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Abstract

We consider a suitable scaling, called slow Markov walk limit, for a risk process with shot
noise Cox claim number process and reserve dependent premium rate. We provide large devia-
tion estimates for the ruin probability. Furthermore, we find an asymptotically efficient law for
the simulation of the ruin probability using importance sampling. Finally, we present asymp-
totic bounds for ruin probabilities in the Bayesian setting.
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1 Introduction

In risk theory literature, shot noise modelling usually occurs when dealing with the delay in claim
settlement; see, for instance, Klüppelberg and Mikosch [KM1] and [KM2], Brémaud [Br] and the
survey paper by Kühn [K].

Recently, Dassios and Jang [DJ1] and [DJ2] considered risk processes with constant premium
rate and claim number process given by the superposition of a homogeneous Poisson process and a
Cox process with a Poisson shot noise stochastic intensity (see Cox [C] and Cox and Isham [CI] for
an introduction on Cox processes; see Møller [Mo] for applications of shot noise Cox processes in
spatial statistics). An interpretation of this model is the following: in addition to ”standard” claims,
which occur according to a homogeneous Poisson process, there are also ”induced” claims triggered
by external events which lead to a sudden increase of the total claim. In particular, Dassios and
Jang [DJ1] considered Cox processes driven by a Poisson shot noise stochastic intensity having a
multiplicative form and an exponential shot shape. They used the theory of piecewise deterministic
Markov processes to obtain the distribution of the aggregate claim amount under an equivalent
Esscher measure. An estimation procedure for the stochastic intensity of the claim number process
is considered in Dassios and Jang [DJ2].

The case of Cox processes driven by a general (i.e. not necessarily of multiplicative form and
not necessarily with an exponential shot shape) Poisson shot noise stochastic intensity is considered
in Albrecher and Asmussen [AA], where the infinite and finite horizon ruin problem is analyzed
both for light-tailed and heavy-tailed claims. They consider also a particular reserve-dependent
premium rule, called ”adaptive”, and describe how to obtain ruin estimates in this setting, both in
the infinite and finite horizon case.
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In many real situations, the premium rate is not constant or ”adaptive” and it may happen that
”induced” and ”standard” claims are not identically distributed. For these reasons, here we consider
a risk process which differs from the one in Albrecher and Asmussen [AA] for two main aspects:
we allow for a not ”adaptive” reserve-dependent premium rate; the distributions of ”standard” and
”induced” claims may be different.

We analyze the proposed model by considering a suitable scaling called slow Markov walk limit
(see Cottrell, Fort and Malgouyres [CFT], Bucklew [Bu] and Asmussen and Nielsen [AN]) and we
provide asymptotic estimates for ruin probabilities using sample path large deviation techniques.
This analysis is carried on under a super-exponential condition on the claim sizes. As typically
happens in risk theory, due to the small claim assumption, the ruin probabilities decay to zero
exponentially fast. In this paper we solve the related rare event simulation problem providing an
asymptotically efficient simulation law for the ruin probabilities by using importance sampling. It is
worthwhile to say that, if the claim sizes are not super-exponential (for instance for exponential and
heavy tailed claims), the same problems are open and we do not know how to adapt the techniques
used in this paper to cope with this case.

In this article we also consider a situation in which the probabilistic structure of the risk process
depends on some unknown parameter. In such a case we can have a very misleading inference if we
separate the point estimations of the parameter and the ruin probability. Following the lines of some
recent works in the literature we can consider a different approach based on Bayesian inference;
in this way we provide a wide full statistical analysis capturing all the uncertainty concerning the
parameter and the ruin probability, see Ganesh et al. [GGOP] for more insight into this problem.
The idea is to consider the so-called predictive ruin probability, i.e. the integral of the ruin prob-
ability with respect to the posterior distribution on the unknown parameter. For some technical
reasons, the Bayesian estimates for ruin probabilities will be given under the following restrictive
assumptions: ”standard” and ”induced” claims are identically distributed, and their common law
is unknown and concentrated on a compact interval. Large deviation estimates for predictive ruin
probabilities concerning simpler models can be found in Ganesh and O’Connell [GO1] and [GO2]
and in Macci and Petrella [MP]. Among many other references on the Bayesian approach, we
cite Ausin and Lopes [AL] and Ausin et al. [AWL] which considered Bayesian estimation of ruin
probabilities for different insurance models with heavy tail claim size distributions.

The article is structured as follows. In Section 2 we give a detailed description of the model
considered and some useful preliminaries. In Section 3 we show that the scaled risk process satisfies
suitable sample path large deviation principles. In Section 4 we study the asymptotic behavior of
the ruin probabilities and we address the problem of their Monte Carlo simulation by importance
sampling. Finally, in Section 5 we give asymptotic estimates for ruin probabilities in the Bayesian
setting. We include two Appendices where we prove some technical details.

Throughout this paper we use the standard notation [·] for the integer part of a real number.

2 Preliminaries

2.1 The model

In this paper we consider a risk process with premium rate which depends on the current reserve.
Risk processes with reserve-dependent premium rate are quite common in the literature: see e.g.
Gerber [G], Djehiche [D], Asmussen and Nielsen [AN], Asmussen [A], Ganesh, Macci and Torrisi
[GMT].

We consider a claim number process (N(t)) given by a Cox process with a Poisson shot noise
stochastic intensity (shot noise Cox process). More precisely, let λ, ρ > 0 be positive constants
and let h : R × (0,∞) → [0,∞) be a measurable function such that h(t, y) = 0 for all t ≤ 0 and
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y ∈ (0,∞). The stochastic intensity of (N(t)) is

λ +
Nρ(t)∑

n=1

h(t− Tn, Yn)

where: (Yn) and (Nρ(t)) are independent, (Yn) is a sequence of i.i.d. positive random variables,
Nρ(t) =

∑
n≥1 1Tn≤t is a homogeneous Poisson process with intensity ρ. In what follows we set

T0 = 0,

H(t, y) =
∫ t

−∞
h(s, y)ds =

{ ∫ t
0 h(s, y)ds if t > 0

0 if t ≤ 0
and MH(∞,Y )(γ) = E[eγH(∞,Y1)].

In view of the definition of the aggregate claims process we consider the following decomposition
of (N(t)):

N(t) = Nλ(t) +
Nρ(t)∑

n=1

N (n)(t),

where (Nλ(t)) is a homogeneous Poisson process with intensity λ and each (N (n)) is a Cox process
with intensity (h(t−Tn, Yn)); moreover the process Nλ is independent of Nρ and ((N (n)) : n ≥ 1). In
particular, for each n ≥ 1, N (n)(∞) is a mixed Poisson random variable with parameter H(∞, Yn).

Now we define the aggregate claims process. Let (Xλ
n) and (X(n)

i ) be two independent families
of i.i.d. random variables, independent of (N(t)). We allow that the common distribution of the
random variables (Xλ

n) and the common distribution of the random variables (X(n)
i ) are different;

if they coincide we have the same aggregate claims process in [AA]. This generalization allows to
model situations where ”induced” claims and ”standard” claims are not identically distributed. A
related model is studied in Yuen et al. [YGN]. We denote the common moment generating function
of the random variables (Xλ

n) by MXλ , and the common moment generating function of the random
variables (X(n)

i ) by MX , i.e.

MXλ(γ) = E[eγXλ
n ] and MX(γ) = E[eγX

(n)
i ].

Then we define the aggregate claims process as follows:

S(t) =
Nλ(t)∑

n=1

Xλ
n +

Nρ(t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i . (1)

Finally we define the model, i.e. the risk process with reserve dependent premium rate. Let
(Ft) be a complete and right-continuous filtration with respect to which (S(t)) is adapted. The
process (S(t)) has càdlàg and non-decreasing paths; thus it has finite variation on compact sets.
Therefore, (S(t)) is an Ft-semimartingale (see e.g. Protter [P], Theorem 7, page 47). The risk
process considered in this paper is the unique strong solution (R(t)) of

{
dR(t) = b(R(t))dt− dS(t)
R(0) = u

, (2)

where we are assuming that b(·) satisfies the following Lipschitz condition:
(L): there exists a constant L > 0 such that |b(x)− b(y)| ≤ L|x− y| for all x, y ∈ R.
The interpretation in insurance is that u > 0 is the initial capital, and the nonnegative function
b(·) is the premium rate, which depends on the current level of the reserve (R(t)).

Note that we meet the risk process studied in Albrecher and Asmussen [AA] when the function
b is constant, and the risk process studied in Asmussen and Nielsen [AN] by setting ρ = 0. On the
other hand, to model risk processes with delay in claim settlement and reserve-dependent premium
rate, Ganesh, Macci and Torrisi [GMT] considered (R(t)) defined by (2) with (S(t)) being a Poisson
shot noise process.
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2.2 The batch process and the function Λ

Another aggregate claim process (S̃(t)) plays a crucial role. This aggregate claim process is called
batch process (see Albrecher and Asmussen [AA]) and it is obtained from (S(t)) as follows: all the
claims caused by an occurrence of (Nρ(t)) at time Tn are collected and moved to Tn.

The batch process is defined by

S̃(t) =
Nλ(t)∑

n=1

Xλ
n +

Nρ(t)∑

n=1

N(n)(∞)∑

i=1

X
(n)
i

︸ ︷︷ ︸
=:X̂n

. (3)

We remark that (X̂n) is a sequence of i.i.d. random variables, and their (common) moment gener-
ating function M

X̂
(γ) = E[eγX̂n ] can be expressed in terms of MX and MH(∞,Y ) defined before:

M
X̂

(γ) = MH(∞,Y )(MX(γ)− 1).

Moreover, it is important to note that

S̃(t) ≥ S(t) for all t ≥ 0. (4)

We now present another useful version of (S̃(t)) (see Albrecher and Asmussen [AA], Introduction
and Subsection 4.4). The process (S̃(t)) can be written as

S̃(t) =
Nλ+ρ(t)∑

n=1

X̃n, (5)

where: (Nλ+ρ(t)) is a homogeneous Poisson process with intensity λ + ρ; (X̃n) is a sequence
of i.i.d. positive random variables independent of (Nλ+ρ(t)); the common distribution of the
random variables (X̃n) is a mixture between the distribution of the random variables (Xλ

n) and
the distribution of the random variables (X̂n) with weights λ

λ+ρ and ρ
λ+ρ , respectively. Thus the

(common) moment generating function M
X̃

(γ) = E[eγX̃1 ] of the random variables (X̃n) is the
convex linear combination of MXλ and M

X̂
with weights λ

λ+ρ and ρ
λ+ρ respectively, i.e. M

X̃
(γ) =

λ
λ+ρMXλ(γ) + ρ

λ+ρM
X̂

(γ). Finally, if we consider the function Λ defined by

Λ(γ) = λ(MXλ(γ)− 1) + ρ(M
X̂

(γ)− 1), (6)

we have
E[eγS̃(t)] = et(λ+ρ)(M

X̃
(γ)−1) = etΛ(γ).

2.3 Preliminaries on large deviations

The definition of large deviations principle (LDP for short) plays a crucial role in this paper (see
Dembo and Zeitouni [DZ] for this definition and further details); here we recall some preliminaries
on this topic.

Let Ω be a topological space with Borel σ-algebra BΩ and call rate function a lower semicontin-
uous function I : Ω → [0,∞]. Then a family of Ω-valued random variables (Zα) satisfies the LDP
with rate function I if

− inf
ω∈B◦

I(ω) ≤ lim inf
α→∞

1
α

log P (Zα ∈ B) ≤ lim sup
α→∞

1
α

log P (Zα ∈ B) ≤ − inf
ω∈B

I(ω)

for all B ∈ BΩ. A rate function I is good if all the level sets are compact.
In this paper we use the term sample path large deviations when Ω is a family of sample paths.

More precisely, two classes of families are considered.
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• The first class is Ω = D[0, T ] for some T ∈ (0,∞), where D[0, T ] is the space of the càdlàg
functions on [0, T ]. In such a case we consider the topology induced by the norm ‖ · ‖[0,T ]

defined by ‖g‖[0,T ] := supt∈[0,T ] |g(t)|, for g ∈ D[0, T ]. When we deal with a process (Z(t))
(with t ∈ [0, T ]) having càdlàg paths, we use the notation (Z(·))[0,T ].

• The second class is Ω = Dm
a for some a,m ∈ R, where

Dm
a =

{
f ∈ D[0,∞) : f(0) = a, lim

t→∞
f(t)
1 + t

= m
}

and D[0,∞) is the space of the càdlàg functions on [0,∞). In such a case we consider the
topology induced by the metric da,m defined by

da,m(f, g) = sup
t>0

|f(t)− g(t)|
1 + t

(for details see Ganesh, O’Connell and Wischik [GOW], page 154). When we deal with a pro-
cess (Z(t)) (with t ∈ [0,∞)) having càdlàg paths which belong to some Dm

a with probability
1, we use the notation (Z(·))[0,∞).

For the LDP in Section 5 we do not use the term sample path. Indeed, Ω is the family M1([0, V ])
of all probability measures on [0, V ] (for some V ∈ (0,∞)), equipped with the topology of weak
convergence. Furthermore we shall consider a LDP for posterior distributions in Bayesian setting;
thus we shall have a ”conditional” LDP since the posterior distributions are a random family of
probability measures.

3 Sample path LDPs

The aim of this section is to prove a suitable sample path LDP for the risk process (R(t)) in (2) with
a suitable scaling called slow Markov walk limit (see Proposition 3.4 below). A similar result holds
for the model with delayed claims studied in Ganesh, Macci and Torrisi [GMT] (see Proposition
3.1 therein).

Let Λ∗ be the Fenchel-Legendre transform of the function Λ in (6), i.e.

Λ∗(x) = sup
γ∈R

[γx− Λ(γ)].

The following condition is needed to prove our results:
(S): Λ(γ) < ∞ for all γ ∈ R.
Condition (S) is a super-exponential condition, i.e. it means that the tails of the random variables
(Xλ

n) and (X̂n) go to zero faster than any exponential rate.

3.1 Sample path large deviations for the aggregate claims process

We recall that any absolutely continuous function f is almost everywhere differentiable and, from
now on, we denote the almost everywhere derivative of f by ḟ . Let AC[0, T ] be the family of all
absolutely continuous functions on [0, T ] and let IT be the functional defined by

IT (f) =
{ ∫ T

0 Λ∗(ḟ(t))dt if f ∈ AC[0, T ], f(0) = 0
∞ otherwise

.

Similarly, let AC[0,∞) be the family of all absolutely continuous functions on [0,∞) and let I∞
be the functional defined by

I∞(f) =

{ ∫∞
0 Λ∗(ḟ(t))dt if f ∈ AC[0,∞) ∩D

Λ′(0)
0

∞ otherwise
,
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where Λ′(0) is the derivative of Λ at the origin.
In this subsection we prove two sample path LDPs: the LDP of ((S(α·)

α )[0,T ]) on D[0, T ]; the

LDP of ((S(α·)
α )[0,∞)) on D

Λ′(0)
0 . We first recall the following well-known result due to Borovkov

[Bo] (see also de Acosta [d] and the references cited therein).

Proposition 3.1 Assume (S). Then (( S̃(α·)
α )[0,T ]) satisfies the LDP with good rate function IT .

The following proposition holds.

Proposition 3.2 Assume (S). Then ((S(α·)
α )[0,T ]) satisfies the LDP with good rate function IT .

Proof. Proposition 3.1 provides the LDP of (( S̃(α·)
α )[0,T ]) and the goodness of the rate function IT .

Thus, by Theorem 4.2.13 in Dembo and Zeitouni [DZ], we only need to show that ((S(α·)
α )[0,T ]) and

(( S̃(α·)
α )[0,T ]) are exponentially equivalent as α →∞, i.e.

lim
α→∞

1
α

log P
( 1

α
sup

t∈[0,T ]
|S̃(αt)− S(αt)| > δ

)
= −∞ (for all δ > 0); (7)

see Appendix A for the measurability requirement concerning the events in (7) (varying α > 0).
By (1), (3) and (4) we have

sup
t∈[0,T ]

|S̃(αt)− S(αt)| = sup
t∈[0,T ]

Nρ(t)∑

n=1

N(n)(∞)∑

i=1

X
(n)
i −

Nρ(t)∑

n=1

N(n)(αt)∑

i=1

X
(n)
i .

Note that, when t ∈ [Tm−1

α , Tm
α ) for some m, we have:

∑Nρ(t)
n=1

∑N(n)(∞)
i=1 X

(n)
i is constant w.r.t. t;∑Nρ(t)

n=1

∑N(n)(αt)
i=1 X

(n)
i is nondecreasing w.r.t. t.

Thus, supt∈[0,T ] |S̃(αt)− S(αt)| is attained at t = Tm
α ∈ [0, T ] for some m:

sup
t∈[0,T ]

|S̃(αt)− S(αt)| = sup
m:Tm

α
∈[0,T ]

m∑

n=1

N(n)(∞)∑

i=1

X
(n)
i −

m∑

n=1

N(n)(Tm)∑

i=1

X
(n)
i =

= sup
m:Tm≤αT

m∑

n=1

(N(n)(∞)∑

i=1

X
(n)
i −

N(n)(Tm)∑

i=1

X
(n)
i

)
.

We remark that the processes (N (1)(t + T1)), . . . , (N (m)(t + Tm)) are i.i.d., and independent of
(Nρ(t)); in what follows we use the notation

N∗
m−n(t) = N (n)(t + Tn) (for n ∈ {1, . . . ,m} and t ≥ 0).

Then, by taking into account that

(Tm − T1, . . . , Tm − Tm−1, Tm − Tm) =d (Tm−1, . . . , Tm−(m−1), Tm−m)

(where, from now on, =d means ”equally distributed”), we have

sup
t∈[0,T ]

|S̃(αt)− S(αt)| =d sup
m:Tm≤αT

m∑

n=1

(N∗
m−n(∞)∑

i=1

X
(m−n+1)
i −

N∗
m−n(Tm−n)∑

i=1

X
(m−n+1)
i

)
.
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Then, if we consider the random variables (Am) defined by

Am =
m−1∑

j=0

(N∗
j (∞)∑

i=1

X
(j+1)
i −

N∗
j (Tj)∑

i=1

X
(j+1)
i

)
,

we have
sup

t∈[0,T ]
|S̃(αt)− S(αt)| =d sup

m:Tm≤αT
Am = ANρ(αT )

since (Am) is a nondecreasing sequence (being the sequence of partial sums of nonnegative random
variables).

Therefore (7) is equivalent to

lim
α→∞

1
α

log P
(
ANρ(αT ) > αδ

)
= −∞ (for all δ > 0). (8)

The following estimates (9) and (11) are needed to check (8).

• Let η > 0 and a positive integer K be arbitrarily fixed. Since Tn is the sum of n independent
exponential random variables with mean 1

ρ , we have

P (TK[α] < αT ) ≤ eηαTE[e−ηTK[α] ] = eηαT
( ρ

ρ + η

)K[α]
,

and therefore
lim

α→∞
1
α

log P (TK[α] < αT ) ≤ ηT + K log
ρ

ρ + η
. (9)

• Let θ, δ > 0 and a positive integer K be arbitrarily fixed. We have

P (ANρ(αT ) > αδ, TK[α] ≥ αT ) ≤ P (AK[α] ≥ αδ) ≤ e−θαδE[eθAK[α] ];

thus, since we have

lim
m→∞

1
m

logE[eθAm ] = 0 (for all θ > 0) (10)

(the proof of (10) is given in the Appendix B), we obtain

lim sup
α→∞

1
α

log P (ANρ(αT ) > αδ, TK[α] ≥ αT ) ≤ −θδ.

Therefore
lim

α→∞
1
α

log P (ANρ(αT ) > αδ, TK[α] ≥ αT ) = −∞ (11)

since θ > 0 is arbitrary.

By the union bound we get

P (ANρ(αT ) > αδ) ≤ P (ANρ(αT ) > αδ, TK[α] ≥ αT ) + P (TK[α] < αT );

hence, by (9) and (11), we have

lim sup
α→∞

1
α

log P (ANρ(αT ) > αδ) ≤ ηT + K log
ρ

ρ + η
.

Moreover, for K > ρT , we can set η = K
T − ρ and we have

lim sup
α→∞

1
α

log P (ANρ(αT ) > αδ) ≤ K − ρT −K log
K

ρT
.
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Finally (8) follows by letting K go to infinity. ¤

A consequence of Proposition 3.2 is that limt→∞
S(t)

t = Λ′(0) a.s.. Note also that

Λ′(0) = λM ′
Xλ(0) + ρM ′

X̂
(0) = λM ′

Xλ(0) + ρM ′
H(∞,Y )(0)M ′

X(0),
i.e. Λ′(0) = λE[Xλ

1 ] + ρE[H(∞, Y1)E[X1]
.

Proposition 3.3 Assume (S). Then ((S(α·)
α )[0,∞)) satisfies the LDP in D

Λ′(0)
0 with good rate func-

tion I∞.

Proof. By Theorem 18 and Lemma 19 in Majewski [M] we only have to check the following
condition: for every ε, µ > 0 there exist τ > 0 and c ∈ R such that

lim sup
α→∞

1
α

log P
(

sup
t∈[τ,2τ ]

∣∣∣S(αt)
αt

− c
∣∣∣ ≥ ε

)
< −µ.

In what follows we show that this condition holds choosing c = Λ′(0) and τ > µ
min{Λ∗(Λ′(0)−ε),Λ∗(Λ′(0)+ε)}

for any given ε, µ > 0. Firstly, by Proposition 3.2 (with T = 2τ), we have

lim sup
α→∞

1
α

log P
(

sup
t∈[τ,2τ ]

∣∣∣S(αt)
αt

− c
∣∣∣ ≥ ε

)
≤ − inf{I2τ (f) : f ∈ E}, (12)

where
E =

{
f ∈ AC[0, 2τ ] : f(0) = 0, sup

t∈[τ,2τ ]

∣∣∣f(t)
t
− c

∣∣∣ ≥ ε
}

.

Moreover let Ẽ be the set of functions g = gs,x such that

gs,x(t) =
{

xt if t ∈ [0, s]
xs + Λ′(0)(t− s) if t ∈ (s, 2τ ]

for some (s, x) such that s ∈ [τ, 2τ ] and |x− c| ≥ ε. Then, since for all f ∈ E there exists s ∈ [τ, 2τ ]
such that

∣∣∣f(s)
s − c

∣∣∣ ≥ ε, we have

I2τ (f) =
∫ 2τ

0
Λ∗(ḟ(t))dt ≥

∫ s

0
Λ∗(ḟ(t))dt ≥ sΛ∗(f(s)/s) = I2τ (gs,f(s)/s);

combining this with (12) we get

lim sup
α→∞

1
α

log P
(

sup
t∈[τ,2τ ]

∣∣∣S(αt)
αt

− c
∣∣∣ ≥ ε

)
≤ − inf{I2τ (f) : f ∈ Ẽ}.

We complete the proof noting that

inf{I2τ (f) : f ∈ Ẽ} = inf{sΛ∗(x) : s ∈ [τ, 2τ ], |x− c| ≥ ε} =

= τ min{Λ∗(Λ′(0)− ε), Λ∗(Λ′(0) + ε)} < −µ. ¤
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3.2 Sample path large deviations for the reserve process

Now we introduce a suitable scaling called slow Markov walk limit. More in particular, for each
fixed α > 0, we consider the reserve process (Rα(t)) defined by

{
dRα(t) = b(Rα(t))dt− 1

α · dS(αt)
Rα(0) = u

. (13)

Now we introduce some further assumptions and notations.
(A): There exists B > 0 such that limx→∞ b(x) = B.
(N): For b := infx∈R b(x), we have b > Λ′(0).
We remark that, if (A) and (N) hold, we have B > Λ′(0). Condition (A) gives the asymptotic
behavior of b(·) and (N) plays the role of the net profit condition in our context.

In this subsection we state the LDP of ((Rα(·))[0,∞)) on D
B−Λ′(0)
u . We remark that, assuming

(L), (S), (A) and (N), we can easily check that the random paths ((Rα(·))[0,∞)) are almost surely

elements of D
B−Λ′(0)
u . Indeed, we have lim inft→∞

Rα(t)
1+t ≥ b−Λ′(0) > 0 by (13), limt→∞

S(t)
t = Λ′(0)

and (N); thus limt→∞Rα(t) = ∞, and therefore limt→∞
Rα(t)
1+t = B − Λ′(0) > 0. In view of the

next result, consider the rate function J defined by

J(g) =

{ ∫∞
0 Λ∗(−ġ(t) + b(g(t)))dt if g ∈ AC[0,∞) ∩D

B−Λ′(0)
u

∞ otherwise
.

The following proposition holds.

Proposition 3.4 Assume (L), (S), (A) and (N). Then ((Rα(·))[0,∞)) satisfies the LDP with
good rate function J .

Proof. It is an easy consequence of Proposition 3.3, and it is similar to the proof of Proposition
3.1 of Ganesh, Macci and Torrisi [GMT]. ¤

4 Ruin probabilities

The aim of this section is to present asymptotic estimates for the ruin probabilities concerning
the risk processes (Rα(·)) defined by (13) (see Proposition 4.1 below). Moreover, we provide an
asymptotically efficient simulation law for the ruin probabilities by using importance sampling (see
Proposition 4.3 below). Similar results for the models with undelayed and delayed claims can be
found in Asmussen and Nielsen [AN] (see Corollaries 1 and 2 therein) and in Ganesh, Macci and
Torrisi [GMT] (see Propositions 4.2 and 5.2 therein), respectively.

4.1 Asymptotic behavior

In this subsection we provide the asymptotic behavior of the ruin probabilities. We start with
some preliminaries. Since the claims (Xn) are positive, conditions (S) and (N) imply the following
condition.
(C): For all c ≥ b there exists a unique γc > 0 such that Λ(γc)− cγc = 0.
The values (γc : c ≥ b) are called local adjustment coefficients. Furthermore, when (C) holds, for
all c ≥ b we have

inf
t>0

tΛ∗
(
c +

1
t

)
=

Λ∗(Λ′(γc))
Λ′(γc)− c

= γc;

more precisely the infimum is attained at t = 1
Λ′(γc)−c and this minimizer is unique, since we have

a strictly convex function of t by the strict convexity of Λ∗.

9



Define the (infinite horizon) ruin probability

Ψα(u) = P (∃t > 0 : Rα(t) ≤ 0|Rα(0) = u)

and the function
w(u) = inf{J(g) : g ∈ Su},

where
Su = {g ∈ AC[0,∞) : g(0) = u, g(t) = 0 for some t > 0}.

The following proposition holds.

Proposition 4.1 Assume the hypotheses of Proposition 3.4. Then, for each u > 0 arbitrarily fixed,
we have

lim
α→∞

1
α

log Ψα(u) = −w(u) = −
∫ u

0
γb(x)dx.

Proof. Due to the LDP in Proposition 3.4, we can adapt the proof of Propositions 4.1 and 4.2 of
Ganesh, Macci and Torrisi [GMT]. ¤

4.2 Monte Carlo simulation of ruin probabilities

In this subsection we address the problem of estimation of Ψα(u) (as α → ∞) by a Monte Carlo
simulation. More precisely, we determine an asymptotically efficient simulation law for Ψα(u), as
α →∞. To this end, we use importance sampling (see for instance Bucklew [Bu]).

We consider the following conditions.
(R): There exists tmax ∈ (0,∞) such that, for all y ∈ (0,∞), we have H(tmax, y) = H(∞, y) = y.
(M): The function b(·) is non-decreasing, and B = supx∈R b(x) < Λ′(γb).
For instance, condition (R) holds if H(t, y) = H(t)y where H(t) is the distribution function of a
bounded and nonnegative random variable, i.e. H(0) = 0 and H(tmax) = 1 for some tmax ∈ (0,∞).
The monotonicity of b(·) in (M) also appears in Asmussen and Nielsen [AN] and in Ganesh, Macci
and Torrisi [GMT].

We start recalling some preliminaries on importance sampling, and then we present a suitable
asymptotically efficient simulation law Q.

Preliminaries on importance sampling. We can write the ruin probability Ψα(u) in terms of
the ruin time τα

u as follows:

Ψα(u) = P (τα
u < ∞), where τα

u = inf{t ≥ 0 : Rα(t) ≤ 0}.

Consider r independent replications of τα
u under the original law P , say τα

u,1, . . . , τ
α
u,r. The corre-

sponding crude Monte Carlo estimator of Ψα(u) is

Ψ̂α(u) =
1
r

r∑

i=1

1τα
u,i<∞.

Its relative error is
1

Ψα(u)

√
Ψα(u)(1−Ψα(u))

r
;

thus, by Proposition 4.1, r needs to grow exponentially with α, as α →∞, to keep a fixed relative
error. This makes the crude Monte Carlo estimator not efficient to estimate Ψα(u), as α →∞.

To overcome this problem, the idea is to consider r independent replications of τα
u under another

law Q on the underlying measurable space (Ω,F). From now on we set Fα
t := Fαt for all α > 0 and

10



t ≥ 0. We choose Q such that: Q is absolutely continuous with respect to the original law P on
Fα

t with a strictly positive density dQα
t

dP α
t

; Q is admissible for simulations, i.e. Q(τα
u < ∞) = 1 (for

all α > 0). The corresponding importance sampling estimator [Ψ̂α(u)]Q of Ψα(u) is defined by

[Ψ̂α(u)]Q =
1
r

r∑

i=1

dPα
τα
u,i

dQα
τα
u,i

1τα
u,i<∞,

and it is unbiased. Its variance is

VarQ[[Ψ̂α(u)]Q] =
EQ

[( dP α
τα
u

dQα
τα
u

)2
1τα

u <∞
]
− (Ψα(u))2

r
=
EQ

[( dP α
τα
u

dQα
τα
u

)2]
− (Ψα(u))2

r
,

where the second equality holds since Q(τα
u < ∞) = 1; we remark that the second moment

ηQ(α) = EQ

[( dPα
τα
u

dQα
τα
u

)2]

is the only part of the variance which depends on Q.
The minimization of the variance (or equivalently of the second moment) is often intractable

for a fixed α. Thus, in order to apply the large deviation estimates in this paper, we look for
an asymptotic minimization as α → ∞. By taking into account Proposition 4.1 and following
Siegmund’s criterion (see Siegmund [S]; see also Lehtonen and Nyrhinen [LN]), we say that an
admissible law Q is asymptotically efficient, as α →∞, if

lim
α→∞

1
α

log ηQ(α) = −2
∫ u

0
γb(x)dx. (14)

The law Q. Let (R̃α(t)) be the risk process defined by
{

dR̃α(t) = b(R̃α(t))dt− 1
α · dS̃(αt)

R̃α(0) = u
,

where (S̃(t)) is the batch process. We define the law Q by a suitable exponential tilting: for each
fixed α > 0 and t ≥ 0, the law Q is absolutely continuous with respect to P on Fα

t with density

dQ
α
t

dPα
t

= exp
(
−α

∫ t

0
γ

b(R̃α(s−))
dR̃α(s)

)
.

As pointed out by Asmussen and Nielsen [AN] (see Proposition 3 therein), Q makes R̃α a

suitable risk process such that the premium rate is b(·) and the items concerning ( S̃(αt)
α ) depend

on the current level of the reserve R̃α. We consider two presentations of these items which depend
on the versions (5) and (3) of (S̃(t)).

We start considering (S̃(t)) in (5). Under Q, if R̃α(t) = x, we have that: the arrival rate
of a claim X̃

α is (λ + ρ)(α)
x = α(λ + ρ)M

X̃
(γb(x)); the law Q

(x)

X̃/α
of a claim X̃

α is dQ
(x)

X̃/α
(z) =

e
αγb(x)z

M
X̃

(γb(x))
dP

X̃/α
(z), where P

X̃/α
is the common law of the random variables ( X̃n

α ) under P .

If we consider (S̃(t)) in (3), some further computations are needed. In view of this we denote
the common law of the random variables (Xλ

n
α ) (under the original law P ) by PXλ/α; similarly we

denote the common law of the random variables ( X̂n
α ) (again under P ) by P

X̂/α
. Then we have

(λ + ρ)(α)
x = α(λ + ρ)M

X̃
(γb(x)) =

11



= α(λ + ρ)
[ λ

λ + ρ
MXλ(γb(x)) +

ρ

λ + ρ
M

X̂
(γb(x))

]
= αλMXλ(γb(x)) + αρM

X̂
(γb(x)),

and
dQ

(x)

X̃/α
(z) =

eαγb(x)z

M
X̃

(γb(x))
dP

X̃/α
(z) =

=
eαγb(x)z

λ
λ+ρMXλ(γb(x)) + ρ

λ+ρM
X̂

(γb(x))

[ λ

λ + ρ
dPXλ/α(z) +

ρ

λ + ρ
dP

X̂/α
(z)

]
=

=
λeαγb(x)zdPXλ/α(z) + ρeαγb(x)zdP

X̂/α
(z)

λMXλ(γb(x)) + ρM
X̂

(γb(x))
=

=
λMXλ(γb(x)) e

αγb(x)z

M
Xλ (γb(x))

dPXλ/α(z) + ρM
X̂

(γb(x)) e
αγb(x)z

M
X̂

(γb(x))
dP

X̂/α
(z)

λMXλ(γb(x)) + ρM
X̂

(γb(x))
.

Then, under Q, if R̃α(t) = x, we have that: the arrival rate of a claim Xλ

α is λ
(α)
x = αλMXλ(γb(x));

the law Q
(x)

Xλ/α of a claim Xλ

α is dQ
(x)

Xλ/α(z) = e
αγb(x)z

M
Xλ (γb(x))

dPXλ/α(z); the arrival rate of a claim X̂
α is

ρ
(α)
x = αρM

X̂
(γb(x)); the law Q

(x)

X̂/α
of a claim X̂

α is dQ
(x)

X̂/α
(z) = e

αγb(x)z

M
X̂

(γb(x))
dP

X̂/α
(z).

Some further details can be given. Let (µ)∗j be the j-fold convolution of a law µ, let PY be
the common law of the random variables (Yn) under P and let Q

(x)
N (h) be the discrete density (on

nonnegative integers h) defined by

Q
(x)
N (h) =

∫∞
0

(MX(γb(x))y)h

h! e−ydPY (y)
∑∞

j=0

∫∞
0

(MX(γb(x))y)j

j! e−ydPY (y)
.

We remark that

Q
(x)
N (h) =

P (N (1)(∞) = h)Mh
X(γb(x))

M
X̂

(γb(x))
;

indeed
∫ ∞

0

(MX(γb(x))y)h

h!
e−ydPY (y) =

∫ ∞

0

yh

h!
e−ydPY (y)Mh

X(γb(x)) = P (N (1)(∞) = h)Mh
X(γb(x)),

whence we obtain
∞∑

j=0

∫ ∞

0

(MX(γb(x))y)j

j!
e−ydPY (y) =

∞∑

j=0

P (N (1)(∞) = j)M j
X(γb(x)) = M

X̂
(γb(x)).

Then we have

dQ
(x)

X̂/α
(z) =

eαγb(x)z

M
X̂

(γb(x))
dP

X̂/α
(z) =

eαγb(x)z

M
X̂

(γb(x))

∞∑

j=0

P (N (1)(∞) = j)d(PX/α)∗j(z) =

=
∞∑

j=0

P (N (1)(∞) = j)M j
X(γb(x))

M
X̂

(γb(x))
eαγb(x)z

M j
X(γb(x))

d(PX/α)∗j(z) =
∞∑

j=0

Q
(x)
N (j)d(Q(x)

X/α)∗j(z);

moreover, since Q
(x)
N (h) =

∫∞
0

(MX (γb(x))y)h

h!
e−ydPY (y)

M
X̂

(γb(x))
, we obtain

Q
(x)
N (h) =

∫ ∞

0

(MX(γb(x))y)h

h!
e−MX(γb(x))y

e{MX(γb(x))−1}y

M
X̂

(γb(x))
dPY (y);
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therefore, under Q, if R̃α(t) = x, the random variable N(∞) is mixed Poisson distributed with
intensity MX(γb(x))Y , where the random variable Y has distribution Q

(x)
Y defined by

dQ
(x)
Y (y) =

e{MX(γb(x))−1}y

M
X̂

(γb(x))
dPY (y).

The asymptotic efficiency of Q. In the proof of the next Proposition 4.2 we denote the usual
stochastic order by ≤st, and the likelihood ratio order by ≤lr; see the book of Müller and Stoyan
[MS] (page 2 and page 12) for the definitions.

Proposition 4.2 Assume (R), (M) and the hypotheses of Proposition 3.4. Then the law Q is
admissible for simulation, i.e. Q(τα

u < ∞) = 1 for all u, α > 0.

Proof. We prove the admissibility of Q showing that, for all u, α > 0, lim supt→∞Rα(t) = −∞.
Throughout this proof we simply write R̃(t) in place of R̃1(t). We recall that the points

of (Nρ(t)) are denoted by (Tn); the points of (Nλ(t)) will be denoted by (T λ
n ). We notice

that, under Q, (Nλ(t)) and (Nρ(t)) are Cox processes with intensities (λMXλ(γb(y))|y=R̃(t)
) and

(ρM
X̂

(γb(y))|y=R̃(t)
) respectively. Then, by a standard procedure (see e.g. Müller and Stoyan [MS],

pp. 211-216), on the same probability space we can define two independent homogeneous Poisson
processes (Nλ∗(t)) and (Nρ∗(t)) with intensities λ∗ = λMXλ(γb) and ρ∗ = ρM

X̂
(γb) respectively;

moreover the points of (Nλ∗(t)) are a subset of the points of (Nλ(t)) and the points of (Nρ∗(t))
are a subset of the points of (Nρ(t)). Therefore we have

S(t) =
Nλ(t)∑

n=1

Xλ
n +

Nρ(t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i ≥

Nλ∗ (t)∑

n=1

Xλ
n +

Nρ∗ (t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i , Q a.s.. (15)

On the same probability space we can also define two independent sequences of i.i.d. random
variables (V λ

n ) and (V ρ
n ), independent of (Nλ∗(t)) and (Nρ∗(t)), such that the (common) law QV λ

of (V λ
n ) and the (common) law QV ρ of (V ρ

n ) are defined by

dQV λ(z) =
eγbz

MXλ(γb)
dPXλ(z) and dQV ρ(z) =

eγbz

M
X̂

(γb)
dP

X̂
(z)

(PXλ is the common law of the random variables (Xλ
n) and P

X̂
is the common law of the random

variables (X̂n), under the original probability measure P ). Thus, we have V λ
n ≤lr [Xλ

n |{R̃(T λ
n ) = x}]

and therefore V λ
n ≤st Xλ

n (see e.g. Müller and Stoyan [MS], Theorems 1.4.5 and 1.3.8); similarly
we have V ρ

n ≤lr [X̂n|{R̃(Tn) = x}] and therefore V ρ
n ≤st X̂n. Thus, by a well-known result on the

usual stochastic order (see e.g. Müller and Stoyan [MS], Theorem 1.2.4), we can think that

V λ
n ≤ Xλ

n and V ρ
n ≤ X̂n, Q a.s.. (16)

Then we have

lim inf
t→∞

S(t)
t

≥by (15) lim inf
t→∞

∑Nλ∗ (t)
n=1 Xλ

n +
∑Nρ∗ (t)

n=1

∑N(n)(t)
i=1 X

(n)
i

t
=

= lim inf
t→∞

∑Nλ∗ (t)
n=1 Xλ

n +
∑Nρ∗ (t)

n=1 X̂n −
∑Nρ∗ (t)

n=1 (X̂n −
∑N(n)(t)

i=1 X
(n)
i )

t
≥by (16)

≥ lim inf
t→∞

∑Nλ∗ (t)
n=1 V λ

n +
∑Nρ∗ (t)

n=1 V ρ
n −

∑Nρ∗ (t)
n=1 (

∑N(n)(∞)

i=N(n)(t)+1
X

(n)
i )

t
≥(F)

13



≥ λ∗EQ[V λ
1 ] + ρ∗EQ[V ρ

1 ] = λMXλ(γb)
M ′

Xλ(γb)
MXλ(γb)

+ ρM
X̂

(γb)
M ′

X̂
(γb)

M
X̂

(γb)
= Λ′(γb) Q a.s.;

we remark that the key inequality (F) holds since, for each n ≥ 1, we have
∑N(n)(∞)

i=N(n)(t)+1
X

(n)
i = 0

for t > tmax by (R).
Finally, we notice that, Q almost surely, we have

lim sup
t→∞

Rα(t)
t

≤ lim sup
t→∞

1
t

∫ t

0
b(Rα(s))ds− lim inf

t→∞
S(αt)

αt
≤ B − Λ′(γb) < 0,

where the latter inequality is guaranteed by (M). ¤

Proposition 4.3 Assume the hypotheses of Proposition 4.2. Then Q is an asymptotically efficient
simulation law, i.e. Q is admissible and (14) holds with Q = Q for all u > 0.

Proof. The admissibility of Q has been proved in the previous Proposition 4.2. We have to check
(14) with Q = Q.
Lower bound. Using Jensen’s inequality and Proposition 4.1 we have

lim inf
α→∞

1
α

log ηQ(α) = lim inf
α→∞

1
α

logEQ

[( dPα
τα
u

dQ
α
τα
u

)2
1τα

u <∞
]
≥

≥ 2 lim inf
α→∞

1
α

logEQ

[ dPα
τα
u

dQ
α
τα
u

1τα
u <∞

]
= 2 lim inf

α→∞
1
α

log Ψα(u) = −2
∫ u

0
γb(x)dx.

Upper bound. The following preliminary inequality holds:
∫ τα

u

0
γ

b(R̃α(s−))
dR̃α(s) ≤ −f(u), with f(u) =

∫ u

0
γb(x)dx. (17)

The proof of (17) is similar to the proof of formula (33) of Ganesh, Macci and Torrisi [GMT]: we
have to consider a suitable integration by parts formula, the monotonicity of b(·) (see condition
(M)) and the monotonicity of b 7→ γb. Thus

lim sup
α→∞

1
α

log ηQ(α) = lim sup
α→∞

1
α

logEQ

[
exp

(
2α

∫ τα
u

0
γ

b(R̃α(s−))
dR̃α(s)

)
1τα

u <∞
]
≤by (17)

≤ lim sup
α→∞

1
α

logEQ

[
exp

(
−2αf(u)

)]
= −2f(u) = −2

∫ u

0
γb(x)dx. ¤

Remark 4.4 We remark that, for each fixed α, u > 0, we have Ψα(u) ≤ exp
(
−α

∫ u
0 γb(x)dx

)
. This

easily follows by Ψα(u) = EQ

[
exp

(
α

∫ τα
u

0 γ
b(R̃α(s−))

dR̃α(s)
)
1τα

u <∞
]

and (17), and corresponds to
the Lundberg inequality in our context.

5 Bayesian estimates for ruin probabilities

Throughout this section we assume that, as in Albrecher and Asmussen [AA], the distribution of
the random variables (Xλ

n) coincides with the distribution of the random variables (X(n)
i ). Thus,

we write

S(t) =
N(t)∑

n=1

Xn,

14



where (Xn) are i.i.d. random variables, independent of (N(t)); moreover

Λ(γ) = λ(MX(γ)− 1) + ρ(M
X̂

(γ)− 1),

where MX(γ) = E[eγXn ] is the common moment generating function of the random variables (Xn).
Furthermore we always think that the unknown parameter is the (common) law of the claims

`, and we consider the following restriction:
(V): we have `([0, V ]) = 1 for some known constant V ∈ (0,∞).
In other words, for some known V ∈ (0,∞), we require that ` ∈ M1[0, V ] where M1[0, V ] is the
family of all probability measures on [0, V ]. We think M1[0, V ] equipped with the topology of weak
convergence.

As a prior distribution on ` we choose a Dirichlet process prior π; it is known that the posterior
distribution πn after the first n sampled claims X1, . . . , Xn is again a Dirichlet process (see Ferguson
[F]). An essential ingredient in the proof of Proposition 5.2 presented below is the LDP for posterior
Dirichlet processes on a compact space proved by Ganesh and O’Connell [GO2]; for this reason we
need to consider assumption (V).

In what follows we use the symbols Ψ(`)
α (u), Λ`, G` and γ

(`)
b in place of Ψα(u), Λ, MX and γb

respectively; thus, in particular, the predictive ruin probability is
∫

M1[0,V ]
Ψ(`)

α (u)πn(d`).

We remark that we defined the value γ
(`)
b when (S) and (N) hold (see condition (C)); here it is

useful to consider the more general definition

γ
(`)
b = sup{γ ≥ 0 : Λ`(γ)− bγ ≤ 0};

indeed in such a case we have γ
(`)
b ≥ 0, Λ`(γ

(`)
b )− bγ

(`)
b = 0 and γ

(`)
b > 0 if and only if b > Λ′`(0).

In view of what follows it is useful to consider the function Λ`,ρ=0 and the value γ
(`)
b,ρ=0, i.e. Λ`

and γ
(`)
b when ρ = 0:

Λ`,ρ=0(γ) = λ(G`(γ)− 1); γ
(`)
b,ρ=0 = sup{γ ≥ 0 : Λ`,ρ=0(γ)− bγ ≤ 0}.

In particular we have γ
(`)
b,ρ=0 ≥ γ

(`)
b .

The aim of this section is to provide two asymptotic bounds for
∫

M1[0,V ]
Ψ(`)

nq (u)πn(d`);

as we shall see the upper bound is sharper than the lower bound. We start with the following
lemma.

Lemma 5.1 Let b : [0, u] → [b−, b+] be a measurable function, where b+ > b− > 0. Then the
function ` ∈ M1[0, V ] 7→ ∫ u

0 γ
(`)
b(x)dx is continuous.

Proof. As a first step we show the uniform continuity of the following function:

(`, b) ∈ M1[0, V ]× [b−, b+] 7→ γ
(`)
b . (18)

We notice that M1[0, V ] is a compact set (see e.g. Dembo and Zeitouni [DZ], Theorem D.8, pages
355-356) and therefore the domain of the function (18) is a compact set (since it is the product
between two compact sets); thus we only need to check the continuity of the function (18).
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Let ρ̃ be the Prohorov’s metric. We want to show that limn→∞ γ
(`n)
bn

= γ
(`∞)
b∞ , when limn→∞ ρ̃(`n, `∞) =

0 and limn→∞ bn = b∞ for some `∞ ∈ M1[0, V ] and b∞ ∈ [b−, b+]. First of all, since [0, V ] is com-
pact, we have limn→∞ G`n(γ) = G`∞(γ) for all γ ∈ R; thus

lim
n→∞Λ`n(γ)− bnγ = Λ`∞(γ)− b∞γ for all γ ∈ R.

Moreover Λ`n(γ(`n)
bn

)−bnγ
(`n)
bn

= 0 for all n ≥ 1 and Λ`∞(γ(`∞)
b∞ )−b∞γ

(`∞)
b∞ = 0. We notice that there

exist β−, β+ ∈ R (which depends on b∞ and `∞) such that β− < γ
(`∞)
b∞ < β+ and Λ`∞(β−)−b∞β− <

0 and Λ`∞(β+) − b∞β+ > 0; as a consequence there exists n ≥ 1 such that β− < γ
(`n)
bn

< β+

for all n ≥ n. Thus, there exists a subsequence (γ
(`n(k))

bn(k)
) such that limk→∞ γ

(`n(k))

bn(k)
= γ for some

γ ∈ [β−, β+]. Our aim is to show that γ = γ
(`∞)
b∞ . For this we reason by contradiction, distinguishing

two cases.
1) If γ < γ

(`∞)
b∞ there exists γ− ∈ (γ, γ

(`∞)
b∞ ) such that γ

(`n(k))

bn(k)
< γ− eventually, and we have the

following contradiction:

0 = Λ`n(k)
(γ

(`n(k))

bn(k)
)− bn(k)γ

(`n(k))

bn(k)
< Λ`n(k)

(γ−)− bn(k)γ−,

and limk→∞ Λ`n(k)
(γ−)− bn(k)γ− = Λ`∞(γ−)− b∞γ− < Λ`∞(γ(`∞)

b∞ )− b∞γ
(`∞)
b∞ = 0;

2) If γ > γ
(`∞)
b∞ there exists γ+ ∈ (γ(`∞)

b∞ , γ) such that γ
(`n(k))

bn(k)
> γ+ eventually, and we have the

following contradiction:

0 = Λ`n(k)
(γ

(`n(k))

bn(k)
)− bn(k)γ

(`n(k))

bn(k)
> Λ`n(k)

(γ+)− bn(k)γ+,

and limk→∞ Λ`n(k)
(γ+)− bn(k)γ+ = Λ`∞(γ+)− b∞γ+ > Λ`∞(γ(`∞)

b∞ )− b∞γ
(`∞)
b∞ = 0.

We finally show that any convergent subsequence of (γ(`n)
bn

) converges to γ
(`∞)
b∞ . We reason by

contradiction. Suppose that there exists ε0 > 0 and a subsequence (γ
(`n(k))

bn(k)
) of (γ(`n)

bn
) such that∣∣∣γ(`n(k))

bn(k)
− γ

(`∞)
b∞

∣∣∣ ≥ ε0 eventually. Then, since (γ
(`n(k))

bn(k)
) ⊂ [β−, β+], there exists a subsequence of

(γ
(`n(k))

bn(k)
) which converges to γ

(`∞)
b∞ by 1) and 2). This yields a contradiction.

The uniform continuity of the function (18) is proved. Then for all ε > 0 there exists δε > 0
such that, if ρ̃(`, `∞) < δε, we have

sup
b∈[b−,b+]

∣∣∣γ(`)
b − γ

(`∞)
b

∣∣∣ ≤ ε

u
. (19)

Let (`n) ⊂ M1[0, V ] be such that limn→∞ ρ̃(`n, `∞) = 0 for some `∞ ∈ M1[0, V ]. We have to
check that limn→∞

∫ u
0 γ

(`n)
b(x)dx =

∫ u
0 γ

(`∞)
b(x) dx. For all ε > 0 there exists n ≥ 1 such that ρ̃(`n, `∞) <

δε for all n ≥ n; thus, by (19),
∣∣∣
∫ u

0
γ

(`n)
b(x)dx−

∫ u

0
γ

(`∞)
b(x) dx

∣∣∣ ≤
∫ u

0

∣∣∣γ(`n)
b(x) − γ

(`∞)
b(x)

∣∣∣dx ≤ u sup
b∈[b−,b+]

∣∣∣γ(`n)
b − γ

(`∞)
b

∣∣∣ ≤ ε. ¤

In view of the asymptotic bounds for the predictive ruin probability presented below, it is useful
to consider the relative entropy of ̂̀with respect to ` defined by

H(̂̀|`) =

{ ∫
[0,V ]

d̂̀
d`(x)̂̀(dx) if ̂̀¿ ` with density d̂̀

d`

∞ otherwise
.
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Indeed, the lower bound and the upper bound will be expressed in terms of the functions

a+(q, u|̂̀) := sup
`∈M1[0,V ]

[
−q

∫ u

0
γ

(`)
b(x)dx−H(̂̀|`)

]
and a−(q, u|̂̀) := sup

`∈M1[0,V ]

[
−quγ

(`)
B,ρ=0 −H(̂̀|`)

]
,

where q, u > 0 and ̂̀∈ M1[0, V ]).

Proposition 5.2 Assume the hypotheses of Proposition 4.2 and (V). Moreover, assume that the
empirical law 1

n

∑n
i=1 δXi (of the first n sampled claims X1, . . . , Xn) converges to ̂̀∈ M1[0, V ] as

n →∞. Then, for all q, u > 0, we have:

(LB) : lim inf
n→∞

1
n

log
∫

M1[0,V ]
Ψ(`)

nq (u)πn(d`) ≥ a−(q, u|̂̀);

(UB) : lim sup
n→∞

1
n

log
∫

M1[0,V ]
Ψ(`)

nq (u)πn(d`) ≤ a+(q, u|̂̀).

Proof. The idea is to prove (LB) and (UB) applying Varadhan’s Lemma (see e.g. Dembo and
Zeitouni [DZ], Theorem 4.3.1, page 137). Indeed, it is known (see Ganesh and O’Connell [GO2],
Theorem 1) that, under our hypotheses, (πn) satisfies the LDP with rate function H(̂̀|·).
Proof of (LB). Let (Sρ=0(t)) be the process defined by Sρ=0(t) =

∑Nλ(t)
n=1 Xλ

n (we are referring to
equation (3)) and let Ψ(`)

B,ρ=0(u) be the ruin probability defined by

Ψ(`)
B,ρ=0(u) = P (∃t > 0 : u + Bt− Sρ=0(t) ≤ 0);

since P (Xλ
n ≤ V ) = 1 for all n ≥ 1 by (V), we have Ψ(`)

B,ρ=0(u) ≥ e−(u+V )γ
(`)
B,ρ=0 . Thus, since

b(x) ≤ B by (M), we get

Ψ(`)
α (u) ≥ P

(
∃t > 0 : u + Bt− Sρ=0(αt)

α
≤ 0

)
=

= P (∃t > 0 : αu + Bαt− Sρ=0(αt) ≤ 0) = Ψ(`)
B,ρ=0(αu) ≥ e−(αu+V )γ

(`)
B,ρ=0 .

In particular Ψ(`)
nq (u) ≥ e−(nqu+V )γ

(`)
B,ρ=0 = e−n(qu+V

n
)γ

(`)
B,ρ=0 ; therefore, for all ε > 0, there exists

n ≥ 1 such that
Ψ(`)

nq (u) ≥ e−n(qu+ε)γ
(`)
B,ρ=0 for all n ≥ n,

whence we obtain

lim inf
n→∞

1
n

log
∫

M1[0,V ]
Ψ(`)

nq (u)πn(d`) ≥ lim inf
n→∞

1
n

log
∫

M1[0,V ]
e−n(qu+ε)γ

(`)
B,ρ=0πn(d`). (20)

Since ` ∈ M1[0, V ] 7→ γ
(`)
B,ρ=0 is continuous by Lemma 5.1, and

lim sup
n→∞

1
n

log
∫

M1[0,V ]
e−zn(qu+ε)γ

(`)
B,ρ=0πn(d`) ≤ 0 for all z > 1,

we have

lim
n→∞

1
n

log
∫

M1[0,V ]
e−n(qu+ε)γ

(`)
B,ρ=0πn(d`) = sup

`∈M1[0,V ]

[
−(qu + ε)γ(`)

B,ρ=0 −H(̂̀|`)
]

(21)
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by Varadhan’s Lemma. Then, by (20) and (21), for all ε > 0 we have

lim inf
n→∞

1
n

log
∫

M1[0,V ]
Ψ(`)

nq (u)πn(d`) ≥ sup
`∈M1[0,V ]

[
−(qu + ε)γ(`)

B,ρ=0 −H(̂̀|`)
]
. (22)

Finally, we notice that the function

z ∈ [0,∞) 7→ sup
`∈M1[0,V ]

[
−zγ

(`)
B,ρ=0 −H(̂̀|`)

]

is continuous (it is a convex function on (0,∞) which assumes finite values; moreover it is continuous
at z = 0), therefore we obtain (LB) by letting ε go to zero in (22).
Proof of (UB). By Remark 4.4 we have

∫

M1[0,V ]
Ψ(`)

nq (u)πn(d`) ≤
∫

M1[0,V ]
exp

(
−nq

∫ u

0
γ

(`)
b(x)dx

)
πn(d`). (23)

Moreover, the function ` ∈ M1[0, V ] 7→ ∫ u
0 γ

(`)
b(x)dx is continuous by Lemma 5.1 and

lim sup
n→∞

1
n

log
∫

M1[0,V ]
exp

(
−znq

∫ u

0
γ

(`)
b(x)dx

)
πn(d`) ≤ 0 for all z > 1.

Then
lim

n→∞
1
n

log
∫

M1[0,V ]
exp

(
−nq

∫ u

0
γ

(`)
b(x)dx

)
πn(d`) = a+(q, u|̂̀) (24)

by Varadhan’s Lemma, and inequality (UB) follows by (23) and (24). ¤

Firstly we remark that, if the function b is constant and ρ = 0, the bounds a+(q, u|̂̀) and
a−(q, u|̂̀) coincide. Thus Proposition 5.2 extends Proposition 4.1 in Macci and Petrella [MP]
which refers to the classical risk process. We also remark that

−quγ
(̂̀)
B,ρ=0 ≤ a−(q, u|̂̀) and − q

∫ u

0
γ

(̂̀)
b(x)dx ≤ a+(q, u|̂̀),

and the law ̂̀ in the statement of Proposition 5.2 is the true law of the claims (Xn). Thus,
the Bayesian bounds are asymptotically more conservative than the corresponding non-Bayesian
bounds, with a degree which becomes more pronounced as q increases; indeed, one can prove that
the differences

a−(q, u|̂̀)− (−quγ
(̂̀)
B,ρ=0) and a+(q, u|̂̀)−

(
−q

∫ u

0
γ

(̂̀)
b(x)dx

)

are nondecreasing with respect to q. This fact agrees with the discussion of Ganesh et al. [GGOP]
on some network and risk management problems.

Appendix A: The measurability requirement concerning the events in (7)

As pointed out in Remark (b) just after Definition 4.2.10 in Dembo and Zeitouni [DZ], the mea-
surability requirement concerning this definition is satisfied if we deal with separable real-valued
stochastic processes. Thus, as pointed out in [LT] (page 45), it is enough to prove that the continu-

ity in probability of S̃(αt)
α − S(αt)

α with respect to t. It is easy to check that it is enough to consider
the case α = 1. In what follows we prove the right-continuity; the left-continuity can be proved
similarly and we omit the details. Thus, for all ε > 0, we shall prove that

lim
t↓t0

P (|S̃(t)− S(t)− (S̃(t0)− S(t0))| > ε) = 0.
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Firstly note that

P (|S̃(t)− S(t)− (S̃(t0)− S(t0))| > ε) ≤ P (|S̃(t)− S̃(t0)|+ |S(t)− S(t0)| > ε) ≤

≤ P
(
|S̃(t)− S̃(t0)| > ε

2

)
+ P

(
|S(t)− S(t0)| > ε

2

)
≤ 2

ε
(E[|S̃(t)− S̃(t0)|] + E[|S(t)− S(t0)|]);

so, since t > t0, we have

P (|S̃(t)− S(t)− (S̃(t0)− S(t0))| > ε) ≤ 2
ε
(E[S̃(t)− S̃(t0)] + E[S(t)− S(t0)]),

and we only have to check that
lim
t↓t0
E[S̃(t)] = E[S̃(t0)] (25)

and
lim
t↓t0
E[S(t)] = E[S(t0)]. (26)

We start noting that E[S̃(t)] = λtE[Xλ
1 ]+ρtE[X̂1] and E[S(t)] = λtE[Xλ

1 ]+E[
∑Nρ(t)

n=1

∑N(n)(t)
i=1 X

(n)
i ];

thus (25) can be immediately checked, and (26) is equivalent to

lim
t↓t0
E




Nρ(t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i


 = E




Nρ(t0)∑

n=1

N(n)(t0)∑

i=1

X
(n)
i


 . (27)

Note that

E




Nρ(t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i


 =

∑

j≥0

j∑

n=1

E




N(n)(t)∑

i=1

X
(n)
i

∣∣∣Nρ(t) = j


 (ρt)j

j!
e−ρt. (28)

Moreover, given the event {Nρ(t) = j}, the distribution of (T1, . . . , Tj) coincides with the distribu-
tion of (tU1:j , . . . , tUj:j), where (U1:j , . . . , Uj:j) are the order statistics of i.i.d. uniformly distributed
random variables U1, . . . , Uj on [0, 1]. Thus, for all n ∈ {1, . . . , j}, we have

E




N(n)(t)∑

i=1

X
(n)
i

∣∣∣Nρ(t) = j


 = E




M(n)(t)∑

i=1

X
(n)
i


 ,

where M (n) is a Cox process with stochastic intensity h(· − tUn:j , Yn); then, if we set a = E[X(1)
1 ],

we have

E




N(n)(t)∑

i=1

X
(n)
i

∣∣∣Nρ(t) = j


 = a

∫ t

0
E[h(s− tUn:j , Yn)]ds =

= a

∫ t

0
ds

∫ 1

0
dxE[h(s− tx, Yn)]

j!
(n− 1)!(j − n)!

xn−1(1− x)j−n =

=
a

tj
j!

(n− 1)!(j − n)!

∫ t

0
ds

∫ t

0
drE[h(s− r, Y1)]rn−1(t− r)j−n.

Substituting the latter equality in (28) we get

E




Nρ(t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i


 =

∑

j≥0

j∑

n=1

a

tj
j!

(n− 1)!(j − n)!

(∫ t

0
ds

∫ t

0
drE[h(s− r, Y1)]rn−1(t− r)j−n

)
(ρt)j

j!
e−ρt

︸ ︷︷ ︸
=:bj(t)

.
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Note that

bj(t) ≤ a

t

(∫ t

0
ds

∫ t

0
drE[h(s− r, Y1)]

)
(ρt)j

j!
e−ρt

j∑

n=1

j!
(n− 1)!(j − n)!

=

=
a

t

(∫ t

0
ds

∫ t

0
drE[h(s− r, Y1)]

)
(ρt)j

j!
e−ρt2j

j∑

n=1

n

(
j
n

)(
1
2

)j

=

=
a

2t

(∫ t

0
ds

∫ t

0
drE[h(s− r, Y1)]

)
(2ρt)j

j!
e−ρtj.

Consequently, for t0 ≤ t ≤ 2t0, we have

bj(t) ≤ a

2t0

(∫ 2t0

0
ds

∫ 2t0

0
drE[h(s− r, Y1)]

)
(4ρt0)j

j!
e−ρt0j.

Since
∑

j≥0
(4ρt0)j

j! j = 4ρt0e
4ρt0 < ∞, the dominated convergence theorem yields

lim
t↓t0
E




Nρ(t)∑

n=1

N(n)(t)∑

i=1

X
(n)
i


 =

∑

j≥0

lim
t↓t0

bj(t)

and (27) follows by the continuity of the functions {bj(·) : j ≥ 0}.

Appendix B: The proof of (10)

Let θ > 0 be arbitrarily fixed. Since the random variables (Am) are nonnegative we have

lim inf
m→∞

1
m

logE[eθAm ] ≥ 0.

We shall show that lim supm→∞
1
m logE[eθAm ] ≤ 0. By the dominated convergence theorem we

have

lim
t→∞E[eθ(

∑N∗j (∞)

i=1 X
(j+1)
i −∑N∗j (t)

i=1 X
(j+1)
i )] = 1,

for each fixed j ≥ 1; note that dominated convergence theorem can be applied since

E[eθ(
∑N∗j (∞)

i=1 X
(j+1)
i −∑N∗j (t)

i=1 X
(j+1)
i )] ≤ E[eθ

∑N∗j (∞)

i=1 X
(j+1)
i ] = MH(∞,Y )(MX(θ)− 1) < ∞

by (S). Thus, for any ε > 0 arbitrarily fixed, there exists tε such that

E[eθ(
∑N∗j (∞)

i=1 X
(j+1)
i −∑N∗j (t)

i=1 X
(j+1)
i )] ≤ eε for all t ≥ tε. (29)

We now show that
lim

m→∞
1
m

log P (T[mε] ≤ tε) = −∞. (30)

Let η > 0 be arbitrarily fixed. Then

P (Nρ(tε) ≥ [mε]) ≤ e−η[mε]E[eηNρ(tε)] = e−η[mε]+ρtε(eη−1),

and therefore lim supm→∞
1
m log P (Nρ(tε)) ≥ [mε]) ≤ −ηε; thus, since η > 0 is arbitrary,

lim
m→∞

1
m

log P (Nρ(tε) ≥ [mε]) = −∞
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and this inequality is equivalent to (30) since we have P (T[mε] ≤ tε) = P (Nρ(tε) ≥ [mε]).
Now, consider the equality

E[eθAm ] = E[eθAm1T[mε]<tε ] + E[eθAm1T[mε]≥tε ]. (31)

For the first addendum in (31) we have

E[eθAm1T[mε]<tε ] ≤ E[eθ
∑m−1

j=0

∑N∗j (∞)

i=1 X
(j+1)
i 1T[mε]<tε ] = (MH(∞,Y )(MX(θ)− 1))mP (T[mε] < tε),

since θ > 0,
∑m−1

j=0

∑N∗
j (∞)

i=1 X
(j+1)
i and T[mε] are independent, and (

∑N∗
j (∞)

i=1 X
(j+1)
i )j=0,...,m−1 are

i.i.d. random variables with common moment generating function MH(∞,Y )(MX(·)− 1); thus

lim
m→∞

1
m

logE[eθAm1T[mε]<tε ] = −∞ (32)

by (S) and (30). For the second addendum in (31) we have

E[eθAm1T[mε]≥tε ] ≤ E[eθ{∑[mε]−1
j=0

∑N∗j (∞)

i=1 X
(j+1)
i +

∑m−1
j=[mε]

[
∑N∗j (∞)

i=1 X
(j+1)
i −∑N∗j (tε)

i=1 X
(j+1)
i ]}1T[mε]≥tε ] =

= E[eθ
∑[mε]−1

j=0

∑N∗j (∞)

i=1 X
(j+1)
i ]E[eθ

∑m−1
j=[mε]

[
∑N∗j (∞)

i=1 X
(j+1)
i −∑N∗j (tε)

i=1 X
(j+1)
i ]]P (T[mε] ≥ tε)

since θ > 0, and by the independence of the involved random variables; thus by (29)

E[eθAm1T[mε]≥tε ] ≤ (MH(∞,Y )(MX(θ)− 1))[mε](eε)m−[mε] (33)

since (
∑N∗

j (∞)

i=1 X
(j+1)
i )j=0,...,m−1 are i.i.d. random variables with common moment generating func-

tion MH(∞,Y )(MX(·)− 1).
Finally, by (31), (32) and (33), we have

lim sup
m→∞

1
m

logE[eθAm ] ≤ ε log MH(∞,Y )(MX(θ)− 1) + ε(1− ε);

then, by (S), we conclude letting ε go to zero.
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