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Abstract

Due to their heterogeneity, insurance risks can be properly described as a mixture of different
fixed models, where the weights assigned to each model may be estimated empirically from a
sample of available data. If a risk measure is evaluated on the estimated mixture instead of the
(unknown) true one, then it is important to investigate the committed error. In this paper we
study the asymptotic behaviour of estimated risk measures, as the data sample size tends to
infinity, in the fashion of large deviations. We obtain large deviation results by applying the
contraction principle, and the rate functions are given by a suitable variational formula; explicit
expressions are available for mixtures of two models. Finally, our results are applied to the
most common risk measures, namely the quantiles, the Expected Shortfall and the shortfall risk
measure.
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1 Introduction

Quantitative risk management for financial and insurance companies requires the modelling of fi-
nancial positions in terms of random variables on a suitable probability space; in mathematical
terms, this corresponds to identifying a probability law (model) µ on the real line that describes
as accurately as possible, the random behaviour of the position. Model risk, that arises from the
uncertainty about the model to adopt, has been largely discussed in various area of the litera-
ture, because it may impact substantially companies decision making and performance. We can
distinguish three main approaches to deal with model uncertainty: 1) the model is not specified
but directly extrapolated from data via the empirical distribution; 2) a model is selected and its
parameters are estimated from data (e.g. using Maximum Likelihood Estimation); 3) a class of
candidate models is considered (for instance models suggested by expert opinion) and then one or
an average of them is applied. The latter approach is probably the most common one and includes
for instance: the worst-case approach proposed by Gilboa and Schmeidler (1989) in the theory of
utility maximization, where the chosen model is the one providing the most adverse outcome; the
Bayesian model averaging approach, developed by Raftery et al. (1997) where (posterior) weights
are calculated for each model considering both information arising from data and prior beliefs;
the highest posterior approach, where the selected model is the one most favourable according to
the posterior weights. Cairns (2000) provided a general framework for dealing with model and
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parameter uncertainty in an insurance framework, while Pesaran et al. (2009) considered a model
averaging approach in a risk management context. As we will see later, in this contribution we
consider an average of fixed models where the weights are estimated empirically.

A second fundamental step for internal and external risk management purposes is to quantify
the riskiness of the company positions. Once the model has been chosen, this essentially corresponds
to applying a suitable risk measure ρ to the financial position. The impact of model uncertainty on
risk measurement was discussed among others by Barrieu and Scandolo (2015) and Bignozzi and
Tsanakas (2016) where different measures of model risk are considered.

Most of the risk measures generally considered, from both academics and practitioners, are
law-invariant that is, univocally determined by the probability law of the random variable. These
risk measures can then be treated as statistical functionals.

While the mathematical theory of risk measures is by now well developed, we refer for instance
to Föllmer and Schied (2016) for an extensive treatment of coherent and convex risk measures,
research on the statistical properties of risk measures is fairly recent. The seminal paper by Cont
et al. (2010) started a new strand in the literature that investigates the statistical properties of risk
measures in terms of robustness with respect to available data and to different model estimation
procedures. The main difference between the mathematical and the statistical approaches is that,
in the first case risk measures are defined on a space of random variables, while in the second one,
on a space of probability measures. Although, under weak technical assumptions, for a random
variable X with probability law µ, we can identify ρ(X) and ρ(µ), it is important to emphasise that
properties of risk measures on random variables and on distributions are different. In particular,
given two random variables X, Y with distributions µ, ν the convex combination

pX + (1− p)Y,

for p ∈ (0, 1), corresponds to a diversification of the portfolio, therefore it is reasonable to require
a risk measure to be convex with respect to random variables. On the other side, the mixture
distribution

pµ+ (1− p)ν

represents a higher risk profile and thus a risk measure should not be convex with respect to
mixtures of distributions. Properties of the risk measures with respect to mixture distributions,
have been investigated by Acciaio and Svindland (2013). Weber (2006) used such properties to
characterise dynamic risk measures, while Ziegel (2016), Bellini and Bignozzi (2015) and Delbaen
et al. (2016) used them to study elicitable functionals. Bernardi et al. (2017) presented some results
on risk measures evaluated on mixtures of Gaussian and Student t distributions.

In this contribution we consider risk measures applied to the mixture distribution

π1µ1 + . . .+ πsµs,

where {µ1, . . . , µs} is a set of s available models, and π1, . . . , πs ≥ 0 (with
∑s

j=1 πj = 1) are the
weights assigned to each model. Mixture models are particularly relevant when a single model is not
sufficient to fully describe the data. They represent a flexible approach for modelling heterogeneous
data and to carry out cluster analysis. Further, mixture models represent a ductile way to model
unknown distributional shapes. Such situations are quite common in insurance where often a mix
of small, medium and large size claims occurs; we refer the interested reader to Klugman et al.
(2012) for a full treatment of loss modelling in actuarial science. Bernardi et al. (2012) proposed
finite mixtures of Skew Normal distributions to properly characterise insurance data, while Lee and
Lin (2010) suggested a mixture of Erlang distributions. In a statistical framework mixture models
have a variety of applications; we refer to McLachlan and Peel (2004) for an extensive treatment
of the topic.
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Throughout this paper the models µ1, . . . , µs are assumed to be fixed, and the weights π1, . . . , πs
are estimated empirically from independent samples. In an insurance framework, we can assume
that each model represents the loss profile of a customer (or a class of customers) and the weights are
estimated registering the relative frequency of claims occurring for each model. Then we consider

the sequence of empirical risk measures
{
ρ(
∑s

j=1 π̂n(j)µj) : n ≥ 1
}

, where the weight estimators

π̂n(1), . . . , π̂n(s) concern the empirical law of i.i.d. random variables {X1, . . . , Xn} with distribution
π = (π1, . . . , πs) (see (1) below).

In this paper we prove large deviation results for the empirical risk measures. The theory of
large deviations gives an asymptotic computation of small probabilities on an exponential scale
(see e.g. Dembo and Zeitouni, 1998 as a reference on this topic). The large deviation principles
are obtained by applying the contraction principle; so the rate functions are given by a suitable
variational formula. We use the method of the Lagrange multipliers, and explicit expressions are
available for s = 2. We then apply our results to the most common risk measures, namely the
quantiles (also known as Value-at-Risk in the risk management literature), the Expected Shortfall
(ES) and the shortfall risk measure.

A different approach for large deviation analysis may be the use of precise large deviation
techniques which are beyond the purpose of the paper; among others, a possible reference for the
interested reader is Féray et al. (2016).

Our work was inspired by Weber (2007), where the author considered the empirical risk measures
{ρ(µ̂n) : n ≥ 1}, and

µ̂n :=
1

n

n∑
i=1

δYi

is the empirical law of i.i.d. random variables {Y1, . . . , Yn} having (unknown) distribution µ with
bounded support. The main goal of that paper is to investigate coherent and convex risk mea-
sures that are continuous on compacts. This condition yields the large deviation principle of
{ρ(µ̂n) : n ≥ 1} by applying the contraction principle (see Proposition 2.1 and Corollary 2.1 in
Weber, 2007).

The paper is organised as follows. Section 2 gathers some preliminaries on large deviations and
their applications to our framework with finite mixtures. In Section 3 we present the main results
of the paper, while Section 4 presents some examples for the most common risk measures used in
practice and in the literature.

2 Preliminaries

In this section we recall some preliminaries on large deviations and a large deviation principle for
a sequence of estimators (see Proposition 2.1).

2.1 Preliminaries on large deviations

A sequence of random variables {Wn : n ≥ 1} taking values on a topological space W satisfies
the large deviation principle (LDP for short) with rate function I : W → [0,∞] if I is a lower
semi-continuous function,

lim inf
n→∞

1

n
logP (Wn ∈ O) ≥ − inf

w∈O
I(w) for all open sets O

and

lim sup
n→∞

1

n
logP (Wn ∈ C) ≤ − inf

w∈C
I(w) for all closed sets C.
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A rate function I is said to be good if all its level sets {{w ∈ W : I(w) ≤ η} : η ≥ 0} are compact.
Finally we also recall the contraction principle (see e.g. Theorem 4.2.1 in Dembo and Zeitouni, 1998):
let Y be a topological space, and let f : W → Y be a continuous function; then, if {Wn : n ≥ 1}
satisfies the LDP with good rate function I, and Yn := f(Wn) (for all n ≥ 1), {Yn : n ≥ 1} satisfies
the LDP with good rate function J defined by

J(y) := inf{I(w) : w ∈ W, f(w) = y}.

The LDP for real valued random variables is used to obtain asymptotic evaluations for the
logarithm of tail probabilities; indeed, for a wide class of cases, we have

logP (Wn > x) ∼ −nI(x)

at least for x large enough to have I(x) = infw>x I(w) (we use the symbol ∼ to mean that the ratio
tends to 1 as n→∞).

2.2 LDP for estimators of ρ(µ) when µ is a mixture

We define a law-invariant risk measure as a map

ρ : P(R)→ R,

that assigns to every probability measure µ ∈ P(R) on the real line a real number ρ(µ). Such a value,
is generally used to summarise the riskiness of the model µ and can be adopted to calculate solvency
capital requirements. In the present contribution, we focus on probability distributions that arise
as mixtures π1µ1 + . . . + πsµs of some fixed models µ1, . . . , µs with weights π = (π1, . . . , πs) ∈ Σs

where
Σs := {(p1, . . . , ps) : p1, . . . , ps ≥ 0, p1 + · · ·+ ps = 1}

is the simplex; we are then interested in computing ρ
(∑s

j=1 πjµj

)
. In mixture models used for

modeling insurance data, it is often the case that the weights π1, . . . , πs are unknown and estimated
from a set of n available data by π̂n = (π̂n(1), . . . , π̂n(s)), see for instance Lee et al. (2012). In

order to estimate the error committed in computing the estimated risk measure ρ
(∑s

j=1 π̂n(j)µj

)
instead of the correct one ρ

(∑s
j=1 π(j)µj

)
, we employ the theory of large deviations. In particular,

we consider the case where the weights are estimated empirically as

π̂n(j) :=
1

n

n∑
i=1

δXi=j (for all j ∈ {1, . . . , s}), (1)

where {X1, . . . , Xn} are i.i.d. random variables with distribution π = (π1, . . . , πs). It is well known
that the sequence of empirical measures (π̂n)n converges P -a.s. to π, and that it satisfies the LDP
(see e.g. Theorem 2.1.10 in Dembo and Zeitouni, 1998). Therefore, by applying the contraction
principle (see Theorem 4.2.1 in Dembo and Zeitouni, 1998), we obtain the LDP stated in the
following proposition.

Proposition 2.1. Let π = (π1, . . . , πs) ∈ Σs. Moreover assume that the function

Σs 3 (p1, . . . , ps) 7→ ρ

 s∑
j=1

pjµj

 (2)
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is continuous. Then
{
ρ
(∑s

j=1 π̂n(j)µj

)
: n ≥ 1

}
satisfies the LDP (as n → ∞) with good rate

function Hρ,〈π,µ〉 defined by

Hρ,〈π,µ〉(r) := inf


s∑
j=1

pj log
pj
πj

: (p1, . . . , ps) ∈ Σs, ρ

 s∑
j=1

pjµj

 = r

 . (3)

Remark 2.1 (Relative entropy and Sanov’s Theorem). The quantity Eπ[ dpdπ log dp
dπ ] =

∑s
j=1 pj log

pj
πj

in (3) is the relative entropy of a general probability measure p = (p1, . . . , ps) on the state space
{1, . . . , s}, with respect to the probability measure π = (π1, . . . , πs) that gives the actual (but un-
known) weights of the mixture model. Large deviation rate functions are indeed often expressed in
terms of relative entropy; see e.g. the discussion in Varadhan (2003). The rate function is thus
obtained minimising the relative entropy under a constraint on the risk measure.

Remark 2.2 (The set Sπ and the value r0). If πj = 0 for some j ∈ {1, . . . , s}, then we have

pj log
pj
πj

=

{
0 if pj = 0
∞ if pj ∈ (0, 1];

so, in some sense, the index j is negligible. Then we should consider the set Sπ := {i ∈ {1, . . . , s} :
πi > 0} instead of {1, . . . , s}; however, with a slight abuse of notation, throughout the paper we
always refer to {1, . . . , s} (and its cardinality s) because we can always rearrange the notation in
order to have Sπ = {1, . . . , s}. We also remark that Hρ,〈π,µ〉(r) uniquely vanishes at r = r0, where

r0 := ρ

 s∑
j=1

πjµj

 .

Thus we can say that, for every δ > 0, under the hypotheses of Proposition 2.1, the probability

P

∣∣∣∣∣∣ρ
 s∑
j=1

π̂n(j)µj

− r0

∣∣∣∣∣∣ ≥ δ


decays as e−nhδ , where hδ := inf
{
Hρ,〈π,µ〉(r) : |r − r0| ≥ δ

}
> 0, as n→∞.

3 Results

In this section we provide, when possible, an explicit expression of the variational formula in (3).

Note that in general the constraint ρ
(∑s

j=1 pjµj

)
= r cannot be written explicitly in terms of the

pj ’s; for this reason we introduce the next Condition 3.1 that requires a sort of linear dependence of
the risk measures with respect to the mixture weights. As we shall see in Theorem 3.1, this allows
us to handle the variational formula in (3) with the method of Lagrange multipliers. Condition
3.1 does not seem to be restrictive, it is indeed satisfied by many of the risk measures used by
academics and practitioners.

Condition 3.1. The function in (3) can be written as

Hρ,〈π,µ〉(r) := inf


s∑
j=1

pj log
pj
πj

: (p1, . . . , ps) ∈ Σs,

s∑
j=1

pjΨρ(µj , r) = 0

 , (4)

for some (strictly) decreasing functions Ψρ(µ1, ·), . . . ,Ψρ(µs, ·). Moreover, for all i ∈ {1, . . . , s},
there exists a unique r

(0)
i such that Ψρ

(
µi, r

(0)
i

)
= 0.
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Obviously we could require that Ψρ(µ1, ·), . . . ,Ψρ(µs, ·) are increasing functions (instead of de-
creasing); in such a case we can reduce to Condition 3.1 (namely the functions Ψρ(µ1, ·), . . . ,Ψρ(µs, ·)
are decreasing) by a change of sign.

We will see in Section 4 that Condition 3.1 is fulfilled by some popular risk measures, such as
the quantiles, the mean and the class of convex shortfall risk measures introduced by Föllmer and
Schied (2002). The Expected Shortfall satisfies this condition only under some extra requirements.
A similar condition recently appeared in the literature about elicitable risk measures under the
name of Convex Level Sets (CxLS). A risk measure has CxLS if, given ρ(µ1) = · · · = ρ(µs) = r,
then ρ(

∑s
j=1 pjµj) = r. Clearly, if ρ(µ1) = · · · = ρ(µs) = r, the CxLS property implies our

Condition 3.1 with
Ψρ(µj , r) := ρ(µj)− r.

A full characterization of convex risk measures satisfying the CxLS property is provided in Delbaen
et al. (2016).

Remark 3.1 (Consequences of Condition 3.1 for r0). If Condition 3.1 holds, then we have

s∑
j=1

πjΨρ(µj , r0) = 0. (5)

Moreover, if we set rρ := min
{
r

(0)
i : i ∈ {1, . . . , s}

}
and rρ := max

{
r

(0)
i : i ∈ {1, . . . , s}

}
, we have

rρ ≤ rρ. Then we can distinguish two cases (see parts (i) and (ii) in the next Theorem 3.1):

• rρ = rρ =: r̂ρ, which occurs if and only if r
(0)
1 = · · · = r

(0)
s = r̂ρ; in this case we have r0 = r̂ρ,

and the estimators
{
ρ
(∑s

j=1 π̂n(j)µj

)
;n ≥ 1

}
are constantly equal to r0;

• rρ < rρ; in this case we have r0 ∈ (rρ, rρ), and the estimators
{
ρ
(∑s

j=1 π̂n(j)µj

)
;n ≥ 1

}
take values in [rρ, rρ].

The first case always occurs if s = 1.

Now we are ready to present Theorem 3.1. In general we only have an explicit expression of
Hρ,〈π,µ〉 for the case s = 2; see Remark 3.2 and Remark 3.3. The case with s =∞ will be discussed
in Remark 3.4.

Theorem 3.1. Consider the same hypotheses of Proposition 2.1. Assume that Condition 3.1 holds,
and let rρ and rρ be as in Remark 3.1.
(i) If rρ = rρ, then

Hρ,〈π,µ〉(r) =

{
0 if r = r

(0)
1 = · · · = r

(0)
s

∞ otherwise.

(ii) If rρ < rρ, then

Hρ,〈π,µ〉(r) =


− log

(∑s
j=1 πje

−λ∗(r)Ψρ(µj ,r)
)

if r ∈ (rρ, rρ)

− log
∑

j:r
(0)
j =rρ

πj if r = rρ

− log
∑

j:r
(0)
j =rρ

πj if r = rρ

∞ if r /∈ [rρ, rρ],

where λ∗(r) is such that ∑s
j=1 πjΨρ(µj , r)e

−λ∗(r)Ψρ(µj ,r)∑s
j=1 πje

−λ∗(r)Ψρ(µj ,r)
= 0. (6)
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Proof. We start with the proof of the statement (i). For r = r
(0)
1 = · · · = r

(0)
s we have

Hρ,〈π,µ〉(r) = inf


s∑
j=1

pj log
pj
πj

: (p1, . . . , ps) ∈ Σs

 = 0

(the infimum is attained by choosing (p1, . . . , ps) = (π1, . . . , πs)); on the contrary, for r 6= r
(0)
1 =

· · · = r
(0)
s , we have Hρ,〈π,µ〉(r) = ∞ because the condition

∑s
j=1 pjΨρ(µj , r) = 0 fails for every

choice of (p1, . . . , ps) ∈ Σs (in fact the values {Ψρ(µj , r) : j ∈ {1, . . . , s}} are all positive if r <

r
(0)
1 = · · · = r

(0)
s and are all negative if r > r

(0)
1 = · · · = r

(0)
s ), and therefore we have the infimum

over the empty set.
Now we concentrate the attention on the proof of the statement (ii). For r /∈ [rρ, rρ] we have the

same argument of the proof of the statement (i), for the case r 6= r
(0)
1 = · · · = r

(0)
s . For r ∈ (rρ, rρ)

we introduce the function

L(p1, . . . , ps, λ) =

s∑
j=1

pj log
pj
πj

+ λ

 s∑
j=1

pjΨρ(µj , r)


and, by the Lagrange multipliers method, (p1, . . . , ps) attains the infimum in (4) if it is the solution
of the system {

log pi
πi

+ 1 + λΨρ(µi, r) = 0, for all i ∈ {1, . . . , s}∑s
j=1 pjΨρ(µj , r) = 0;

then the minimiser (p1, . . . , ps) = (p1(r), . . . , ps(r)), which attains the infimum in (4), is defined by

pi(r) :=
πie
−λ∗(r)Ψρ(µi,r)∑s

j=1 πje
−λ∗(r)Ψρ(µj ,r)

for all i ∈ {1, . . . , s}, (7)

where λ∗(r) is such that (6) holds. In conclusion, for r ∈ (rρ, rρ), we have

Hρ,〈π,µ〉(r) =

s∑
j=1

pj(r) log
pj(r)

πj
=

s∑
j=1

πje
−λ∗(r)Ψρ(µj ,r)∑s

h=1 πhe
−λ∗(r)Ψρ(µh,r)

log
e−λ∗(r)Ψρ(µj ,r)∑s

h=1 πhe
−λ∗(r)Ψρ(µh,r)

= −λ∗(r)
s∑
j=1

πjΨρ(µj , r)e
−λ∗(r)Ψρ(µj ,r)∑s

h=1 πhe
−λ∗(r)Ψρ(µh,r)︸ ︷︷ ︸

=0 by (6)

− log

(
s∑

h=1

πhe
−λ∗(r)Ψρ(µh,r)

)
,

and therefore

Hρ,〈π,µ〉(r) = − log

(
s∑

h=1

πhe
−λ∗(r)Ψρ(µh,r)

)
. (8)

Finally the cases r ∈ {rρ, rρ}. The minimisers (p1, . . . , ps) = (p1(r), . . . , ps(r)), which attain the
infimum in (4), are

pi(rρ) =

 πi/(
∑

j:r
(0)
j =rρ

πj) if i ∈ {j : r
(0)
j = rρ}

0 if i /∈ {j : r
(0)
j = rρ}

and

pi(rρ) =

 πi/(
∑

j:r
(0)
j =rρ

πj) if i ∈ {j : r
(0)
j = rρ}

0 if i /∈ {j : r
(0)
j = rρ},
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respectively; thus we can easily check that

Hρ,〈π,µ〉(r) =
s∑
j=1

pj(r) log
pj(r)

πj
=

 − log
∑

j:r
(0)
j =rρ

πj if r = rρ

− log
∑

j:r
(0)
j =rρ

πj if r = rρ.

Remark 3.2 (The rate function Hρ,〈π,µ〉 is not explicit). Obviously Theorem 3.1 does not provide
an explicit expression of the rate function because there is not an explicit expression of λ∗(r).
However Hρ,〈π,µ〉(r0) = 0; so that (p1(r0), . . . , ps(r0)) = (π1, . . . , πs) and, by taking into account
(7), we obtain λ∗(r0) = 0. Therefore we recover the known equality Hρ,〈π,µ〉(r0) = 0 by considering
(8) and λ∗(r0) = 0. Finally we also remark that (6) and λ∗(r0) = 0 yield (5).

Remark 3.3 (On Theorem 3.1(ii) with s = 2). We remark that, if s = 2, then rρ < rρ if and only

if r
(0)
1 6= r

(0)
2 . Here we take r ∈ (rρ, rρ) =

(
r

(0)
1 ∧ r

(0)
2 , r

(0)
1 ∨ r

(0)
2

)
. Then we have

π1Ψρ(µ1, r)e
−λ∗(r)Ψρ(µ1,r) + π2Ψρ(µ2, r)e

−λ∗(r)Ψρ(µ2,r) = 0

by (6) (with s = 2), and therefore

e−λ∗(r)Ψρ(µ1,r)
(
π1Ψρ(µ1, r) + π2Ψρ(µ2, r)e

−λ∗(r)(Ψρ(µ2,r)−Ψρ(µ1,r))
)

= 0;

this yields
π1Ψρ(µ1, r) + π2Ψρ(µ2, r)e

−λ∗(r)(Ψρ(µ2,r)−Ψρ(µ1,r)) = 0,

and we get

e−λ∗(r)(Ψρ(µ2,r)−Ψρ(µ1,r)) = −π1Ψρ(µ1, r)

π2Ψρ(µ2, r)
;

thus

λ∗(r) = − 1

Ψρ(µ2, r)−Ψρ(µ1, r)
log

(
−π1Ψρ(µ1, r)

π2Ψρ(µ2, r)

)
. (9)

We remark that, for r ∈ (rρ, rρ), we have

Ψρ(µ2, r),Ψρ(µ1, r) 6= 0 and Ψρ(µ2, r)Ψρ(µ1, r) < 0;

thus, in particular, Ψρ(µ2, r)−Ψρ(µ1, r) 6= 0. Finally, by (8) (with s = 2) and (9), we get

Hρ,〈π,µ〉(r) = − log

 2∑
h=1

πh

(
−π1Ψρ(µ1, r)

π2Ψρ(µ2, r)

) Ψρ(µh,r)

Ψρ(µ2,r)−Ψρ(µ1,r)

 .

Remark 3.4 (On Theorem 3.1 with s =∞). It is possible to present a version of Theorem 3.1 with
s =∞, namely for the case of countable mixture models. The statement and the proof can be easily
adapted and we omit the details. However we remark that Condition 3.1 and Remark 3.1 have

to be suitably changed; in fact we should require that the quantities rρ := min
{
r

(0)
i : i ≥ 1

}
and

rρ := max
{
r

(0)
i : i ≥ 1

}
are well-defined (this is not guaranteed as happens for the case s <∞).

Finally we are also interested in the local comparison between rate functions around the points
where they uniquely vanish; in fact the larger Hρ,〈π,µ〉 is around r0 (except r0), the faster is the
convergence of estimators to r0 (as n → ∞). We also recall that, under suitable hypotheses
which guarantee the existence of the second derivative of Hρ,〈π,µ〉(r) computed at r = r0, the more
H ′′ρ,〈π,µ〉(r0) is large, the more Hρ,〈π,µ〉 is large around r0 (except r0). An expression for H ′′ρ,〈π,µ〉(r0)
is given in the next proposition.
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Proposition 3.2. Consider the same hypotheses and notation of Theorem 3.1(ii). Moreover as-
sume that Ψρ(µ1, ·), . . . ,Ψρ(µs, ·) are continuously differentiable functions (at least in a neighbor-
hood of r0). Then, if we consider the notation Ψ′ρ(µh, r) := d

drΨρ(µh, r), we have

H ′′ρ,〈π,µ〉(r0) =

(∑s
h=1 πhΨ′ρ(µh, r0)

)2
Varπ[Ψρ(µ·, r0)]

,

where (the last equality holds by (5))

Varπ[Ψρ(µ·, r0)] :=
s∑

h=1

πhΨ2
ρ(µh, r0)−

(
s∑

h=1

πhΨρ(µh, r0)

)2

=
s∑

h=1

πhΨ2
ρ(µh, r0).

Proof. For r ∈ (rρ, rρ) we have

H ′ρ,〈π,µ〉(r) =

∑s
h=1 πhe

−λ∗(r)Ψρ(µh,r)[λ′∗(r)Ψρ(µh, r) + λ∗(r)Ψ
′
ρ(µh, r)]∑s

h=1 πhe
−λ∗(r)Ψρ(µh,r)

= λ′∗(r)

∑s
h=1 πhΨρ(µh, r)e

−λ∗(r)Ψρ(µh,r)∑s
h=1 πhe

−λ∗(r)Ψρ(µh,r)︸ ︷︷ ︸
=0 by (6)

+λ∗(r)

∑s
h=1 πhΨ′ρ(µh, r)e

−λ∗(r)Ψρ(µh,r)∑s
h=1 πhe

−λ∗(r)Ψρ(µh,r)

= λ∗(r)

∑s
h=1 πhΨ′ρ(µh, r)e

−λ∗(r)Ψρ(µh,r)∑s
h=1 πhe

−λ∗(r)Ψρ(µh,r)
;

thus, since λ∗(r0) = 0, we get

H ′ρ,〈π,µ〉(r0) = λ∗(r0)

∑s
h=1 πhΨ′ρ(µh, r0)e−λ∗(r0)Ψρ(µh,r0)∑s

h=1 πhe
−λ∗(r0)Ψρ(µh,r0)

= 0.

Moreover, again for r ∈ (rρ, rρ), we have

H ′′ρ,〈π,µ〉(r) = λ′∗(r)

∑s
h=1 πhΨ′ρ(µh, r)e

−λ∗(r)Ψρ(µh,r)∑s
h=1 πhe

−λ∗(r)Ψρ(µh,r)
+λ∗(r)

d

dr

(∑s
h=1 πhΨ′ρ(µh, r)e

−λ∗(r)Ψρ(µh,r)∑s
h=1 πhe

−λ∗(r)Ψρ(µh,r)

)
;

thus, by taking into account again λ∗(r0) = 0, we obtain

H ′′ρ,〈π,µ〉(r0) = λ′∗(r0)
s∑

h=1

πhΨ′ρ(µh, r0). (10)

We conclude by computing λ′∗(r0) by means of the implicit function theorem. By (6) we consider
the function

∆(r, λ) :=

∑s
j=1 πjΨρ(µj , r)e

−λΨρ(µj ,r)∑s
j=1 πje

−λΨρ(µj ,r)
;

the partial derivatives of ∆ are

∆r(r, λ) =
1

(
∑s

j=1 πje
−λΨρ(µj ,r))2

·


 s∑
j=1

πjΨ
′
ρ(µj , r)e

−λΨρ(µj ,r)(1− λΨρ(µj , r))

 s∑
j=1

πje
−λΨρ(µj ,r)


+λ

 s∑
j=1

πjΨ
′
ρ(µj , r)e

−λΨρ(µj ,r)

 s∑
j=1

πjΨρ(µj , r)e
−λΨρ(µj ,r)


9



and

∆λ(r, λ) =
1

(
∑s

j=1 πje
−λΨρ(µj ,r))2

·

−
 s∑
j=1

πjΨ
2
ρ(µj , r)e

−λΨρ(µj ,r)

 s∑
j=1

πje
−λΨρ(µj ,r)


+

 s∑
j=1

πjΨρ(µj , r)e
−λΨρ(µj ,r)

2 ;

thus, by taking into account (5) and λ∗(r0) = 0, we have

∆r(r0, λ∗(r0)) =
s∑
j=1

πjΨ
′
ρ(µj , r0) and ∆λ(r0, λ∗(r0)) = −

s∑
j=1

πjΨ
2
ρ(µj , r0),

and the implicit function theorem yields

λ′∗(r0) = −∆r(r, λ)

∆λ(r, λ)

∣∣∣∣
(r,λ)=(r0,λ∗(r0))

=

∑s
j=1 πjΨ

′
ρ(µj , r0)∑s

j=1 πjΨ
2
ρ(µj , r0)

.

We conclude the proof by combining this equality and (10).

4 Examples

In this section we consider some examples of risk measures satisfying Condition 3.1. The first
example concerns risk measures that are linearly dependent with respect to the weights, and we
present two specific cases. Other examples consider quantiles and the class of shortfall risk measures,
that includes the entropic risk measures as a special case. We conclude the section with two
examples: one for an insurance application with s = 2, and one where we obtain explicit expressions
for s = 3. In view of what follows we consider the notation Fµ for the distribution function
associated with the law µ, namely

Fµ(x) := µ((−∞, x]), for all x ∈ R.

We remark that, when we deal with a finite mixture
∑s

j=1 pjµj of some laws µ1, . . . , µs (for some
(p1, . . . , ps) ∈ Σs), we have F∑s

j=1 pjµj
=
∑s

j=1 pjFµj .

Example 4.1 (Linear dependence with respect to the weights). We assume that the function (2)
satisfies the following condition:

ρ

 s∑
j=1

pjµj

 =
s∑
j=1

pjρ(µj) for all (p1, . . . , ps) ∈ Σs.

Obviously we have a continuous function. In this case one has

Ψρ(µi, r) = ρ(µi)− r

which yields r
(0)
i = ρ(µi) and r0 =

∑s
j=1 πjρ(µj); moreover

rρ := min{ρ(µi) : i ∈ {1, . . . , s}} and rρ := max{ρ(µi) : i ∈ {1, . . . , s}}.
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Now we present some formulas for the rate function Hρ,〈π,µ〉 when rρ < rρ; in view of this we
remark that, for s = 2, we have rρ < rρ if and only if ρ(µ1) 6= ρ(µ2). By (8), for r ∈ (rρ, rρ), we
get

Hρ,〈π,µ〉(r) = − log

(
s∑

h=1

πhe
−λ∗(r)Ψρ(µh,r)

)
= −rλ∗(r)− log

(
s∑

h=1

πhe
−λ∗(r)ρ(µh)

)
.

Moreover, by Remark 3.3 concerning the case s = 2, for r ∈ (rρ, rρ) we get

Hρ,〈π,µ〉(r) = − log

 2∑
h=1

πh

(
−π1(ρ(µ1)− r)
π2(ρ(µ2)− r)

) ρ(µh)−r
ρ(µ2)−ρ(µ1)

 ;

in particular we can easily check that this formula yields Hρ,〈π,µ〉(r0) = 0. Finally, by Proposition
3.2 (and after some computations where we take into account that r0 =

∑s
j=1 πjρ(µj)), we get

H ′′ρ,〈π,µ〉(r0) =
1∑s

h=1 πh(ρ(µh)− r0)2
=

1∑s
h=1 πhρ

2(µh)− r2
0

.

Here we briefly present two particular cases concerning Example 4.1.

• The expected value (when µ1, . . . , µs are probability measures of integrable random variables);
in fact we have ∫

R
x

s∑
j=1

pjµj(dx) =

s∑
j=1

pj

∫
R
xµj(dx).

• The Expected Shortfall ESα, for α ∈ (0, 1), when µ1, . . . , µs have the same α-quantile, namely
when F−1

µ1
(α) = · · · = F−1

µs (α) =: rα. We recall that

ESα(µ) :=
1

1− α

∫ ∞
F−1
µ (α)

xµ(dx),

and that we have
(∑s

j=1 pjFµj

)−1
(α) = rα. Therefore

ESα

 s∑
j=1

pjµj

 =
1

1− α

∫ ∞
(
∑s
j=1 pjFµj )

−1
(α)

x

s∑
j=1

pjµj(dx)

=

s∑
j=1

pj
1− α

∫ ∞
rα

xµj(dx) =

s∑
j=1

pjESα(µj).

We conclude with the final examples.

Example 4.2 (Quantiles). Let us consider α ∈ (0, 1) and strictly increasing and continuous dis-
tribution functions Fµ1 , . . . , Fµs on the same interval. We assume that the function (2) is defined
by

Σs 3 (p1, . . . , ps) 7→ ρ

 s∑
j=1

pjµj

 :=

 s∑
j=1

pjFµj

−1

(α).

This function is continuous (see Appendix for details). In this case one has

Ψρ(µi, r) = α− Fµi(r)
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which yields r
(0)
i = F−1

µi (α) and r0 =
(∑s

j=1 πjFµj

)−1
(α); moreover

rρ := min
{
F−1
µi (α) : i ∈ {1, . . . , s}

}
and rρ := max

{
F−1
µi (α) : i ∈ {1, . . . , s}

}
.

Now we present some formulas for the rate function Hρ,〈π,µ〉 when rρ < rρ; in view of this we
remark that, for s = 2, we have rρ < rρ if and only if F−1

µ1
(α) 6= F−1

µ2
(α). By (8), for r ∈ (rρ, rρ),

we get

Hρ,〈π,µ〉(r) = − log

(
s∑

h=1

πhe
−λ∗(r)Ψρ(µh,r)

)
= αλ∗(r)− log

(
s∑

h=1

πhe
λ∗(r)Fµh (r)

)
.

Moreover, by Remark 3.3 concerning the case s = 2, for r ∈ (rρ, rρ) we get

Hρ,〈π,µ〉(r) = − log

 2∑
h=1

πh

(
−π1(α− Fµ1(r))

π2(α− Fµ2(r))

) α−Fµh (r)

Fµ1 (r)−Fµ2 (r)

 ;

in particular we can easily check that this formula yields Hρ,〈π,µ〉(r0) = 0 because
∑s

j=1 πjFµj (r0) =
α. Finally, by Proposition 3.2 (and after some computations where we take into account again that∑s

j=1 πjFµj (r0) = α), we get

H ′′ρ,〈π,µ〉(r0) =

(∑s
h=1 πhF

′
µi(r)

)2∑s
h=1 πh(α− Fµh(r0))2

=

(∑s
h=1 πhF

′
µi(r)

)2∑s
h=1 πhF

2
µh

(r0)− α2
.

Example 4.3 (Shortfall risk measures). We recall some preliminaries (see Föllmer and Schied
(2002)). Given a loss function ` : R→ R (that is a convex, increasing and not identically constant
function) and an interior point x0 in the range of `, a shortfall risk measure is defined by

ρ(µ) := inf

{
m ∈ R :

∫
R
`(x−m)µ(dx) ≤ x0

}
;

moreover it is the unique solution m to the equation∫
R
`(x−m)µ(dx) = x0.

We assume that the function (2) is defined by

Σs 3 (p1, . . . , ps) 7→ ρ

 s∑
j=1

pjµj

 := r, where
s∑
j=1

pj

∫
R
`(x− r)µj(dx) = x0.

The continuity of this function can be checked by adapting the proof in the Appendix. In this case
one has

Ψρ(µi, r) =

∫
R
`(x− r)µi(dx)− x0.

From now on, in order to have explicit results, we continue our analysis for the class of entropic
risk measures, that is the case where we have the loss function `(x) = eθx, for θ > 0, and x0 = 1.
We can check the following equalities:

ρ(µ) =
1

θ
log

(∫
R
eθxµ(dx)

)
;
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the function (2) becomes

Σs 3 (p1, . . . , ps) 7→ ρ

 s∑
j=1

pjµj

 :=
1

θ
log

∫
R
eθx

s∑
j=1

pjµj(dx);

(so we have Σs 3 (p1, . . . , ps) 7→ 1
θ log

(∑s
j=1 pje

θρ(µj)
)

, which is a continuous function); the

function Ψρ(µi, r) can be rewritten as

Ψρ(µi, r) = eθρ(µi) − eθr,

which yields r
(0)
i = ρ(µi) and r0 = 1

θ log
(∑s

j=1 πje
θρ(µj)

)
; moreover

rρ := min{ρ(µi) : i ∈ {1, . . . , s}} and rρ := max{ρ(µi) : i ∈ {1, . . . , s}}.

Now we present some formulas for the rate function Hρ,〈π,µ〉 when rρ < rρ; in view of this we
remark that, for s = 2, we have rρ < rρ if and only if ρ(µ1) 6= ρ(µ2). By (8), for r ∈ (rρ, rρ), we
get

Hρ,〈π,µ〉(r) = − log

(
s∑

h=1

πhe
−λ∗(r)Ψρ(µh,r)

)
= −eθrλ∗(r)− log

(
s∑

h=1

πhe
−λ∗(r)eθρ(µi)

)
.

Moreover, by Remark 3.3 concerning the case s = 2, for r ∈ (rρ, rρ) we get

Hρ,〈π,µ〉(r) = − log

 2∑
h=1

πh

(
−π1(eθρ(µ1) − eθr)
π2(eθρ(µ2) − eθr)

) eθρ(µh)−eθr

eθρ(µ2)−eθρ(µ1)

 ;

in particular we can easily check that this formula yields Hρ,〈π,µ〉(r0) = 0 because eθr0 =
∑s

j=1 πje
θρ(µj).

Finally, by Proposition 3.2 (and after some computations where we take into account again that
eθr0 =

∑s
j=1 πje

θρ(µj)), we get

H ′′ρ,〈π,µ〉(r0) =
(θeθr0)2∑s

h=1 πh(eθρ(µh) − eθr0)2
=

(θeθr0)2∑s
h=1 πhe

2θρ(µh) − e2θr0
.

Example 4.4 (An insurance example with s = 2). In actuarial science mixture distributions are
particularly relevant for modeling different claim sizes. Consider, for instance, a car insurance
context where individuals are grouped into s categories depending on their accident history; we
assume for convenience that s = 2. Each group claim distribution µj may be modeled using an
exponential distribution with parameter λj, j ∈ {1, 2}; thus Fµj (x) = 1 − e−λj(x), with x > 0 and
the probability of arrival of a claim in group j is πj > 0, with π1 + π2 = 1. We assume that the
λj’s are given and without loss of generality λ1 < λ2 (for λ1 = λ2 we find the usual exponential
distribution). Instead the πj’s are estimated empirically from a sample of n claims; denoting Xi a
random variable taking values 1 or 2 depending on whether claim i belongs to the group j, we obtain
Xi = j with probability πj and π̂n(j) = 1

n

∑n
i=1 δXi=j for all j ∈ {1, 2}. In this example, we are

interested in understanding what happens to ρ
(∑s

j=1 π̂n(j)µj

)
as n→∞ and the risk measure ρ is

quantile at level α ∈ (0, 1), also known as Value-at-Risk (VaRα) in the risk management literature.
We recall that for a model µ with continuous and strictly increasing distribution function F , we
have ρ(µ) = F−1(α), therefore we have

ρ(µj) = − 1

λj
log(1− α), j ∈ {1, 2}.
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From Example 4.2, we know that

Ψρ(µj , r) = α− Fµj (r) = α− 1 + e−λjr,

and

rρ = r
(0)
1 = − 1

λ1
log(1− α) > − 1

λ2
log(1− α) = r

(0)
2 = rρ.

From Remark 3.3, for r ∈ (rρ, rρ) we easily find

λ∗(r) = − 1

e−λ2r − e−λ1r
log

(
−π1(α− 1 + e−λ1r)

π2(α− 1 + e−λ2r)

)
and the weights p = (p1, p2) in (7) which attain the infimum in (4) are given by

pj(r) =
πje
−λ∗(r)(α−1+e−λjr)∑2

j=1 πje
−λ∗(r)(α−1+e−λjr)

, j ∈ {1, 2}.

We then obtain the rate function:

Hρ,<π,µ>(r) = − log

π1

(
−π1(α− 1 + e−λ1r)

π2(α− 1 + e−λ2r)

) α−1+e−λ1r

e−λ2r−e−λ1r

+ π2

(
−π1(α− 1 + e−λ1r)

π2(α− 1 + e−λ2r)

) α−1+e−λ2r

e−λ2r−e−λ1r

 .

We refer the interested reader to Lee et al. (2012) for a more detailed analysis of the use of expo-
nential mixture models in insurance.

Example 4.5 (A specific example with s = 3). We refer to Condition 3.1 with s = 3 and, for
some a > 0 (and a suitable strictly decreasing function Ψ), we set

Ψρ(µi, r) := Ψ(r) + (i− 1)a (for all i ∈ {1, 2, 3});

(we remark that we are in this situation when we deal with Example 4.1, with s = 3; in such a case
we have Ψ(r) = ρ(µ1)− r, ρ(µ2) = ρ(µ1) + a, and ρ(µ3) = ρ(µ1) + 2a).

We recall that
rρ ≤ r

(0)
1 < r

(0)
2 < r

(0)
3 ≤ rρ,

where r
(0)
i = Ψ−1((i − 1)a) (for all i ∈ {1, 2, 3}). Moreover, after some computations, (5) with

s = 3 yields
r0 = Ψ−1(−a(π2 + 2π3)).

Now we compute the rate function Hρ,〈π,µ〉 in Theorem 3.1(ii). We have

Hρ,〈π,µ〉(Ψ
−1(0)) = − log π1 and Hρ,〈π,µ〉(Ψ

−1(−2a)) = − log π3,

which concern the cases r = rρ and r = rρ. In what follows we take r ∈ (rρ, rρ) = (Ψ−1(0),Ψ−1(−2a)).
Firstly (6) yields

e−λ∗(r)Ψ(r)
(
π1Ψ(r) + π2(Ψ(r) + a)e−λ∗(r)a + π3(Ψ(r) + 2a)e−2λ∗(r)a

)
= 0,

and therefore

e−λ∗(r)a =
−π2(Ψ(r) + a) +

√
π2

2(Ψ(r) + a)2 − 4π1π3Ψ(r)(Ψ(r) + 2a)

2π3(Ψ(r) + 2a)
;
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we remark that π2
2(Ψ(r) + a)2 − 4π1π3Ψ(r)(Ψ(r) + 2a) ≥ 0 because Ψ(r) < 0 and Ψ(r) + 2a > 0,

and √
π2

2(Ψ(r) + a)2 − 4π1π3Ψ(r)(Ψ(r) + 2a) ≥ |π2(Ψ(r) + a)|.

Thus we easily obtain λ∗(r) and the rate function expression is

Hρ,〈π,µ〉(r) = − log

 3∑
j=1

πj

(
−π2(Ψ(r) + a) +

√
π2

2(Ψ(r) + a)2 − 4π1π3Ψ(r)(Ψ(r) + 2a)

2π3(Ψ(r) + 2a)

)Ψρ(µj ,r)/a
 .

A final remark concerns the condition λ∗(r0) = 0 (see Remark 3.2). The above formulas yield

−π2(Ψ(r0) + a) +
√
π2

2(Ψ(r0) + a)2 − 4π1π3Ψ(r0)(Ψ(r0) + 2a)

2π3(Ψ(r0) + 2a)
= 1

and, after some computations, we get

π1Ψ(r0) + π2(Ψ(r0) + a) + π3(Ψ(r0) + 2a) = 0

which recovers (5) (with s = 3).
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which highly improved the paper.
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Appendix: The continuity of ρ
(∑s

j=1 pjµj

)
in Example 4.2

We remark that, if we set ϕ(x, p1, . . . , ps) :=
∑s

j=1 pjFµj (x), we are interested in the function

x(p1, . . . , ps) :=

 s∑
j=1

pjFµj

−1

(α),

which is the implicit function defined by the condition ϕ(x, p1, . . . , ps) = α.
We assume that x(p1, . . . , ps) is not continuous at some point (q1, . . . , qs). Then we can find a

sequence {(p(n)
1 , . . . , p

(n)
s ) : n ≥ 1} which converges to (q1, . . . , qs), and {x(p

(n)
1 , . . . , p

(n)
s ) : n ≥ 1}

converges to some limit `, with ` 6= x(q1, . . . , qs); moreover we have

ϕ(x(p
(n)
1 , . . . , p(n)

s ), p
(n)
1 , . . . , p(n)

s ) = α (for all n ≥ 1)
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and, if we take the limit as n →∞, we get
∑s

j=1 qjFµj (`) = α (by the continuity of the functions
Fµ1 , . . . , Fµs). The last equality yields ` = x(q1, . . . , qs) by construction, and this is a contradiction.

17


