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Abstract

In reality insurance claims may be delayed for several reasons and risk models with this
feature have been discussed for some years. In this paper we present a sample path large
deviation principle for the delayed claims risk model presented in [11]. Roughly speaking each
main claim induces another type of claim called by-claim; any by-claim occurs later than its
main claim and the time of delay is random. Successively we use Gärtner Ellis Theorem to
prove a large deviation principle for a more general version of this model, in which the following
items depend on the evolution of an irreducible (continuous time) Markov chain with finite state
space: the intensity of the Poisson claim number process, the distribution of the claim sizes and
the distribution of the random times of delay. Finally we present the Lundberg’s estimate for
the ruin probabilities; in the fashion of large deviations this estimate provides the exponential
decay of the ruin probability as the initial capital goes to infinity.
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lation.
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1 Introduction

In reality insurance claims may be delayed for several reasons. Risk models with delayed claims
have been discussed for some years and a wide source of references with models having this feature
can be found in [11].

In this paper we present as the ”classical case” the risk model in section 2 in [11]. We also
consider a generalization of this model and we use the term ”Markov modulated case”. Roughly
speaking in both the cases we have the following situation: each main claim induces another type
of claim called by-claim; any by-claim occurs later than its main claim, with a random time of
delay.

We are interested in large deviation estimates for the risk models in this paper. We refer to [5]
as a reference on large deviations: in particular see pages 4-5 for the definition of large deviation
principle (LDP for short) and of good rate function.

Under some light tail assumptions there are some known large deviation results for a risk model
with Poisson shot noise delayed claims, which coincide with the analogous results for the associated
risk model with non-delayed claims: we have the same sample path large deviation rate function
(see [7]) and consequently the same Lundberg’s estimate for the ruin probabilities. The coincidence
of Lundberg’s estimates for the ruin probabilities has been already proved (see Theorem 2.1 in [3]).

For the classical case we prove a sample path LDP, namely a LDP on the space of cadlag
functions D[0, 1]. The method used in the proof is similar to the one presented in [7] for a risk
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model with Poisson shot noise delayed claims. Thus we obtain the same kind of result, i.e. we have
the same rate function concerning the associated risk model with non-delayed claims (see eq. (3.1)
in [11]) and consequently we have the same Lundberg’s estimate for the ruin probabilities. The
coincidence of Lundberg’s estimates for the ruin probabilities has been already pointed out (see
section 4 in [11]).

For the Markov modulated case we prove a LDP on R and we use the Gärtner Ellis Theorem (see
section 3 of chapter 2 in [5]). The Markov modulated case is a generalization of the classical case
(see Remark 3.3) and the associated risk model with non-delayed claims is a Markov modulated
risk model according to the terminology in [10] (chapter 12, section 3; see also chapter 12, section
2, subsection 2, example 4 at page 506 in the same reference).

Finally we present the Lundberg’s estimate for the ruin probabilities (Proposition 4.1). More
precisely we use some results in [6] to prove that, in the fashion of large deviations, the ruin
probability ψ(u) decays exponentially as the initial capital u goes to infinity.

The results for the Markov modulated case and their proofs have some analogies with Propo-
sitions 2.1 and 3.1 in [9] which concern a risk model with Poisson shot noise delayed claims. In
[9] the stochastic intensity (λ(t)) of the claim number process is more general than the Markov
modulated intensity presented here, but we have less general hypotheses on the claims which are
i.i.d. and independent of (λ(t)); moreover a Brownian perturbation is allowed in [9].

The paper is organized as follows. In section 2 we present the classical case and the correspond-
ing sample path LDP. Section 3 is devoted to the Markov modulated case and, finally, we conclude
with large deviation estimates for ruin probabilities in section 4.

2 The classical case and the sample path LDP

Let us present the model (see section 2 in [11]). Let (St) be the process defined by

St = u + ct−Dt, (1)

where u is the initial capital, c is the (constant) premium rate and (Dt) is the aggregate claims
process. The process (Dt) is the sum between the aggregate main claims process and the aggregate
by-claims process: the first one is a compound Poisson process

(∑Nt
k=1 Xk

)
, where (Nt) is the

corresponding Poisson claims number process with intensity λ, and Nt =
∑

k≥1 1Tk≤t; the second

one is
(∑

k≥1 Yk1Tk+Wk≤t

)
, so that the corresponding claims number process (N t) can be written

as N t =
∑

k≥1 1Tk+Wk≤t. Thus

Dt =
Nt∑

k=1

Xk +
∑

k≥1

Yk1Tk+Wk≤t. (2)

Roughly speaking a main claim Xk occurs at time Tk and generates a by-claim Yk at time Tk +Wk,
where Wk is a random time of delay. We point out that the sequences of random variables (Xn),
(Yn), (Tn) and (Wn) are independent; moreover each one of the sequences (Xn), (Yn) and (Wn) is
a sequence of i.i.d. positive random variables.

It is useful to consider the associated risk model with non-delayed claims; thus let us consider
the modification (S∗t ) of (St) defined by

S∗t = u + ct−D∗
t , where D∗

t =
Nt∑

k=1

(Xk + Yk). (3)

We point out that the aggregate claims process (D∗
t ) is a compound Poisson process.
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In this section we consider sample path LDPs, i.e. LDPs on the space of cadlag functions
D[0, 1]. Given a process with cadlag paths (Zt), we say that

(
Z(α·)

α

)
satisfies the LDP with rate

function I if I : D[0, 1] → [0,∞] is a lower semicontinuous function and

− inf
f∈B◦

I(f) ≤ lim inf
α→∞

1
α

log P
(Z(α·)

α
∈ B

)
≤ lim sup

α→∞
1
α

log P
(Z(α·)

α
∈ B

)
≤ − inf

f∈B
I(f)

for all Borel set B in D[0, 1] (we use the standard notation B◦ for the interior of B and B for the
closure of B); thus we refer to the topology of uniform convergence. Furthermore I is a good rate
function if the level sets of I

{f ∈ D[0, 1] : I(f) ≤ η} (for all η > 0)

are compact sets.
The aim of this section is to show that

(
D(α·)

α

)
satisfies the LDP with rate function I defined

by

I(f) =
{ ∫ 1

0 Λ∗(ḟ(t))dt if f ∈ AC[0, 1] and f(0) = 0
∞ otherwise

, (4)

where AC[0, 1] is the family of all absolutely continuous defined on [0, 1],

Λ∗(x) = sup
θ∈R

[θx− Λ(θ)] and Λ(θ) = λ(E[eθ(X1+Y1)]− 1) = λ(E[eθX1 ]E[eθY1 ]− 1). (5)

This LDP will be proved assuming that the next light tail condition (superexponential condition)
holds:
(S1): E[eθX1 ]E[eθY1 ] < ∞ for all θ ∈ R.

The idea is to prove the sample path LDP by adapting the procedure in [7] for the Poisson

shot noise delayed claims process. Thus we shall show that
(

D∗
(α·)
α

)
and

(
D(α·)

α

)
are exponentially

equivalent as α →∞ (see Definition 4.2.10 in [5]), so that the sample path LDP we want to prove
will follow from Theorem 4.2.13 in [5] and the next known result (see [2]; see also [4] and the
references cited therein).

Proposition 2.1 Assume (S1) holds. Then
(

D∗
(α·)
α

)
satisfies the LDP with rate function I as in

(4). Moreover the rate function I is good.

We shall use the symbol [·] to denote the integer part of a real number. Let (An) be the sequence
defined by

An =
n∑

k=1

Yk1Wk>Tk
. (6)

In view of the proof of the sample path LDP the following lemma is needed.

Lemma 2.2 Assume (S1) holds. Then limn→∞ 1
n logE[eθAn ] = 0 for all θ > 0.

Proof. Let θ > 0 be arbitrarily fixed. We have E[eθAn ] ≥ 1 for all n ≥ 1 since θ > 0 and the
random variable An is nonnegative; thus we can immediately say that lim infn→∞ 1

n logE[eθAn ] ≥ 0.
Thus we complete the proof showing that lim supn→∞

1
n logE[eθAn ] ≤ 0.

By the dominated convergence theorem we have limt→∞ E[eθY11W1>t ] = 1; therefore for all ε > 0
there exists t(ε, θ) > 0 such that

E[eθY11W1>t ] < eε for all t ≥ t(ε, θ). (7)
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For all n ≥ 1 and for all η > 0 we have

P (Nt(ε,θ) ≥ [nε]) ≤ e−η[nε]E[eηNt(ε,θ) ] = e−η[nε]+λt(ε,θ)(eη−1),

and therefore lim supn→∞
1
n log P (Nt(ε,θ) ≥ [nε]) ≤ −ηε; thus, since η > 0 is arbitrary,

lim
n→∞

1
n

log P (Nt(ε,θ) ≥ [nε]) = −∞.

In conclusion, since we have P (T[nε] ≤ t(ε, θ)) = P (Nt(ε,θ) ≥ [nε]) for all n ≥ 1, we obtain

lim
n→∞

1
n

log P (T[nε] ≤ t(ε, θ)) = −∞. (8)

Now let us write
E[eθAn ] = E[eθAn1T[nε]<t(ε,θ)] + E[eθAn1T[nε]≥t(ε,θ)]

and we shall derive bounds on each addendum. Note that An ≤
∑n

k=1 Yk and we have

E[eθAn1T[nε]<t(ε,θ)] ≤ E[eθ
∑n

k=1 Yk1T[nε]<t(ε,θ)] = (E[eθY1 ])nP (T[nε] < t(ε, θ))

since θ > 0, (Y1, . . . , Yn, T[nε]) are independent and (Y1, . . . , Yn) are i.i.d.; thus we obtain

lim
n→∞

1
n

logE[eθAn1T[nε]<t(ε,θ)] = −∞ (9)

holds by (8) and (S1). Moreover set

Bn =
[nε]−1∑

k=1

Yk +
n∑

k=[nε]

Yk1Wk>t(ε,θ)

and, if {T[nε] ≥ t(ε, θ)}, we have An ≤ Bn; thus

E[eθAn1T[nε]≥t(ε,θ)] ≤ E[eθBn1T[nε]≥t(ε,θ)] ≤ (E[eθY1 ])[nε]−1eε(n−[nε]+1) (10)

where the first inequality holds by An ≤ Bn (under the hypothesis {T[nε] ≥ t(ε, θ)}) and the second
inequality holds by the definition of Bn and (7).

Thus, by (9) and (10), we have lim supn→∞
1
n logE[eθAn ] ≤ ε logE[eθY1 ]+ε(1−ε). In conclusion,

since (S1) holds and ε > 0 can be chosen arbitrarily small, we have lim supn→∞
1
n logE[eθAn ] ≤ 0.

¤
Now we are able to complete the proof of the sample path LDP.

Proposition 2.3 Assume (S1) holds. Then
(

D(α·)
α

)
satisfies the LDP with rate function I as in

(4).

Proof. Proposition 2.1 provides the LDP of
(

D∗
(α·)
α

)
and the goodness of the rate function I in (4).

Thus, by Theorem 4.2.13 in [5], we only need to show that
(

D(α·)
α

)
and

(
D∗

(α·)
α

)
are exponentially

equivalent as α →∞, i.e.

lim
α→∞

1
α

log P (Mα > δ) = −∞ (for all δ > 0), where Mα =
1
α

sup
t∈[0,1]

|D∗
αt −Dαt|. (11)
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Let δ > 0 be arbitrarily fixed. We point out that D∗
t ≥ Dt for all t ≥ 0 and the supremum Mα

is attained at some epoch Tn ∈ [0, α] concerning the underlying Poisson process (Nt); thus

Mα =
1
α

max
n:Tn∈[0,α]

n∑

k=1

Yk −
n∑

k=1

Yk1Tk+Wk≤Tn ,

whence

Mα =
1
α

max
n:Tn∈[0,α]

n∑

k=1

Yk1Tk+Wk>Tn . (12)

Since Tn is the sum of n exponential random variables with mean 1
λ , for all η > 0 and for all integers

K > λ we have

P (TK[α] < α) ≤ eηαE[e−ηTK[α] ] = eηα
( λ

λ + η

)K[α]
,

and therefore
lim

α→∞
1
α

log P (TK[α] < α) ≤ η + K log
λ

λ + η
(for all η > 0). (13)

Furthermore we have the following inequalities:

P (Mα > δ, TK[α] ≥ α) ≤ P
(

max
1≤n≤K[α]

n∑

k=1

Yk1Tk+Wk>Tn > αδ
)
≤

≤ K[α] max
1≤n≤K[α]

P
( n∑

k=1

Yk1Tk+Wk>Tn > αδ
)
;

they follow from (12) and the union bound respectively.
Now let us remark that (=law means ”equally distributed”)

n∑

k=1

Yk1Tk+Wk>Tn =
n∑

k=1

Yk1Wk>Tn−Tk
=law

n∑

k=1

Yk1Wk>Tn−k
=

=
n∑

k=1

Yn−k1Wn−k>Tk
=law

n∑

k=1

Yk1Wk>Tk
=by (6) An;

thus we can rewrite the above inequality as

P (Mα > δ, TK[α] ≥ α) ≤ K[α] max
1≤n≤K[α]

P (An > αδ),

and we obtain
P (Mα > δ, TK[α] ≥ α) ≤ K[α]P (AK[α] > αδ)

since (An) is an increasing sequence. Thus, for all θ > 0,

P (Mα > δ, TK[α] ≥ α) ≤ K[α]P (AK[α] > αδ) ≤ K[α]e−θαδE[eθAK[α] ]

and, by Lemma 2.2, lim supα→∞
1
α log P (Mα > δ, TK[α] ≥ α) ≤ −θδ. In conclusion

lim
α→∞

1
α

log P (Mα > δ, TK[α] ≥ α) = −∞ (14)

holds since θ > 0 is arbitrarily chosen.
Now, by the union bound, we get

P (Mα > δ) ≤ P (Mα > δ, TK[α] ≥ α) + P (TK[α] < α);
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hence, by (13) and (14), we have

lim sup
α→∞

1
α

log P (Mα > δ) ≤ η + K log
λ

λ + η
(for all η > 0).

Then
lim sup

α→∞
1
α

log P (Mα > δ) ≤ inf
η>0

{
η + K log

λ

λ + η

}
= K − λ−K log

K

λ

and we obtain (11) by taking K →∞ in the latter right hand side. ¤

3 The Markov modulated case

In this section we still consider the process (St) as in (1) and the process (S∗t ) as in (3); on the
contrary we consider different (and more general) hypotheses on the process (Dt) in (2) and on the
process (D∗

t ) in (3).
Let J = (Jt) be an irreducible continuous time Markov chain with finite state space E and let

(pij)i,j∈E be the intensity matrix of J . Moreover let [λi]i∈E be a vector of positive number and let
(Gi)i∈E be a family of product measures on (0,∞) × (0,∞) × (0,∞); more precisely we use the
notation

Gi = GX
i ⊗GY

i ⊗GW
i

where GX
i , GY

i , GW
i are the marginal distributions of Gi. Then let us consider the following situa-

tion: ((Xn, Yn,Wn)) and (Nt) are conditionally independent given J ; (Nt) is a Markov modulated
Poisson process, i.e. a doubly stochastic Poisson process with intensity (λJt); ((Xn, Yn,Wn)) are
independent given J and, for all n ≥ 1, the conditional distribution of (Xn, Yn,Wn) given J is
GJTn

.
In general we shall use the notation Ei[f(X, Y,W )] to denote the expected value of a random

variable f(X,Y, W ), where (X, Y,W ) is a random variable with distribution Gi.
In view of what follows it is useful to consider the following function L : RE → R (for details

see section 2 in [1]). Let v = [vi]i∈E be arbitrarily fixed and let us consider the matrix P (v) =
(pij + δijvi)i,j∈E , where

pij + δijvi =
{

pij + vi if i = j
pij if i 6= j

.

Then Perron Frobenius Theorem guarantees the existence of a simple and positive eigenvalue de-
noted by eL(v) of the exponential matrix eP (v), which is equal to the spectral radius of eP (v). It is
important to point out that

L(v) = lim
t→∞

1
t

logE[e
∫ t
0 vJsds] (for all v ∈ RE) (15)

whatever is the initial distribution of J . The function L(v) is convex, nondecreasing with respect
to each component vi of v and ∇L(0) = π, where 0 is the null vector in RE and π = (πi)i∈E is the
stationary distribution of J .

The aim of this section is to show that
(

Dt
t

)
satisfies the LDP with rate function Λ∗ defined by

Λ∗(x) = sup
θ∈R

[θx− Λ(θ)] and Λ(θ) = L([λi(Ei[eθ(X+Y )]− 1)]i∈E) = L([λi(Ei[eθX ]Ei[eθY ]− 1)]i∈E).

(16)
This LDP will be proved by the application of Gärtner Ellis Theorem and we assume that the next
light tail condition (S2) holds (it is a generalization of (S1) presented for the classical case).
(S2): for all i ∈ E we have Ei[eθ(X+Y )] = Ei[eθX ]Ei[eθY ] < ∞ for all θ ∈ R.
We can say that

(
D∗t
t

)
satisfies the LDP with the same rate function. Thus we have an analogy

with the sample path LDP proved in the previous section.
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Proposition 3.1 Assume (S2) holds. Then
(

Dt
t

)
satisfies the LDP with rate function Λ∗ as in

(16), i.e.

− inf
x∈B◦

Λ∗(x) ≤ lim inf
t→∞

1
t

log P
(Dt

t
∈ B

)
≤ lim sup

t→∞
1
t

log P
(Dt

t
∈ B

)
≤ − inf

x∈B
Λ∗(x)

for all Borel set B in R (as usual we use the standard notation B◦ for the interior of B and B for
the closure of B).

Before proving Proposition 3.1 the following Lemma is needed.

Lemma 3.2 Let us consider a random variable Z =
∑

n≥1 ϕ(Tn, (Xn, Yn,Wn)) according to the

presentation above. Then E[eθZ ] = E
[
exp

(∫∞
0 λJs(EJs [e

θϕ(s,(X,Y,W ))]− 1)ds
)]

.

Proof of Lemma 3.2. This formula can be proved following the lines of the proof of Lemma 2.3
in [9]; more precisely we have to consider the extension considered in Lemma A.1 in [8]. ¤

Proof of Proposition 3.1. We want to apply Gärtner Ellis Theorem and, for all θ ∈ R, we need
to check the limit

lim
t→∞

1
t

logE[etθ
Dt
t ] = Λ(θ), (17)

with Λ(θ) as in (16).
One can immediately say that (17) holds when θ = 0 since Λ(0) = L(0) = 0. For θ 6= 0 we

consider Lemma 3.2 with

ϕ(s, (x, y, w)) = x1(0,t](s) + y1(0,t](s + w)

for each fixed t ≥ 0; indeed in such a case Dt =
∑

n≥1 ϕ(Tn, (Xn, Yn,Wn)) and we have

E[eθDt ] = E
[
exp

(∫ ∞

0
λJs(EJs [e

θ[X1(0,t](s)+Y 1(0,t](s+W )]]− 1)ds
)]

=

= E
[
exp

(∫ t

0
λJs(EJs [e

θ[X+Y 1(0,t−s](W )]]− 1)ds
)]

,

whence we obtain

E[eθDt ] = E
[
exp

(∫ t

0
λJt−u(EJt−u [eθ[X+Y 1(0,u](W )]]− 1)du

)]
(18)

by the change of variable u = t− s. Now let us consider the cases θ > 0 and θ < 0 separately.

Case θ > 0. By (18) we have

E[eθDt ] ≤ E
[
exp

(∫ t

0
λJt−u(EJt−u [eθ(X+Y )]− 1)du

)]
= E

[
exp

(∫ t

0
λJs(EJs [e

θ(X+Y )]− 1)ds
)]

;

thus

lim sup
t→∞

1
t

logE[eθDt ] ≤ lim sup
t→∞

1
t

logE
[
exp

(∫ t

0
λJs(EJs [e

θ(X+Y )]− 1)ds
)]

= Λ(θ)

by (15) and (16). Furthermore, by the dominated convergence theorem, for all ε > 0 there exists
t(ε, θ) > 0 such that

Ei[eθY 1(0,t](W )] > Ei[eθY ]− ε (for all i ∈ E and for all t > t(ε, θ))
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whence we obtain (starting from (18))

E[eθDt ] ≥ E
[
exp

(∫ t

t(ε,θ)
λJt−u(EJt−u [eθ[X+Y 1(0,u](W )]]− 1)du

)]
=

= E
[
exp

(∫ t

t(ε,θ)
λJt−u(EJt−u [eθX ]EJt−u [eθY 1(0,u](W )]− 1)du

)]
≥

≥ E
[
exp

(∫ t

t(ε,θ)
λJt−u(EJt−u [eθX ](EJt−u [eθY ]− ε)− 1)du

)]
=s=t−u

= E
[
exp

(∫ t−t(ε,θ)

0
λJs(EJs [e

θX ](EJs [e
θY ]− ε)− 1)ds

)]
(for all t > t(ε, θ));

thus
lim inf
t→∞

1
t

logE[eθDt ] ≥ L([λi(Ei[eθX ](Ei[eθY ]− ε)− 1)]i∈E)

by (15) and

lim inf
t→∞

1
t

logE[eθDt ] ≥ L([λi(Ei[eθX ]Ei[eθY ]− 1)]i∈E) = Λ(θ)

holds by the continuity of L and by (16).

Case θ < 0. By (18) we have

E[eθDt ] ≥ E
[
exp

(∫ t

0
λJt−u(EJt−u [eθ(X+Y )]− 1)du

)]
= E

[
exp

(∫ t

0
λJs(EJs [e

θ(X+Y )]− 1)ds
)]

;

thus

lim inf
t→∞

1
t

logE[eθDt ] ≥ lim inf
t→∞

1
t

logE
[
exp

(∫ t

0
λJs(EJs [e

θ(X+Y )]− 1)ds
)]

= Λ(θ)

by (15) and (16). Furthermore, by the dominated convergence theorem, for all ε > 0 there exists
t(ε, θ) > 0 such that

Ei[eθY 1(0,t](W )] < Ei[eθY ] + ε (for all i ∈ E and for all t > t(ε, θ))

whence we obtain (starting from (18))

E[eθDt ] ≤ E
[
exp

(∫ t

t(ε,θ)
λJt−u(EJt−u [eθ[X+Y 1(0,u](W )]]− 1)du

)]
=

= E
[
exp

(∫ t

t(ε,θ)
λJt−u(EJt−u [eθX ]EJt−u [eθY 1(0,u](W )]− 1)du

)]
≤

≤ E
[
exp

(∫ t

t(ε,θ)
λJt−u(EJt−u [eθX ](EJt−u [eθY ] + ε)− 1)du

)]
=s=t−u

= E
[
exp

(∫ t−t(ε,θ)

0
λJs(EJs [e

θX ](EJs [e
θY ] + ε)− 1)ds

)]
(for all t > t(ε, θ));

thus
lim sup

t→∞
1
t

logE[eθDt ] ≤ L([λi(Ei[eθX ](Ei[eθY ] + ε)− 1)]i∈E)

by (15) and

lim sup
t→∞

1
t

logE[eθDt ] ≤ L([λi(Ei[eθX ]Ei[eθY ]− 1)]i∈E) = Λ(θ)

holds by the continuity of L and by (16). ¤
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Remark 3.3 The Markov modulated case is a generalization of the classical case. This can be
trivially explained by considering the set E reduced to a single point. A more interesting way
consists to consider the following condition (C) and some consequences:
(C): the distributions (Gi)i∈E are all the same G and the values (λi)i∈E are all the same λ.
A first consequence is that (Dt) satisfies the same hypotheses presented for the classical case, G is
the common distribution the random variables ((Xn, Yn, Wn)), and (Dt) and (Jt) are independent.
Furthermore (S2) coincides with (S1). Finally Λ in (16) coincides with Λ in (5); indeed, if for
some v ∈ R we have vi = v for all i ∈ E, then L([vi]i∈E) = v.

4 Large deviation estimates for ruin probabilities

The aim of this section is to present some large deviation estimates for the ruin probabilities
(ψ(u))u>0 defined by

ψ(u) = P (τu < ∞), where τu = inf{t ≥ 0 : u− ct−Dt < 0}.
More precisely we obtain the Lundberg’s estimate (19) and the value w is called adjustment co-
efficient or Lundberg’s exponent or Lundberg’s parameter. Roughly speaking we show that ψ(u)
decays exponentially as u →∞ in the fashion of large deviations (Proposition 4.1).

By taking into account Remark 3.3 it is not restrictive to consider the Markov modulated case;
indeed the classical case can be seen as a particular case.

In order to avoid the trivial case ψ(u) = 1 for all u > 0, the so called net profit condition is
required, i.e. c > Λ′(0) where Λ is defined as in (16). We point out that Λ′(0) =

∑
i∈E πiλi(Ei[X]+

Ei[Y ]).

Proposition 4.1 Assume (S2) and the net profit c > Λ′(0) condition hold, where Λ is defined as
in (16). Then there exists w > 0 such that Λ(w)− cw = 0 and

lim
u→∞

1
u

log ψ(u) = −w. (19)

Proof. First of all let Λc and Λ∗c be the functions defined by

Λc(θ) = Λ(θ)− cθ and Λ∗c(x) = sup
θ∈R

[θx− Λc(θ)] = Λ∗(x + c)

(the equality Λ∗c(x) = Λ∗(x + c) can be checked by the definition of Λc(θ)). Then the first claim in
the statement of the Proposition is the existence of w > 0 such that Λc(w) = 0.

We point out that Λ′c(0) < 0 by the net profit condition c > Λ′(0). Moreover

Λc(θ) ≥
∑

i∈E

πiλi(Ei[eθ(X+Y )]− 1)− cθ

by (16), the convexity of L and ∇L(0) = π; thus limθ→∞ Λc(θ) = ∞ since the right hand side
diverges as θ →∞. In conclusion the existence of w is guaranteed by the convexity of Λc, Λc(0) = 0,
Λ′c(0) < 0, limθ→∞ Λc(θ) = ∞ and Λc(θ) < ∞ for all θ ∈ R (the latter statement holds by (S2)
and the definition of Λc).

In order to prove (19) we refer to Corollary 2.3 and Lemma 2.1 in [6] (taking linear scaling
functions). Then we have to check that Λ∗c is continuous at every point of (0,∞) and the inequality

lim sup
n→∞

1
n

logE[eθ[sup0≤r<1(Dn+r−c(n+r))−(Dn−cn)]] ≤ 0 (for all θ > 0). (20)

First of all the function Λ∗c is convex and finite on the set {Λ′c(θ) : θ ∈ R} = (−c,∞); thus Λ∗c
is continuous on this open set and in particular on (0,∞) ⊂ (−c,∞).
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As far as (20) is concerned let θ > 0 and n ≥ 1 be arbitrarily fixed. Then we have

sup
0≤r<1

(Dn+r − c(n + r))− (Dn − cn) = sup
0≤r<1

(Dn+r −Dn − cr) ≤ sup
0≤r<1

(Dn+r −Dn) =

= Dn+1 −Dn =
Nn+1∑

k=1

Xk +
∑

k≥1

Yk1Tk+Wk≤n+1 −
( Nn∑

k=1

Xk +
∑

k≥1

Yk1Tk+Wk≤n

)
=

=
Nn+1∑

k=Nn+1

Xk +
∑

k≥1

Yk1n<Tk+Wk≤n+1,

whence we obtain

E[eθ[sup0≤r<1(Dn+r−c(n+r))−(Dn−cn)]] ≤ E
[
exp

(∫ ∞

0
λJs(EJs [e

θ[X1(n,n+1](s)+Y 1(n,n+1](s+W )]]− 1)ds
)]

by the above inequality and by Lemma 3.2 with ϕ(s, (x, y, w)) = x1(n,n+1](s) + y1(n,n+1](s + w).
The expected value in the right hand side of the latter inequality can be rewritten as

E
[
exp

(∫ n

0
λJs(EJs [e

θY 1(n−s,n+1−s](W )]− 1)ds +
∫ n+1

n
λJs(EJs [e

θ[X+Y 1(n−s,n+1−s](W )]]− 1)ds
)]

and, by considering the change of variable u = n− s in both the integrals, the latter is equal to

= E
[
exp

(∫ n

0
λJn−u(EJn−u [eθY 1(u,u+1](W )]− 1)du +

∫ 0

−1
λJn−u(EJn−u [eθ[X+Y 1(u,u+1](W )]]− 1)du

)]
.

Now set M(θ) = maxi∈E λi(Ei[eθ(X+Y )]− 1)) and M(θ) < ∞ by (S2); then we have

E[eθ[sup0≤r<1(Dn+r−c(n+r))−(Dn−cn)]] ≤ exp
(∫ n

0
max
i∈E

{λi(Ei[eθY 1(u,u+1](W )]− 1)}du + M(θ)
)
,

whence we obtain
lim sup

n→∞
1
n

logE[eθ[sup0≤r<1(Dn+r−c(n+r))−(Dn−cn)]] ≤

≤ lim sup
n→∞

1
n

(∫ n

0
max
i∈E

{λi(Ei[eθY 1(u,u+1](W )]− 1)}du + M(θ)
)

=

= lim sup
n→∞

1
n

∫ n

0
max
i∈E

{λi(Ei[eθY 1(u,u+1](W )]− 1)}du.

In conclusion (20) holds since limn→∞ 1
n

∫ n
0 maxi∈E{λi(Ei[eθY 1(u,u+1](W )] − 1)}du = 0 by Hopital

rule. ¤
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