = x (for all x ∈ [0, 1]) which yields f1(0) = f2(0) = 0; the case q = 0 can be allowed.
The propositions (and their proofs) could be repeated here with suitable modifications; for instance
we have the constants b1 and b2 in place of u and w (see Remark 3.1). The details are omitted.

We conclude this section with Example 3.1; another example concerning Condition 3.1 is pre-
sented in Section 5 (Example 5.6). Example 3.1 is a revised version of the example in [11] based
on the classical Ornstein-Uhlenbeck process with affine drift; the revised version of the example in
this paper takes into account Condition 3.1 (we recall Remark 3.1 with the connections between
Condition 3.1 in this paper and hypothesis (exp) in [11]).

Example 3.1 (Classical Ornstein-Uhlenbeck process with affine drift) Let {X(t) : t ≥ 0}
be the solution of the stochastic differential equation

dX(t) = (−αX(t) + β)dt+ σdB(t)

where α, σ > 0, β ∈ R, {B(t) : t ≥ 0} is a standard Brownian motion, and X(0) is a Normal
distributed random variable with mean µ0 and variance σ2

0. It is known that, for 0 ≤ s ≤ t, we have

ϕ(t, s) := e−α(t−s)
(
σ2

0e
−2αs +

σ2

2α
(1− e−2αs)

)
=

(
σ2

0 −
σ2

2α

)
e−α(t+s) +

σ2

2α
e−α(t−s).

Thus Condition 3.1 holds with b1 = σ2
0 − σ2

2α , b2 = σ2

2α , q = e−α, and f1(x) = f2(x) = x for all
x ∈ [0, 1] (and therefore γ1 = γ2 = 1 as pointed out in Remark 3.1). Finally we notice that, in
connection with Remark 2.2, we have

µ(t) = e−αtµ0 +
β

α
(1− e−αt) (for all t ≥ 0).

4 Results for the second class of covariance functions

We start with a condition on the covariance function ϕ(·, ·) and we compare it with a similar
condition in [11] (see Remark 4.1).
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Condition 4.1 There exist a function g : [0, 1]→ [0,∞) such that: g(0) = 0, g satisfies the Hölder
condition, i.e. there exist M ∈ (0,∞) and γ ∈ (0, 1] such that

|g(x)− g(y)| ≤M |x− y|γ (for all x, y ∈ [0, 1]), (21)

and

ϕ(t, s) = g

(
s ∧ t
s ∨ t

)
(for all t, s ∈ [1,∞)). (22)

Remark 4.1 (Connections with hypothesis (power) in [11]) If we consider Condition 4.1
with

g(x) ≤Mxγ (for all x ∈ [0, 1]) (23)

in place of (21) (note that (21) yields (23)), we recover condition (power) in [11] by setting (f , c
and ρ are items in [11])

g(x) :=
f(x)

xc
and γ := 1− ρ.

Actually here we also allow the case ρ = 0 which was neglected in [11].

Now we present the exponential tightness result. As in Proposition 3.1, we obtain conditions
(13) and (15) for some α and some vn; thus, if (12) and (14) also hold (we recall that we have the
same constant α in (12) and (13)), we have the exponential tightness of {Zn : n ≥ 1} (with respect
to vn) by Proposition 2.1.

Proposition 4.1 Assume that Condition 4.1 holds. Then, if (4) holds, conditions (13) and (15)
hold with α = γ/2 and vn = An.

Proof. We start with the proof of (13) with α = γ/2 and vn = An. It suffices to show that

Sj := sup

{
1

An

B
(n)
j (t, s)

|t− s|γ
: n ≥ 1, s, t ∈ [0, 1], s 6= t

}
(for j ∈ {1, 2, 3})

are finite.
We start with the case j = 1, i.e. k = h; moreover for the moment we assume that t ≥ s. Then,

by taking into account Condition 4.1, we have

|ϕ(k + t, k + t)− 2ϕ(k + t, k + s) + ϕ(k + s, k + s)|

=

∣∣∣∣g(1)− 2g

(
k + s

k + t

)
+ g(1)

∣∣∣∣ = 2

∣∣∣∣g(1)− g
(
k + s

k + t

)∣∣∣∣
≤2M

∣∣∣∣1− k + s

k + t

∣∣∣∣γ ≤ 2M
(t− s)γ

kγ
.

Then, for all t, s ∈ [0, 1], we have

|ϕ(k + t, k + t)− 2ϕ(k + t, k + s) + ϕ(k + s, k + s)| ≤ 2M
|t− s|γ

kγ
;

thus, by also taking into account (4), we complete the proof for the case j = 1 noting that

S1 ≤ 2M sup

{
1

An

n∑
k=1

a2
k ·

1

kγ
: n ≥ 1

}
≤ 2C2M sup

{
1

An

n∑
k=1

1

k2+γ
: n ≥ 1

}
<∞.
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Now we consider the case j = 2, i.e. k > h. Then, by taking into account Condition 4.1, for all
t, s ∈ [0, 1] we have

|ϕ(k + t, h+ t)− 2ϕ(k + t, h+ s) + ϕ(k + s, h+ s)|

=

∣∣∣∣g(h+ t

k + t

)
− 2g

(
h+ s

k + t

)
+ g

(
h+ s

k + s

)∣∣∣∣
≤
∣∣∣∣g(h+ t

k + t

)
− g

(
h+ s

k + t

)∣∣∣∣+

∣∣∣∣g(h+ s

k + s

)
− g

(
h+ s

k + t

)∣∣∣∣
≤M |t− s|

γ

(k + t)γ
+M(h+ s)γ

|t− s|γ

(k + t)γ(k + s)γ

≤M |t− s|γ
(

1

(k + t)γ
+

1

(k + t)γ

)
≤ 2M

|t− s|γ

kγ
.

thus, by also taking into account (4), we complete the proof for the case j = 2 noting that

S2 ≤2M sup

{
1

An

n∑
k=2

ak

k−1∑
h=1

ah
1

kγ
: n ≥ 1

}
≤ 2C2M sup

{
1

An

n∑
k=2

1

k1+γ

k−1∑
h=1

1

h
: n ≥ 1

}

≤2C2M sup

{
1

An

n∑
k=2

1

k1+γ
(1 + log(k − 1)) : n ≥ 1

}
<∞.

The proof for j = 3, i.e. the proof of the finiteness of S3, is similar to the one for j = 2 (by
exchanging the role of h and k because we have k < h instead of k > h).

We conclude with the proof of (15) with vn = An. Firstly we have

n∑
k,h=1

ahakϕ(k, h) = g(1)
n∑
k=1

a2
k + 2

n∑
k=2

ak

k−1∑
h=1

ahg(h/k)

by (16). Then, by (4) and by Condition 4.1 (in particular here we take into account that g(0) = 0),
we have

n∑
k,h=1

ahakϕ(k, h) ≤ g(1)C2
n∑
k=1

1

k2
+ 2CM

n∑
k=2

ak

k−1∑
h=1

1

h

(
h

k

)γ
.

Moreover we remark that

n∑
k=2

ak

k−1∑
h=1

1

h

(
h

k

)γ
=

n∑
k=2

ak
kγ

k−1∑
h=1

1

h1−γ ≤
n∑
k=2

ak
kγ

∫ k−1

0

1

x1−γ dx

=

n∑
k=2

ak
kγ
· (k − 1)γ

γ
≤ 1

γ

n∑
k=2

ak ≤
An
γ

;

then
1

An

n∑
k,h=1

ahakϕ(k, h) ≤ g(1)C2

An

n∑
k=1

1

k2
+

2CM

An
· An
γ

=
g(1)C2

An

n∑
k=1

1

k2
+

2CM

γ

and we complete the proof by taking into account (2) and the finiteness of
∑∞

k=1
1
k2

. �

Remark 4.2 Now we briefly discuss Proposition 3.3 in [11], i.e. the proof of the limit (5), in
terms of Condition 4.1. We remark that this limit can be proved under some slightly different
hypotheses: we can consider (23) in place of (21). In connection with Remark 4.1, we can say that
the proof of Proposition 3.3 in [11] still works with x 7→ g(x) and 1 − γ in this paper in place of

x 7→ f(x)
xc and ρ ∈ (0, 1) in [11] (in particular we have c(t, s) := 2˜̀

∫ 1
0
g(x)
x dx, for all t, s ∈ [0, 1],
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where ˜̀ := limn→∞ nan as in (13) in [11]); moreover here we allow the case γ = 1 while the case
ρ = 0 was neglected in [11] (see condition (power) in that reference), and this is possible with
suitable minor modifications of some parts of the proof (in some cases the steps of the proof are
even easier). The details are omitted.

5 Examples

In Section 3 we presented Example 3.1 concerning Condition 3.1. In this section we present sev-
eral examples of self-similar process such that Condition 4.1 holds; finally we present an example
concerning Condition 3.1 where we have Lamperti’s transforms of normalized self-similar processes
which satisfy Condition 4.1.

In all the examples presented in this section (except the final Example 5.6) we assume that
{X(t) : t ≥ 1} is defined by

X(t) :=
V (t)

tH
(for all t ≥ 1),

where {V (t) : t ≥ 0} is a centered self-similar Gaussian process with parameter H > 0. We recall
that the law of the process {V (t) : t ≥ 0} is determined by its covariance function, which satisfies
the following condition (see e.g. Example 8.9.2 in [6])

Cov(V (t), V (s)) = t2HCov(V (1), V (s/t)) (for all s ≥ 0 and t > 0); (24)

then, since we are interested in Condition 4.1, we can easily check that

ϕ(t, s) =
1

tHsH
Cov(V (t), V (s)) =

Cov(V (1), V (s/t))

(s/t)H
(for all t ≥ s ≥ 1),

and we can say that (22) holds with

g(x) := x−HCov(V (1), V (x)). (25)

For each one of the examples below (except the final Example 5.6) we can say that (24) holds for
a specific value of H (in several cases this is well-known) and we check that g is a nonnegative
function (defined on [0, 1]) which satisfies the Hölder condition (21) for a suitable γ ∈ (0, 1], and
g(0) = 0.

We recall that in some cases we have revised versions of the examples in [11] (Example 5.1 with
k = 1 and Example 5.4); these revisions take into account Condition 4.1 in this paper (we recall
Remark 4.1 with the connections between Condition 4.1 in this paper and hypothesis (power) in
[11]).

We start with Examples 5.1, 5.2 and 5.3, in which we have the following common feature: the
Hölder condition (21) for the function g holds with γ := γ(0) ∧ γ(1), where γ(0) and γ(1) are two
Hölder exponents which depend on the behavior of the function g at x = 0 and at x = 1 (in fact
the restriction of g on (0, 1) is a regular function).

Example 5.1 (Bifractional Brownian Motion) We have

Cov(V (t), V (s)) =
σ2

2k

{
(t2h + s2h)k − |t− s|2hk

}
(for all t, s ≥ 0)

for σ2 > 0, h ∈ (0, 1) and k ∈ (0, 2) such that hk ∈ (0, 1) (see e.g. [15], Definition 1.1). Then (24)
holds with H = hk, and the function g in (25) is

g(x) :=
σ2

2k
x−hk

{
(1 + x2h)k − (1− x)2hk

}
.

10



One can easily check that g is nonnegative and γ(1) = (2hk)∧1. Moreover γ(0) = (h(2−k))∧(1−hk)
because, near x = 0, the function g behaves like

σ2

2k
x−hk

{
(1 + kx2h)− (1− 2hkx)

}
=
σ2

2k

{
kx2h−hk + 2hkx1−hk

}
(note that this allows to say that g(0) = 0). In conclusion we have γ = γ(0) ∧ γ(1) = (h(2 − k)) ∧
(1− hk) ∧ (2hk).

Example 5.2 (Sub-fractional Brownian Motion) We have

Cov(V (t), V (s)) =
σ2

2− 22h−1

{
t2h + s2h − 1

2
((s+ t)2h + |t− s|2h)

}
(for all t, s ≥ 0)

for σ2 > 0 and h ∈ (0, 1) (see e.g. [15], Definition 1.1). Then (24) holds with H = h, and the
function g in (25) is

g(x) :=
σ2

2− 22h−1
x−h

{
1 + x2h − 1

2
((1 + x)2h + (1− x)2h)

}
=

σ2

2(2− 22h−1)
x−h

{
2(1 + x2h)− (1 + x)2h − (1− x)2h

}
.

One can easily check that g is nonnegative (namely one can check that 1
2((1+x)2h+(1−x)2h) ≤ 1)

and γ(1) = (2h) ∧ 1. Moreover γ(0) = h because, near x = 0, the function g behaves like

σ2

2(2− 22h−1)
x−h

{
2(1 + x2h)− (1 + 2hx)− (1− 2hx)

}
=

σ2xh

(2− 22h−1)

(note that this allows to say that g(0) = 0). In conclusion we have γ = γ(0) ∧ γ(1) = h.

Example 5.3 (Another example cited in [15]) We have

Cov(V (t), V (s)) =

{
Γ(1−K)

K

{
tK + sK − (t+ s)K

}
if K ∈ (0, 1)

Γ(2−K)
K(K−1)

{
(t+ s)K − tK − sK

}
if K ∈ (1, 2)

(for all t, s ≥ 0)

(see e.g. [15], equation (2.1) and the successive displayed formula; see also [14] cited therein).
Then (24) holds with H = K/2, and the function g in (25) is

g(x) := CKx
−K/2(1 + xK − (1 + x)K)

for a suitable positive constant CK (which depends on K). One can check that g is nonnegative
(namely one can check that the function 1 + xK − (1 + x)K is increasing in [0, 1]) and, since the
behavior of the function g near x = 1 is regular, we have γ(1) = 1. Moreover γ(0) = (K/2)∧(1−K/2)
because, near x = 0, the function g behaves like

CKx
−K/2 {1 + xK − (1 +Kx)

}
= CKx

K/2 −Kx1−K/2

(note that this allows to say that g(0) = 0). In conclusion we have γ = γ(0)∧γ(1) = (K/2)∧(1−K/2).

We have two further examples concerning Condition 4.1.

Example 5.4 (Integrated Brownian Motion) We have

Cov(V (t), V (s)) =
1

(a!)2

∫ σ2·s∧t

0
(σ2s− r)a(σ2t− r)adr

=
σ4a+2

(a!)2

∫ s∧t

0
(s− u)a(t− u)adu (for all t, s ≥ 0).
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for σ2 > 0 and a ∈ {0, 1, 2, . . .} (see e.g. [2] and the references cited therein; the process {V (t) : t ≥
0} is the a-th fold Integrated Brownian Motion with variance parameter σ2 > 0, and a = 0 means
no integration). Then (24) holds with H = a+ 1

2 , and the function g in (25) is

g(x) :=
σ4a+2

(a!)2
· x1/2 ·

∫ 1

0
(1− y)a(1− xy)ady

(this can be checked after some easy computations). Finally we can say that the function g is
nonnegative, g(0) = 0 and γ = 1

2 .

Example 5.5 (Gaussian Martingale) We have

Cov(V (t), V (s)) =
(s ∧ t)2η+1

2η + 1
(for all t, s ≥ 0).

for some η ≥ 0 (see e.g. [7], Section 4.1; the process {V (t) : t ≥ 0} is defined by V (t) :=
∫ t

0 t
ηdB(t),

where {B(t) : t ≥ 0} is a standard Brownian Motion). Then (24) holds with H = η + 1
2 , and the

function g in (25) is

g(x) :=
xη+1/2

2η + 1
.

Finally we can say that the function g is nonnegative, g(0) = 0 and γ = (η + 1/2) ∧ 1.

We conclude with Example 5.6 concerning Condition 3.1. In view of this we consider a process
{Y (t) : t > 0} defined by

Y (t) :=
V (t)

tH
(for all t ≥ 0),

where {V (t) : t ≥ 0} is a self-similar process with parameter H > 0 which satisfies Condition 4.1.
Then the process {X(t) : t ≥ 1} will be the Lamperti’s transform (also called Doob’s transform)
of {Y (t) : t > 0}. As a particular case of Example 5.6 we have the fractional Ornstein-Uhlenbeck
process of the second kind (see e.g. Section 3 in [12]). On the contrary we believe that the
fractional Ornstein-Uhlenbeck process of the first kind (which is the unique strong solution of the
Langevin stochastic differential equation with fractional Brownian motion noise; see e.g. Section
2.2 in [12]) cannot be considered as an example which satisfies Condition 3.1 or Condition 4.1. For
completeness we cite [3] as an important reference where these two fractional Ornstein-Uhlenbeck
processes are studied.

Example 5.6 (Lamperti’s transform of normalized self-similar processes) Let {Y (t) : t >
0} be defined as above. Then, for α > 0, its Lamperti’s transform is defined by

X(t) := e−αt · Y
(
H

α
· eαt/H

)
.

So we have

X(t) = e−αt
(
H

α
· eαt/H

)H
· V
(
H

α
· eαt/H

)
=

(
H

α

)H
· V
(
H

α
· eαt/H

)
and, if we consider the function g concerning the covariance function of the process {V (t) : t ≥ 0}
(we recall that it satisfies Condition 4.1), we get

ϕ(t, s) =

(
H

α

)2H

g
(
e−α(t−s)/H

)
(for all t ≥ s ≥ 1)

12



after some easy computations. In conclusion Condition 3.1 holds; namely we have (18) with

b1 = 0, b2 =

(
H

α

)2H

, f2 = g and q = e−α/H

(thus γ2 = γ).
As a particular case we can consider the fractional Ornstein-Uhlenbeck process of the second

kind, i.e. the Lamperti’s transform of the fractional Brownian Motion {V (t) : t ≥ 0} as in Example
5.1 with h = H and k = 1; thus Condition 3.1 holds with the positions above, where f2 and γ2

coincide with g and γ in Example 5.1 with h = H and k = 1 (thus γ = H ∧ 1−H).

We remark that, in connection with Remark 2.2, in all the examples in this section we have
µ(t) = 0 for all t ≥ 0.

A Proof of Lemma 2.1

We start with the proof of (6). The moment generating function of the random variable X is

E[eθX ] = eµθ+
σ2

2
θ2 (for all θ ∈ R).

Then, for all η ≥ 0, we have
E[eηX ] ≤ e|µ|ηE[eη|X−µ|]

and
E[eη|X−µ|] = E[eη(X−µ)1X−µ≥0] + E[eη(µ−X)1X−µ<0] = 2E[eη(X−µ)1X−µ≥0]

(the last equality holds because X − µ and µ − X are equally distributed); thus we get (6) by
putting the pieces together, and by considering the moment generating function of the centered
Gaussian distributed random variables X − µ.

Now the proof of (7). Let Φ̄ be the function defined by

Φ̄(x) :=
1√
2π

∫ ∞
x

e−
y2

2 dy.

Then, if R > |µ|, or equivalently R− µ > 0 and R+ µ > 0, we have

P (|X| > R) =P (X > R) + P (X < −R) = Φ̄

(
R− µ
σ

)
+ 1− Φ̄

(
−R− µ

σ

)
=Φ̄

(
R− µ
σ

)
+ Φ̄

(
R+ µ

σ

)
and, by the well-known estimate

Φ̄(x) ≤ 1√
2πx

e−
x2

2 (for all x > 0)

(see e.g. [8], Chapter 7, Lemma 2, Equation (1.8)), we obtain

P (|X| > R) ≤ σ√
2π(R− µ)

e−
(R−µ)2

2σ2 +
σ√

2π(R+ µ)
e−

(R+µ)2

2σ2 .

In conclusion (7) is proved. We remark that (7) trivially holds even if σ2 = 0, or equivalently
X = µ almost surely (in fact we have P (|X| > R) = 0 for R > |µ|).
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