
Guide for Authors 
Submission of manuscripts 
Prospective authors are encouraged to submit their articles 
within the scope of the journal. They are requested to sub-
mit their articles electronically by using the journal’s online 
submission and tracking tool at http://ees.elsevier.com/
sigpro. An electronic (PDF) file is generated and the review-
ing process is carried out using that PDF. Authors and 
editors send and receive all correspondence by e-mail via 
the website and no paper correspondence is performed.

The manuscript must be written in English and the text 
of the paper should be preceded by an abstract of no 
more than 200 words.

For further instructions on how to prepare a paper and on 
the electronic format requirements, see http://www.elsevier.
com/locate/sigpro.

Submission of an article implies that the work described 
has not been published previously (except in the form of an 
abstract or as part of a published lecture or academic thesis), 
that it is not under consideration for publication elsewhere, 
that its publication is approved by all authors and tacitly 
or explicitly by the responsible authorities where the work 
was carried out, and that, if accepted, it will not be published 
elsewhere in the same form, in English or in any other 
language, without the written consent of the Publisher.

Upon acceptance of an article, authors will be asked to sign 
a “Journal Publishing Agreement” (for more information on 
this and copyright see http://www.elsevier.com/copyright).
Acceptance of the agreement will ensure the widest 
possible dissemination of information. An e-mail (or letter) 
will be sent to the corresponding author confirming 
receipt of the manuscript together with a “Journal Publishing 
Agreement” form or a link to the online version of this 
agreement. If excerpts from other copyrighted works are 
included, the author(s) must obtain written permission from 
the copyright owners and credit the source(s) in the article. 
Elsevier has preprinted forms for use by authors in these 
cases: contact Elsevier’s Rights Department, Oxford, UK; 
phone: (+44) 1865 843830, fax: (+44) 186 853333; e-mail: 
permissions@elsevier.com. Requests may also be completed 
online via the Elsevier homepage (http://www.elsevier.com/
locate/permissions).

Type of contributions
The journal welcomes the following types of contributions. 

Original research articles
Research articles should not exeed 30 pages (single column, 
double spaced) in length and must contain novel research 
within the scope of the journal.

Review articles
Review articles are typically 30–60 pages (single column, 
double spaced) in length, and provide a comprehensive 
review on a scientific topic. They may be relatively broad
in scope, thereby serving a tutorial function, or be quite 
specialized, aimed at researchers in the chosen field.

Fast communications
A fast communication is a short, self-contained article 
not exeeding 10 pages (single column, double spaced) in 

length on ongoing research, or reporting interesting possibly 
tentative ideas, or comments on previously published 
research. The editorial decision is typically binary to provide 
rapid dissemination of the results. The objective is to provide 
detailed, constructive feedback on submitted papers and 
publish high quality papers within a very short period 
of time. The target for a first reply is two months.

Review process
The objective is to provide detailed, constructive feedback 
on submitted papers and publish high quality papers 
within a very short period of time. The target for a first reply 
is three months. You may be requested by the Editor to 
submit a revision. Please assist us in achieving our 
ambitious goals for short publication times by submitting 
a revision at your earliest convenience. All manuscripts 
will be assessed by at least two (anonymous) reviewers.

Funding body agreements and policies
Elsevier has established agreements and developed policies 
to allow authors whose articles appear in journals published 
by Elsevier, to comply with potential manuscript archiving 
requirements as specified as conditions of their grant 
awards. To learn more about existing agreements and 
policies please visit http:// www.elsevier.com/fundingbodies.

Language services
Authors who require information about language editing 
and copyediting services pre- and post-submission please 
visit http://www.elsevier.com/locate/languagepolishing or our 
customer support site at http://epsupport.elsevier.com. Please 
note Elsevier neither endorses nor takes responsibility for any 
products, goods or services offered by outside vendors through 
our services or in any advertising. For more information please 
refer to our Terms & Conditions http://www.elsevier.com/
termsandconditions.

Author enquiries
For enquiries relating to the submission of articles (including 
electronic submission where available) please visit this 
journal’s homepage at http://www.elsevier.com/locate/sigpro.
You can track accepted articles at http://www.elsevier.com/
trackarticle and set up e-mail alerts to inform you of when an 
article’s status has changed. Also accessible from here is infor-
mation on copyright, frequently asked questions and more.

Contact details for questions arising after acceptance of an 
article, especially those relating to proofs, will be provided 
by the Publisher.

Author benefits
• Free online reproduction of colour figures.
•  Online visibility within three weeks after acceptance 

through ScienceDirect (www.sciencedirect.com). Your 
article is immediately linkable and citeable by using the 
Digital Object Identifier.

•  The corresponding author, at no cost, will be provided 
with a PDF file of the article via e-mail or, alternatively, 
25 free paper offprints. The PDF file is a watermarked 
version of the published article and includes a cover sheet 
with the journal cover image and a disclaimer outlining 
the terms and conditions of use.

• Authors are entitled to a 30% discount on Elsevier books.
• Page charges are not applicable.

European Association for Signal Processing (EURASIP)

Administrative Committee (ADCOM) 
President: Markus Rupp, Vienna, Austria
Past President: Marc Moonen, Leuven, Belgium
Secretary/Treasurer: Beatrice Pesquet-Popescu, Paris, France
Awards Chairman: Fulvio Gini, Pisa, Italy
Membership Development: Ana Perez-Neira, Barcelona, Spain
Workshops/Conferences: Abdelhak Zoubir, Darmstadt, Germany
Publications: Bulent Sankur, Istanbul, Turkey

Officers
Newsletter: Ann Spriet, Leuven, Belgium
WWW-Development: Aggelos Pikrakis, Piraeus, Greece
CEE Liaison: Jiri Jan, Brno, Czech Republic

For full details please refer to: www.eurasip.org

SIGNAL PROCESSING 
An International Journal 
A publication of the European Association for Signal Processing (EURASIP)

Editor-in-Chief 
Björn Ottersten 
  Royal Institute of Technology
 SE-100 44 Stockholm, Sweden
 E-mail: bjorn.ottersten@ee.kth.se

Editorial Board
P. Abry (Lyon, France)
G.B. Akar (Ankara, Turkey)
A.K. Barros (Sao Luis, Brazil)
G. Bi (Singapore)
T. Blu (Hong Kong, China)
H. Boche (Berlin, Germany)
T.D. Bui (Montréal, Canada)
A. Carini (Urbino, Italy)
S. Chen (Southampton, UK)
N.I. Cho (Seoul, Korea)
P. Comon (Sophia-Antipolis, France)
P.L. Correia (Lisboa, Portugal)
J.P. Delmas (Evry, France)

T.-B. Deng (Chiba, Japan)
Z. Ding (Davis, CA, USA)
K. Dogancay (Mawson Lakes, SA, Australia)
Y. Eldar (Haifa, Israel)
J. Fonollosa (Barcelona, Spain)
X. Gao (Xi’an, China)
A. Gershman (Darmstadt, Germany)
F. Gini (Pisa, Italy) 
A. Hanssen (Tromsø, Norway)
K.V.S. Hari (Bangalore, India)
X. He (Hangzhou, China)
U. Heute (Kiel, Germany) 
Y. Hua (Riverside, CA, USA) 
M. Jansen (Eindhoven, Netherlands)
S.H. Jensen (Aalborg, Denmark)
M. Jiang (Beijing, China)
M. Kieffer (Paris, France)
B. Kleijn (Stockholm, Sweden)
P. Loubaton (Champs sur Marne, France) 
G. Matz (Vienna, Austria)

L. Mihaylova (Lancaster, UK)
M. Moonen (Leuven, Belgium)
A. Napolitano (Naples, Italy)
S.J. Perantonis (Agia Paraskevi, Greece) 
G. Poggi (Naples, Italy)
P. Regalia (Washington, DC, USA) 
C. Richard (Cedex, France)
B. Sadler (Adelphi, USA)
H. Sakai (Kyoto, Japan)
E. Serpedin (College Station, TX, USA)
P. Shi (Pontypridd, UK)
N. Sidiropoulos (Chania, Greece)
D. Tao (Singapore)
C.-C. Tseng (Kaohsiung, Taiwan, ROC)
L. Wang (Bath, UK)
S. Werner (Helsinki, Finland)
X.-G. Xia (Newark, DE, USA)
H. Yu (Blacksburg, VA, USA)
Y. Zhang (Villanova, PA, USA)
A.M. Zoubir (Darmstadt, Germany)

Editorial Policy. Signal Processing is an Interdisciplinary 
Journal presenting the theory and practice of signal processing. 
Its primary objectives are the following: 
–  Dissemination of research results and of engineering develop-

ments to all signal processing groups and individuals.
–  Presentation of practical solutions to current signal processing 

problems in engineering and science. 
The editorial policy and the technical content of the Journal 
are the responsibility of the Editor-in-Chief and the Editorial 
Board. The Journal is self-supporting from subscription income 
and contains a minimum amount of advertisements. The journal 
welcomes contributions from every country in the world. 

Scope. Signal Processing incorporates all aspects of the theory and 
practice of signal processing (analogue and digital). It features 
original research work, tutorial and review articles, and accounts 
of practical developments. It is intended for a rapid dissemina-
tion of knowledge and experience to engineers and scientists 
working in signal processing research, development or practical 
application. 

Subjects. Subject areas covered by the Journal include:  
Signal Theory, Stochastic Processes, Detection and Estimation, 
Spectral Analysis, Filtering, Signal Processing Systems, Software 
Developments, Image Processing, Pattern Recognition, Optical 
Signal Processing, Digital Signal Processing, Multidimensional 
Signal Processing, Communication Signal Processing, Biomedical 
Signal Processing, Geophysical and Astrophysical Signal Processing, 
Earth Resources Signal Processing, Acoustic and Vibration Signal 
Processing, Data Processing, Remote Sensing, Signal Processing 
Technology, Speech Processing, Radar Signal Processing, Sonar 
Signal Processing, Special Signal Processing, Industrial Appli-
cations, New Applications. 

Publication information: Signal Processing (ISSN 0165-1684). 
For 2010, Volume 90 (12 issues) is scheduled for publication. 
Subscription prices are available upon request from the 
Publisher or from the Regional Sales Office nearest you or 
from this journal’s website (http://www.elsevier.com/locate/
sigpro). Further information is available on this journal and 
other Elsevier products through Elsevier’s website: (http://
www.elsevier.com). Subscriptions are accepted on a prepaid 
basis only and are entered on a calendar year basis. Issues 
are sent by standard mail (surface within Europe, air delivery 
outside Europe). Priority rates are available upon request.

Claims for missing issues should be made within six months 
of the date of dispatch. 

Orders, claims, and journal enquiries: please contact the 
Elsevier Customer Service Department nearest you:

St. Louis: Elsevier Customer Service Department, 11830 
Westline Industrial Drive, St. Louis, MO 63146, USA; phone: 
(877) 8397126 [toll free within the USA];  (+1) (314) 4537076 
[outside the USA];  fax: (+1) (314) 5235153; e-mail: Journal
CustomerService-usa@elsevier.com

Oxford: Elsevier Customer Service Department, The Boulevard, 
Langford Lane, Kidlington OX5 1GB, UK; phone: (+44) (1865) 
843434; fax: (+44) (1865) 843970; e-mail: JournalsCustomer
ServiceEMEA@elsevier.com

Tokyo: Elsevier Customer Service Department, 4F Higashi-
Azabu, 1-Chome Bldg, 1-9-15 Higashi-Azabu,  Minato-ku, Tokyo 
106-0044, Japan; phone: (+81) (3) 5561 5037; fax: (+81) (3) 
5561 5047; e-mail: JournalsCustomerServiceJapan@elsevier.com

Singapore: Elsevier Customer Service Department, 3 Killiney 
Road, #08-01 Winsland House I, Singapore 239519; phone: 
(+65) 63490222; fax: (+65) 67331510; e-mail: JournalsCustomer
ServiceAPAC@elsevier.com

Advertising information. Advertising orders and enquiries can 
be sent to: Janine Castle, Elsevier Ltd., The Boulevard, Langford 
Lane, Kidlington, Oxford OX5 1GB, UK; phone: (+44) 1865 843 
844; fax: (+44) 1865 843 973; e-mail: j.castle@elsevier.com. 

For full membership information of the Association, possibly 
combined with a subscription at a reduced rate, please contact: 
EURASIP, P.O. Box 134, CH-10000 Lausanne 13, Switzerland. 

USA mailing notice: Signal Processing (ISSN 0165-1684) is 
published monthly by Elsevier B.V. (P.O. Box 211, 1000 AE 
Amsterdam, The Netherlands). Periodical postage rate paid at 
Rahway, NJ and additional mailing offices.

USA POSTMASTER: Send address changes to Signal Processing, 
Elsevier, Customer Service Department, 11830 Westline 
Industrial Drive, St. Louis, MO 63146, USA.

AIRFREIGHT AND MAILING in the USA by Mercury Inter-
national Limited, 365, Blair Road, Avenel, NJ 07001.

 The paper used in this publication meets the require-
ments of ANSI/NISO Z39.48-1992 (Permanence of Paper). 

Printed by Henry Ling Ltd., The Dorset Press, Dorchester, UK



ARTICLE IN PRESS
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 89 (2009) 1798–1811
0165-16

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/sigpro
Event based transcription system for polyphonic piano music
Giovanni Costantini a, Renzo Perfetti b,�, Massimiliano Todisco a

a Department of Electronic Engineering, University of Rome ‘Tor Vergata’, Italy
b Department of Electronic and Information Engineering, University of Perugia, Italy
a r t i c l e i n f o

Article history:

Received 24 July 2008

Received in revised form

2 February 2009

Accepted 18 March 2009
Available online 5 April 2009

Keywords:

Onset detection

Music transcription

Classification

Constant Q transform

Support vector machines
84/$ - see front matter & 2009 Elsevier B.V. A

016/j.sigpro.2009.03.024

responding author.

ail address: perfetti@diei.unipg.it (R. Perfetti)
a b s t r a c t

Music transcription consists in transforming the musical content of audio data into a

symbolic representation. The objective of this study is to investigate a transcription

system for polyphonic piano, triggered by events corresponding to the played notes. The

proposed method focuses on note events and their main characteristics: the attack

instant, the pitch and the final instant. Onset detection exploits a binary time-frequency

representation of the audio signal. Note classification and offset detection are based on

constant Q transform (CQT) and support vector machines (SVMs). We present a

collection of experiments using synthesized MIDI files and piano recordings, and

compare the results with existing approaches.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Music transcription can be considered as one of the
most demanding tasks performed by our brain; not so
many people are able to easily transcribe a musical score
starting from audio listening, since the success of this
operation depends on musical abilities, as well as on the
knowledge of the mechanisms of sounds production, of
musical theory and styles, and finally on musical experi-
ence and practice to listening.

Musical transcription consists in the extraction of
musical content from audio data, i.e. a symbolic repre-
sentation of musical notes commonly called musical score.
A musical score contains only three basic informations:
first the note pitch, corresponding to the fundamental
frequency of sound, then its temporal features corre-
sponding to the attack instant or note onset and the final
instant or note offset; the latter feature has a lesser
perceptual importance in comparison to the attack
instant.
ll rights reserved.

.

It is necessary to distinguish two cases in which the
behavior of the automatic transcription systems is
different: monophonic music, where notes are played
one-by-one and polyphonic music, where two or several
notes can be played simultaneously.

Currently, automatic transcription of monophonic
music is treated in the time domain e.g. by means of
zero-crossing or autocorrelation techniques, and in the
frequency domain by means of discrete Fourier transform
(DFT) or cepstrum. With these techniques an excellent
accuracy level has been achieved [1,2].

Attempts in automatic transcription of polyphonic
music have been much less successful; actually, the
harmonic components of notes that simultaneously occur
in polyphonic music significantly obfuscate automated
transcription. The first algorithms were developed by
Moorer [3,4] and Piszczalski and Galler [5]. Moorer [3]
used comb filters and autocorrelation in order to perform
transcription of very restricted duets. Among the most
important works in this research field are the transcrip-
tion systems proposed by Ryynanen and Klapuri [6], the
SONIC project [7] developed by Marolt, and the transcrip-
tion model of Poliner and Ellis [8]. The last two works
exploit a classification approach to note transcription

www.sciencedirect.com/science/journal/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2009.03.024
mailto:perfetti@diei.unipg.it
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based on neural networks and support vector machines
(SVMs), respectively. In particular the results in [8] are
very encouraging in pursuing a classification strategy to
polyphonic piano transcription.

The main limitation of method proposed in [8] consists
in the frame-by-frame operation, obtained applying to the
audio files a sliding window. An explicit onset detection
algorithm is not used, so onset detection can be
performed with low precision (100 ms, equivalent to a
16th note at 80 metronome beat) and spurious onsets
appear if the note is alternately detected or not detected
several times in adjacent windows.

Moreover, evaluating the classification accuracy on a
window basis is not meaningful from a perceptual view-
point, since it does not take into account the temporal
position of misclassifications: an error in the final part of
the note is far less important than intermediate errors,
since the last ones cause false onsets on the same note
pitch with nasty perceptual effects. In other words, an
high transcription accuracy of music frames does not
guarantee good reconstruction quality.

In this paper, partly motivated by [8], we present a
novel system for automatic transcription of polyphonic
piano music, and elaborate on its essential features. Its
main phases involve: (a) an onset detection algorithm,
providing sufficient precision on note attack instant
measurement; (b) recognition of note pitch for each
music event corresponding to a note onset; (c) note offset
detection.

The onset detection algorithm operates on a frame-by-
frame basis and exploits a suitable binary time-frequency
representation of the audio signal. Note classification is
asynchronous, aligned with the note onsets, and is based
on a bank of SVMs combined with constant Q transform
(CQT) for features extraction. Finally, offset detection is
obtained by checking frame-by-frame the SVM outputs,
starting from a note onset.

For sake of comparison with [8], both for training and
for test we used the same audio dataset, consisting of a
rich collection of piano pieces of different musical styles.
However, differently from [8], the evaluation of transcrip-
tion accuracy has been carried out on an event basis, for
the abovementioned reasons.

The rest of the paper is organized as follows. Section 2
illustrates the onset detection algorithm, while Section 3
describes the spectral features. Section 4 will be devoted
to the description of the classification method. In Section
5 we present the results of a series of experiments
involving synthesized MIDI files and piano recordings.
Some comments conclude the paper.
2. Onset detection

Onset detection is the problem of identifying the time
at which a note is sounded. These onsets are expected to
emphasize the important moments of a melody and the
music beats. Onset detection is a challenging problem
investigated by several authors in recent years. Among the
methods proposed in the literature, interesting results for
piano music have been obtained using a bank of filters
followed by multilayer perceptrons [9], convolutional
kernels in the frequency domain [10], adaptive linear
prediction [11], and machine learning techniques (neural
networks and SVMs) [12]. A comparison of our method
with [9–12] is presented in Section 5.1.

The proposed onset detection algorithm is based on
STFT combined with a suitable binary processing in order
to improve the precision of onset measurement.

Let us consider a discrete-time signal s(n), whose STFT
is given by

SkðmÞ ¼
XmhþN�1

n¼mh

wðn�mhÞsðnÞe�jON kðn�mhÞ (1)

where N is the window size, h is the hop size,
mA{0,1,2,y,M} the hop number, k ¼ 0, 1,y,N�1 is the
frequency bin index, w(n) is a finite-length sliding
Hanning window and n is the summation variable.

We obtain a time-frequency representation of the
audio signal computing its magnitude spectrum jSkðmÞj.
The set of spectra jSkðmÞj can be packed as columns into a
non-negative L�M matrix, where M is the total number of
spectra we computed and L ¼ N/2 is the number of their
frequencies. After normalization in the range from 0 to 1
we obtain a matrix D 2 ½0;1�L�M . Then, we perform a
binarization of D giving the binary matrix D 2 f0;1gL�M:

Dðl;mÞ ¼
1 if Dðl;mÞ4T1

0 if Dðl;mÞpT1

(
(2)

where T1 is a threshold. Binarization is used to avoid the
effect of spectral noise and to allow some simple ‘spatial’
operations, as illustrated in the following. The best
threshold value can be obtained using a suitable valida-
tion set of examples, as explained in Section 5. The first
two processing steps are illustrated in Fig. 1.

To detect the note onsets, we perform two further
operations on the binary spectrogram D. First, we set to ‘0’
the (l,m) element of D if the previous adjacent cell
(l,(m�1)), relative to the previous frame, is equal to ‘1’.
This operation is adopted to point out only the spectral
changes in the time-frequency representation. The result
of this processing step is a new binary matrix D 2

f0;1gL�M :

Dðl;mÞ ¼
0 if Dðl;m� 1Þ ¼ 1

Dðl;mÞ otherwise

(
(3)

Then we set to ‘0’ the (l,m) element of D if both the
previous adjacent cell ((l�1),m), relative to the previous
frequency bin, and the subsequent adjacent cell ((l+1),m),
relative to the subsequent frequency bin, are equal to ‘0’.
This operation removes isolated spectral bins in the time-
frequency representation. The result of this processing
step is a new binary matrix D 2 f0;1gL�M:

Dðl;mÞ ¼
0 if Dðl� 1;mÞ ¼ 0 ^ Dðlþ 1;mÞ ¼ 0

Dðl;mÞ otherwise

8<
:

(4)

Operations (3) and (4) are summarized in Fig. 2.
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Fig. 2. Results of operations (3) and (4).

Fig. 1. Normalization and binarization with T1 ¼ 0.3.
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Afterwards, the rows of D are summed, giving the
following onset detection function:

f ðmÞ ¼ s2
m

XL

l¼1

Dðl;mÞ (5)

where

s2
m ¼

1

L

XL

l¼1

ðDðl;mÞ � mmÞ
2 (6)

and mm is the average value of entries in mth column of
matrix D. The multiplication by the variance is motivated
by the following facts observed in our experiments:
�
 in correspondence of most onsets the number of 1’s
and 0’s in column Dð:;mÞ are comparable, so the
variance s2

m is large;

�
 in same onsets, most of the elements in column Dð:;mÞ

are equal to one, so the variance is small but the sum in
(5) is large;

�
 when the onset is absent we have small variance and

small number of 1’s.

In conclusion, the multiplication by the variance enhances
most of true onsets while damping spurious onsets.
Therefore, the peaks of f(.) can be assumed to represent
the times of note onsets. After peak picking, a second
threshold T2 is used to suppress spurious peaks; its value
is obtained together with T1 through a validation process
(see Section 5).

To show the performance of our onset detection
method, let us consider an example from real piano
polyphonic music of Mozart’s KV 333 Sonata in B-flat
Major, Movement 3, sampled at 8 kHz and quantized with
16 bits. We will consider the second and third bars at 120
metronome beat. It is shown in Fig. 3.

We use a STFT with N ¼ 512, an N-point Hanning
window and a hop size h ¼ 256 corresponding to 32 ms
hop between subsequent frames. The original spectro-
gram is shown in Fig. 4. The normalized spectrogram and
the binary spectrogram are shown in Figs. 5a and b,
respectively (the threshold was set to 0.01). The last two
processing steps are applied to enhance the presence of a
new frequency bin and to remove isolated frequency bins.
The results are shown in Figs. 6a and b. Summing the
elements of each column in Fig. 6b we obtain the sum of
rows in Fig. 7a and, after multiplication by the variance,
the onset detection function in Fig. 7b. The time onset
resolution is 32 ms. A statistical evaluation of the onset
detection method will be presented in Section 5.

3. The constant Q transform and the spectral features

A frequency analysis must be performed on notes
played by piano, in order to detect the signal harmonics.
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Fig. 4. Spectrogram corresponding to Fig. 3.
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The frequency resolution of usual discrete Fourier trans-
form may not be sufficient. In fact, 512 temporal samples
recorded with the usual sampling rate (SR) of 8000
samples/s, correspond to a spectral separation of 15.6 Hz
between two adjacent DFT samples. This is not sufficient
for low frequency notes, where the distance between two
adjacent semitones is about 8 Hz (C3, 131 Hz and C#3,
139 Hz). The spectral resolution can be improved using an
higher number of temporal samples (with 1024 samples
the resolution is about 7.8 Hz), but this requires longer
temporal windows for a fixed sampling rate, worsening
the time resolution. To solve this problem, a Constant Q
Transform (CQT) [13–14] has been used to detect the
fundamental frequency of the note. Then, the upper
harmonics may be easily detected, as they are located
nearly at integer multiples of the fundamental frequency.
The logarithmic frequency scale provides a constant
frequency-to-resolution ratio for every bin:

Q ¼
f k

f kþ1 � f k

¼
1

21=b
� 1

(7)

where b is the number of bins per octave and k is the
frequency bin. If b ¼ 12, and by choosing a suitable f0, then
k is equal to the MIDI note number (as in the equal-
tempered 12-tone-per-octave scale).

In our system, the processing phase starts in corre-
spondence to a note onset. First, the attack time of the
note is discarded (in case of the piano, the longest attack
time is equal to about 32 ms). Then, after Hanning
windowing, a single CQT of the following 64 ms of the
audio note event is computed. Fig. 8 shows the features
extraction process. Notice that two or more notes belong
to the same onset if these notes are played within 32 ms,
but this is not a problem provided that the following
classification stage can detect the correct notes.
All the audio files have a sampling rate of 8 kHz.
We used b ¼ 48, i.e. 4 CQT-bins per semitone, starting
from note C0 (�32 Hz) up to note B6 (�3951 Hz). The
output of the processing phase is a matrix with 336
columns, corresponding to the CQT-bins, and a number
of rows equal to the total number of note events
in the MIDI file. The scale of the values of the fre-
quency bins is also logarithmic, rescaled into a range
from 0 to 1.
4. Multi-class SVM classification

A SVM identifies the optimal separating hyperplane

(OSH) that maximizes the margin of separation between
linearly separable points of two classes. The data points
which lie closest to the OSH are called support vectors. It
can be shown that the solution with maximum margin
corresponds to the best generalization ability [15].
Linearly non-separable data points in input space can be
mapped into a higher dimensional (possibly infinite
dimensional) feature space through a nonlinear mapping
function, so that the images of data points become almost
linearly separable. The discriminant function of a SVM has
the following expression:

f ðxÞ ¼
X

i

aiyiKðxi;xÞ þ b (8)

where xi is a support vector, K(xi, x) is the kernel function
representing the inner product between xi and x in feature
space, coefficients ai and b are obtained by solving a
quadratic optimization problem in dual form [15].

Usually, a soft-margin formulation is adopted where a
certain amount of noise is tolerated in the training data.
To this end, a user-defined constant C40 is introduced
which controls the trade-off between the maximization of
the margin and the minimization of classification errors
on the training set [15].

SVMs were originally designed to work with dichoto-
mies. A standard way to solve multi-class problems is to
consider them as a collection of binary sub-problems, and
then to combine their solutions. In this context, the one-
versus-all (OVA) approach has been used. The OVA
method constructs N SVMs, N being the number of
classes. The ith SVM is trained using all the samples in
the ith class with a positive class label and all the
remaining samples with a negative class label. Our
transcription system uses 84 OVA SVM note classifiers
whose input is represented by a 336-element feature
vector, as described in Section 3. The presence of a note in



ARTICLE IN PRESS

250

200

150

100

50

20 40 80 100 12060
Temporal frames

Fr
eq

ue
nc

y 
bi

ns

250

200

150

100

50

20 40 80 100 12060
Temporal frames

Fr
eq

ue
nc

y 
bi

ns

Fig. 5. Results of normalization (a) and binarization (b) of the spectrogram in Fig. 4.
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a given audio event is detected if the discriminant
function of the corresponding SVM classifier is positive.

SVM training was implemented using the SVMlight

software developed by Joachims [16]. A radial basis
function (RBF) kernel was adopted:

Kðxi;xjÞ ¼ expð�gkxi � xjk
2Þ; g40 (9)

where g describes the width of the Gaussian function.
Using the RBF kernel two parameters, C and g, must be
fixed. To this end we looked for the best parameter values
in a specific range using a grid-search on a validation set.
More details will be given in the following section. Fig. 9
shows a schematic view of the complete automatic
transcription process.
4.1. Offset detection

A comprehensive music transcription system should
include offset detection. As said above, offset detection is
less important than onset detection from a perceptual
viewpoint. So, the required precision can be lower without
music degradation.
In our system offset detection is obtained observing the
output of the OVA classifiers over consecutive signal frames.
The algorithm is as follows: (a) starting from an onset
detection, and until the successive onset, we consider a
sliding window of 512 samples with hop size of 256
samples, and for each window position we perform CQT
and SVM classification; (b) if a note is detected up to
window position m, and not detected in position m+1, we
assume the offset time corresponds to window position m;
(c) further detections of the same note pitch before the
successive onset time are ignored. Moreover, when the note
offset follows the next onset instant detected by the system,
we avoid an incorrect played note ignoring the new onset.

The rationale of the proposed algorithm is that a note
cannot end and restart in the interval between two
consecutive onsets detected by the system. If this happens,
there is an error due to one of the following causes: (1) the
note has been played again; this entails an onset detection
error, an hypothesis we reject having very low probability;
(2) a terminated note reappear due to a pitch classification
error; (3) the note is not really terminated. We assume that
case (2) is the most likely, hence we ignore new note
detections before the following onset time.
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Fig. 6. Results of spatial processing operations on the binary spectrogram in Fig. 5b.
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5. Simulation results

In this section we report on the simulation results of
our transcription system and compare them with some
existing methods. The MIDI data used in the experiments
were collected from the Classical Piano MIDI Page, http://
www.piano-midi.de/ [9]. A list of pieces can be found in
[9, p. 8, Table 5]. The 124 pieces dataset was randomly
split into 87 training, 24 testing, and 13 validation pieces.
The first minute from each song in the dataset was
selected for experiments, providing a total of 87 min of
training audio, 24 min of testing audio, and 13 min of
audio for parameter tuning (validation set). This
amounted to 22 680, 6142, and 3406 note onsets in the
training, testing, and validation sets, respectively. The
distribution of notes in the three datasets are shown in
Fig. 10.
5.1. Onset detection

First, we performed a statistical evaluation of the
performance of the onset detection method. The results
are summarized by three statistics: the precision P, the

http://www.piano-midi.de/
http://www.piano-midi.de/
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Fig. 8. Spectral features extraction.
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Fig. 9. Scheme of the proposed event-based transcription system.
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recall R and the F-measure, which are given by

Precision ¼
TP

TP þ FP
(10)

Recall ¼
TP

TP þ FN
(11)

F-measure ¼
2 � Precision � Recall

Precisionþ Recall
(12)

In the above formulas TP is the number of correct
detections, FP is the number of false positives and FN is
the number of false negatives. Precision represents the
percentage of correct positive predictions in the identifi-
cation of an example. Recall represents the capacity of the
onset detector to identify the positive examples. The
global variable F-measure is the harmonic mean of
Precision and Recall.

The onset detection algorithm requires two thresholds:
T1, for spectrogram binarization, and T2, to suppress
spurious peaks in the onset detection function. The
threshold values have been obtained through maximiza-
tion of the F-measure value on the validation dataset.
Fig. 11 shows the contour plot of F-measure vs. threshold
values. The optimal values are T1 ¼ 0.0073 and
T2 ¼ 0.0215. Fig. 12 shows Precision, Recall and F-measure
values versus T1 while T2 is held fixed to the optimal value.
Finally, Table 1 illustrates the good performance of the
method on the test set (including 6142 onsets).

We can try a comparison with some of the proposed
methods for onset detection of piano music. In [9] the
onset detector, based on a bank of filters and multilayer
perceptrons, is trained using synthesized piano. The test
set is represented by only 6 pieces (3 real piano, 3
synthesized piano), and the accuracy is 98%. The accuracy
of our method on the test set (24 pieces) is 98.1%. The
method in [10] has been tested both on jazz and classic
pieces (3+3). The metrics adopted to evaluate the
performance is the percentage of correct onset detection:
POD ¼ (Ncd�Ed)/Ntot, where Ncd is the number of correct
onset detections, Ed is the number of erroneous detections
and Ntot is the total number of actual onsets (manually
labelled). For the method in [10] it is POD ¼ 90.7% on jazz
pieces and POD ¼ 94.3% on classic pieces. With our
method we obtain POD ¼ 93.3% on a test set of 24 pieces
of classic piano. The method in [11] has been tested on
only 205 onsets of piano music giving precision 98%, recall
99% and F-measure 98%. Finally, in [12] the applicability of
neural networks and SVMs for onset recognition is
investigated. Both for training and test, the J.S. Bach’s 24
preludes for well tempered harpsichord have been used.
In particular, the test set consists of the first 32 beats of
each prelude, and the training set consists of the rest. The
best results have been obtained using SVMs: precision
88%, recall 85%, F-measure 86.5%. In conclusion, notwith-
standing its simplicity, our method gives better or
comparable performance on a wider test set.
5.2. Note classification

After detection of the note onsets, we trained the SVMs
on the 87 pieces of the training set and we tested the
system on the 24 pieces of the test set. The results are
outlined in Table 2.

Similar to [8], in addition to the synthesized audio, 19
training files and 10 test files piano recordings were made
from a subset of the MIDI files using a Yamaha Disklavier
playback grand piano. The results obtained using both
full-synthesized and recorded data are outlined in Table 3.

The entries in Table 3 concerning the methods in [6–8]
are taken from ([8], Table 4). It is worth noting that the
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Fig. 10. Distribution of notes in the (a) training, (b) validation and (c) test sets.
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comparison can be made only with note onset transcrip-
tion results; the remaining performance results in [8]
cannot be compared with ours since the percentages were
computed on a frame-basis.

In Tables 2 and 3, Acc denotes the accuracy metric
proposed by Dixon [17], Etot is the transcription error score

defined by NIST (National Institute of Standards Technol-
ogy) [18] for evaluations of ‘who spoke when’ in recorded
meetings, Esubs is the percentage of substitution errors,
while Emiss and Efa denote the percentages of ‘miss’ and
‘false alarm’ errors. The exact definition of the above-
mentioned quantities can be found in [8], where the
number of frames T must be replaced with the number of
note onset events.

The results in Table 3 reveal some general trends with
respect to existing methods: the overall accuracy is
increased while the total error is lower, even if the
substitution error is increased with respect to [6,8]. We
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Fig. 11. F-measure vs. threshold values (brighter pixels correspond to larger values of F-measure).

Fig. 12. Precision, Recall and F-measure for the validation set versus threshold T1 (T2 ¼ 0.0215).

Table 1
Test results of the onset detection algorithm.

Precision 98.0%

Recall 97.6%

F-measure 97.8%

Table 2
Note onset transcription results on full synthesized audio test set.

Acc (%) Etot (%) Esubs (%) Emiss (%) Efa (%)

Proposed method 72.3 20.1 10.5 9.4 0.02

Table 3
Note onset transcription results on full synthesized-plus-recorded test

set.

Acc (%) Etot (%) Esubs (%) Emiss (%) Efa (%)

Proposed method 68.0 24.6 11.3 13.2 0.04

Poliner and Ellis 62.3 43.2 4.5 16.4 22.4

Ryynanen and Klapuri 56.8 46.0 6.2 25.3 14.4

Marolt 30.4 87.5 13.9 41.9 31.7
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note a drastic decrease of Efa (percentage of false alarms)
in both experiments, compared to other classification-
based methods. We suppose this is due to the spectral
features we have adopted, based on the constant Q
transform applied on temporal windows where piano
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sound wave is almost periodic. Finally, let us stress that in
the classification results presented in [8] a correct
detection happens if the system ‘switches on’ a note of
the correct pitch within 100 ms of the ground-truth onset.
Instead, our algorithm has a 32 ms time onset resolution.

An analysis of missing errors has been carried out to
ascertain the causes of missing detections (the results are
summarized in Table 4). We found that 89.3% of missing
errors are characterized by the presence of a correctly
detected note at an octave interval separation from the
missing note. Moreover, 8.4% (1.8%) of missing errors are
characterized by the presence of a correctly detected note
at a fifth (third) interval separation from the note which
has not been recognized. So, in most cases the missing
Table 4
Analysis of missing errors.

Separation interval Presence of a note with

overlapping harmonics (%)

Octave 89.3

Fifth 8.4

Third 1.8

Other 0.5

Table 5
Note onset transcription results on recorded test set.

Acc (%) Etot (%) Esubs (%) Emiss (%) Efa (%)

Proposed method 59.2 33.3 12.9 20.0 0.4

Poliner and Ellis 56.5 46.7 10.2 15.9 20.5

Table 6
Training using iTunes_Sinth (grand piano); test using iTunes_Sinth

(acoustic piano).

Acc (%) Etot (%) Esubs (%) Emiss (%) Efa (%)

Proposed method 64.0 33.3 6.8 21.9 4.6

Fig. 13. Normalized amplitude spectra of note C2: iTunes_Sinth (grand pi
note shares all or most of its harmonics with a second
correctly detected note. Only 0.5% of missing errors does
not belong to the previous case. Furthermore, we found
that in 93.3% of missing errors the note has been played
before the instant of missing detection; namely, in most
cases the missing errors concern note ‘tails’.

Finally, we present the results of two further experi-
ments. Table 5 shows the performance on only the
recorded test set without the synthesized one (we
remember that our results are not directly comparable
to [8], as explained above).

Table 6 shows the results obtained using pianos with
different timbres for training and test. As can be expected,
the performance is worse with respect to Table 2; this can
be easily explained by Fig. 13, showing the spectra of note
C2 (E131 Hz) for both pianos: we can see that the
amplitudes of harmonics are very different. Probably,
better generalization can be expected by training the
SVMs using different timbres.

5.3. Offset detection

A statistical evaluation of the offset detection method
was carried out with the same audio dataset used
for onset detection. The results of this test are shown in
Table 7, where we consider as correct the offset detected
within 100 or 200 ms of the ground-truth offset.

5.4. Piano transcription example

We show now a specific example of piano music
transcription concerning Chopin Opus 10, n. 1. We
consider the fourth fifth and sixth bar at 60 metronome
beat. The notes of these three bars have a wide range pitch
ano) (continuous line); iTunes_Sinth (acoustic piano) (dashed line).

Table 7
Test results of the offset detection algorithm.

100 ms (%) 200 ms (%)

Precision 60.4 76.3

Recall 69.0 73.7

F-measure 64.4 75.0
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Fig. 14. Original piano score of Chopin Opus 10 n. 1.

Fig. 15. Original midi piano roll corresponding to Fig. 14.

Fig. 16. Transcription result corresponding to the midi piano roll in Fig. 14.

G. Costantini et al. / Signal Processing 89 (2009) 1798–1811 1809
(from G2 to A5) and duration (from 0.125 to 2 s). In this
example all 63 notes were successfully detected. In
Figs. 14–16 the original piano score, the original midi
piano roll and the transcription result midi piano roll are
shown. We note some differences between the original
and transcribed piano roll, mainly for the offset time, but
this not affects the quality of the reconstruction. Finally, in
Fig. 17 we show the distribution of the difference between
ground-truth and detected onset time and offset time,
respectively.
6. Conclusions

In this study, we presented a polyphonic piano
transcription system based on the characterization of
note events. As a result of the underlying procedures, for
each event we measure both the note onset and the note
offset, the last with lower precision, and then we classify
the note pitch. These informations can be directly used to
reconstruct the piano roll. We pursued an event-based
analysis of errors, since frame-level performance scores do
not take into account the perceptual effects due to the
temporal position of missing or uncorrect detections.

It has been shown that the proposed onset detection is
helpful in the determination of note attacks with modest
computational cost and good accuracy. It has been found
that the choice of CQT for spectral analysis plays a pivotal
role in the performance of the transcription system.

Actually, the most time-consuming task of the pro-
posed system is the grid-search for optimal SVM para-
meters (C,g) which are data dependent. On the other hand
this cost is unavoidable to obtain satisfactory recognition
accuracy. Further refinements one could envision may
concern some guidelines for SVM parameter tuning,
restricting the search to a limited interval around ‘good’
initial points. A further improvement could be obtained by
modifying the training of SVMs to take into account the
imbalanced number of positive and negative examples
[19,20].
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Fig. 17. Onset time (a) and offset time (b) error distribution for the piano transcription example.
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