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Cellular Neural Networks With Virtual Template
Expansion for Retinal Vessel Segmentation

Renzo Perfetti, Elisa Ricci, Daniele Casali, and Giovanni Costantini

Abstract—A retinal vessel segmentation method based on cel-
lular neural networks (CNNs) is proposed. The CNN design is char-
acterized by a virtual template expansion obtained through a mul-
tistep operation. It is based on linear space-invariant 3 3 tem-
plates and can be realized using existing chip prototypes like the
ACE16K. The proposed design is capable of performing vessel seg-
mentation within a short computation time. It was tested on a pub-
licly available database of color images of the retina, using receiver
operating characteristic curves. The simulation results show good
performance comparable with that of the best existing methods.

Index Terms—Cellular neural networks (CNNs), line detection,
retinal imaging, vessel segmentation.

I. INTRODUCTION

AUTOMATIC segmentation of blood vessels in retinal
fundus images plays an important role in the diagnosis of

several pathologies, like hypertension, diabetes, and cardiovas-
cular disease [1]. Several morphological features of veins and
arteries (e.g., diameter, length, branching angle, and tortuosity)
have diagnostic relevance. Accurate vasculature segmentation
is a difficult task for several reasons: the presence of noise,
the low contrast between vessels and background, and the
variability of vessel width, brightness, and shape. Moreover,
due to the presence of lesions, exudates, and other pathological
effects, the image may have large abnormal regions. Several
methods have been proposed in the literature to address these
problems, including matched filtering [2], tracking methods
[3], multithreshold probing [4], and supervised classification
[5].

One important aspect which is rarely addressed is the com-
plexity of the algorithm and its efficient hardware implemen-
tation in order to reduce the time spent for the segmentation.
One attractive paradigm for parallel real-time image processing
is represented by cellular neural networks (CNNs) [6], [7].

To the best of our knowledge, retinal vessel extraction
with CNNs has been previously proposed only in [8], where
segmentation is obtained through histogram modification,
local adaptive thresholding, and morphological opening. This
method presents two drawbacks. First, it relies on several de-
sign parameters: the scaling factors of local mean and variance
( and ), the neighborhood size, and the structuring element
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for opening. Since no guidelines are available for their settings,
they must be empirically tuned. Moreover, nonlinear CNN
templates are required for local estimation of the variance.

In this brief, we present a new CNN-based approach for de-
tecting vessel pixels in color fundus images, avoiding the pre-
viously mentioned disadvantages. The effectiveness of the cur-
rent approach comes from the fact that we exploit geometrical
knowledge about the task to be solved whereas the method in
[8] just applies generic algorithms.

The proposed method is based on the detection of linear struc-
tures through an operator introduced by Dixon and Taylor [9].
This operator, previously used in mammographic image anal-
ysis [10], could be realized with simple CNN templates. How-
ever, our simulations showed that, to obtain state-of-the-art per-
formance in retinal vessel segmentation, the template size must
be 15 15. Thus, to simplify the physical realization of the
CNN, we adopt a multistep operation with virtual template ex-
pansion. This network could reduce the segmentation time of
some orders of magnitude with respect to a sequential digital
realization.

The CNN operation has been simulated on a digital com-
puter, and the corresponding performance has been evaluated on
a publicly available database through receiver operating charac-
teristic (ROC) analysis. The ROC curve shows the effectiveness
of our method.

The remainder of this brief is organized as follows. In
Section II, we illustrate the proposed method to detect vessel
pixels. In Section III, we describe the CNN implementation.
In Section IV, some simulation results are presented and com-
pared with existing techniques for vessel segmentation. Some
comments conclude this brief.

II. LINE DETECTION

Usually, in RGB nonmydriatic (i.e., without pupil dilatation)
images, the green channel exhibits the best vessel/background
contrast while the red and blue ones tend to be very noisy. There-
fore, we work on the inverted green channel images without
performing any further preprocessing. An example is shown in
Fig. 1: vessels appear brighter than the background. Gray level

corresponds to black, and level corresponds to white.
The proposed method is as follows. The average gray level is

evaluated along lines of fixed length passing through the target
pixel at different orientations. We consider 12 orientations
(15 of angular resolution). The line with the largest average
gray level is found: its average value is denoted by . The
difference represents the line strength of the
pixel [10], where is the average gray level in the square
window, centered on the pixel, with edge length equal to .

1057-7130/$25.00 © 2007 IEEE
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Fig. 1. Inverted green channel of a nonmydriatic retinal image.

Fig. 2. Proposed line detector.

As shown in Fig. 2, if the central pixel belongs to a vessel, the
winning line is aligned with the vessel itself. Otherwise we have
a partial overlap and the line strength is lower. This difference
allows to discriminate vessel pixels from nonvessel pixels.

In the simulations, we tested different line lengths . The best
results were obtained using pixels. In our method, the
square window is not oriented like the winning line, as in [10],
but it is kept fixed in order to simplify the hardware realization.
For the same reason, the average line intensity is not obtained by
interpolation: the gray values to be averaged are determined by
rounding the coordinates of points on the ideal line (see Section
III for details). The value of is compared with a threshold :
only if does it correspond to a vessel pixel. The effect
of the threshold will be discussed in Section IV.

III. CNN REALIZATION

The computation of the line strength is the most time con-
suming task of the method. In a sequential pixel-by-pixel pro-
cessing of an image with pixels, the 12 line averages and
the local window average must be repeated times. More-
over, for each pixel, the maximum line average must be se-
lected. Since in usual images of the eye fundus is of the
order of 300 000, the computational burden is evident. Here,
we describe a design exploiting the parallel computation ability
and the simple programmability properties of CNNs. We as-
sume the usual piecewise-linear activation function of the cell:

). The cell input satisfies the
constraint , for every and . For details on the
dynamic equation and properties of CNNs, the reader is referred
to [6].

Fig. 3. Approximation of lines with (a) 15 , (b) 30 , (c) 60 , and (d) 75 .

Fig. 4. Four different patterns used to approximate the 12 lines of 15 pixels.
The corresponding templates are, respectively,B ;B ;B , and B .

The proposed method requires a 15 15 neighborhood.
The CNN realization can be obtained using a 3 3 physical
neighborhood, virtually expanded through a multistep opera-
tion [11], [12]. In particular, a shifting approach [12] is suited
to the present application. The shift template can be found in
[13]. The number of processing steps depends on the template
decomposition and the shifting strategy [12].

A. Template Decomposition

To reduce the number of processing steps and the memory
requirements, each line of 15 pixels is first approximated as
shown in Fig. 3. Lines with orientations , and

are turned right to left. Lines with orientations ,
and are exact. Each line can be decomposed into five 3 3
patterns, highlighted in Fig. 3. In each pattern, there are three
pixels to be averaged. The mean gray level for each pattern can
be computed by a corresponding 3 3 template. Note that some
patterns are reused for different angles. Taking into account all
12 orientations, the number of required different patterns (i.e.,
templates) is four. They are shown in Fig. 4. Each processing
step corresponds to a linear convolution of the input image with
a suitable template (using ). As an example, let us
consider the leftmost and rightmost patterns in Fig. 4. The corre-
sponding partial outcomes are computed by using the following
input templates:

(1)
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Fig. 5. Cascaded shift example. (a) The 21 positions where template B is
required. (b) Shifting the result of the convolution by two pixels to NW and one
pixel to W. Only the ten rightmost positions are shown. (c) Consecutive four
shifts in the S direction of one pixel. (d) Two shifts to W and one to SW.

For each template, the time evolution is stopped after a fixed
number of time constants in order to obtain an almost steady-
state output value. The scaling factor , common to all tem-
plates, guarantees the operation in the linear region for each cell
and in each processing step. After the last step, we have the
output images , stored in dis-
tinct local analog memories (LAMs).

B. Shifting Strategy

In the second phase, the partial outcomes must be shifted to
give the correct contribution to each line. The shift results are
scaled by and accumulated into 12 LAMs, one for each
orientation. The final result represents the correct line average
since each pixel gray level is divided by 15. The scaling factor

is split in order to attenuate the eventual noise arising from
the grayscale shift, improving the signal-to-noise ratio.

To illustrate the shifting strategy, we consider template
in (1). It is required for five lines, i.e., , and , in
21 different positions, shown in Fig. 5(a). The central position
does not require shift; thus, we must move 20 partial results to
the center of the window. Now, let us consider the ten rightmost
positions in Fig. 5(a). The output image is first shifted to
the NW direction by two pixels and to the west by one pixel,
as shown in Fig. 5(b). As a consequence the partial result cor-
responding to the angle is moved to the center and accu-
mulated into the corresponding LAM. Further four consecutive
shifts by one pixel to S, will move to the center the results useful,
respectively, for the and 30 lines, as shown in
Fig. 5(c). Then, by two shifts to W and one shift to SW, we have
the situation shown in Fig. 5(d). The result corresponding to 30
is accumulated into the corresponding memory. Finally, we shift

Fig. 6. Block diagram of the proposed CNN algorithm.

to N, in the order by one, two, two, and finally one pixel, storing
the results for , and respectively.

At this point, the stored image is reloaded as input to the
CNN, and, in a similar way, the partial results corresponding to
the leftmost ten positions in Fig. 6(a) are moved to the center
and accumulated.

Hence, the total number of shift operations needed for this
template is . Exactly the same operations are re-
quired for the template with the only need to swap ver-
tical and horizontal shifts. The template is used by lines

, and , in five different positions, that can be
moved with a total of 12 NE and SW shifts; the same number of
shifts is required with . Hence, the total number of elemen-
tary shift operations is , and the total
number of steps to obtain the line averages is 92.

The average in the 15 15 square can be computed with
a similar multistep operation: one linear convolution and
24 shifts of three pixels each, for a total of 73 additional
steps. The maximum line average can be determined by a
winner-take-all (WTA) circuit [14], [15]. Taking into account
the rather small number of inputs (twelve), the existing chips
allow high speed and precision. In principle, the WTA func-
tion could be realized also using a CNN [16] even if, to the
best of our knowledge, no tested prototype is available. Sub-
traction of and thresholding can be easily obtained using

, and the bias ,
where is the threshold. A scheme of the proposed system is
shown in Fig. 6.

C. Circuit Implementation and Processing Speed

The proposed CNN algorithm requires only linear space-in-
variant 3 3 templates, so it could be implemented using one
of the existing CNN chips. For example, the ACE16K chip is
a 128 128 array with 7-bitaccuracy, eight analog grayscale
memories per cell, and 32 stored templates [17]. The most re-
cent version allows also the space-variant bias term required
by the proposed method.1

1Further details can be found at http://www.imse.cnm.es/~dictam/
2ND_PHASE/Demonstrators/ACE16K/index.htm.
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Fig. 7. Vessel segmentation of the image in Fig. 1 (T = 0:05).

The proposed segmentation algorithm requires four convolu-
tions for line approximation, eight shifting templates, and one
convolution for the local average for a total of 13 templates.
The required memories are five for the first phase and 13 for
the second phase. Thus, to accommodate the algorithm in the
ACE16K chip, only a slight LAM expansion is required. Hence,
we take this chip as a reference to estimate the processing speed
of the proposed method.

The total number of steps is . We assume that
each processing step lasts , where is the time constant of
the cell circuit. Using the value ns for linear operations
[17], we obtain 0.8 s per step.

The images usually employed in the screening of the eye
fundus (like that in Fig. 1) must be decomposed into subimages
in order to fit with the state-of-the-art CNN chips. Moreover, the
subimages must overlap to avoid border effects. Using lines of
15 pixels, the overlap is seven pixels on each side and 25 subim-
ages are required using a 128 128 array. Ignoring the conver-
gence time of the WTA circuit and the time for I/O, we have an
execution time of 25 165 0.8 s ms. This value al-
lows real-time segmentation as an aid to ophthalmic diagnosis.

IV. EXPERIMENTAL RESULTS

The proposed system has been simulated with Matlab (the
code is available on request from the authors). An example of
vessel segmentation is shown in Fig. 7, concerning the input
image in Fig. 1. To test the proposed method, we used a data-
base of nonmydriatic color images, collected by Staal et al. [5]
with the intent of comparing the performance of different seg-
mentation methods. This database is known as Digital Retinal
Images for Vessel Extraction (DRIVE), and it is publicly avail-
able.2 It consists of 40 images (seven with pathologies) captured
by a Canon CR5 3CCD camera with a 45 field of view (FOV).

The images are of size 768 584 pixels with 8 bits per color
channel. The FOV in the images is circular with approximately
540 pixels in diameter. The images are compressed in JPEG
format, which is a common practice in screening programs. The
40 images are divided into a training set and a test set, each con-
taining 20 images. The test set has four images with pathology.

2[Online]. Available: http://www.isi.uu.nl/Research/Databases/DRIVE/

Fig. 8. ROC curves for the proposed CNN algorithm, compared with the
method of [8].

TABLE I
COMPARISON OF SEGMENTATION METHODS

The training set is useful to design supervised segmentation
methods like [5]; in the present study, it has not been used. All
of the images were manually segmented. The images of the test
set were segmented twice, resulting in a set A and a set B. In set
A, 12.7% of pixels were marked as vessel, against 12.3% for set
B. For the sake of comparison with supervised methods [5], the
performance is evaluated on the test set considering only pixels
inside the FOV, using the segmentations of set A as the ground
truth.

It is common practice to evaluate the performance of retinal
vessel segmentation algorithms using ROC curves [5]. A ROC
curve plots the fraction of pixels correctly classified as vessel,
namely the true positive rate (TPR), versus the fraction of
pixels wrongly classified as vessel, namely the false positive
rate (FPR). The closer the curve approaches the top left corner,
the better the performance of the system. The most frequently
used performance measure extracted from the ROC curve is
the value of the area under the curve (AUC), which is 1 for an
ideal system. In the present method, the ROC has been traced
by varying the threshold . The curve is shown in Fig. 8. The
corresponding value of AUC is given in Table I, along with the
maximum accuracy corresponding to an “optimum” threshold
value .

An ROC analysis has been performed also for the method [8].
We considered only the first phase of the method (i.e., vessel
segmentation), since the results of the following stages are not
easily comparable with the existing literature. The method uses
a space-variant threshold , where
are local mean and variance estimations, respectively, and
are scale factors. The ROC curve was traced by empirically
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tuning and on the dataset and varying the value . We
traced the curves with neighborhood size ranging from 3 3
to 15 15. For the sake of comparison, we show the result for
the same neighborhood size of the present method (15 15),
which is also the best curve we found. The curve corresponds to

, and it is depicted in Fig. 8. The values of AUC
and maximum accuracy are shown in Table I, along with those
of the method [5], which is the best available technique in the
literature.

V. COMMENTS AND CONCLUSION

A CNN-based retinal vessel segmentation method has been
presented. It is easy to use and can be implemented using ex-
isting devices with minor changes. From the ROC curves and
Table I, we can see that the proposed approach is slightly worse
than that of [5]. However, this last method is very time con-
suming and not easy to implement in hardware. Moreover, in
the present method, most false positive detections correspond
to the circular borderline of the FOV (see Fig. 7), which is void
of diagnostic relevance. With respect to [8], the results highlight
the effectiveness of the proposed technique, which gives better
AUC and accuracy for the same neighborhood size.

REFERENCES

[1] M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, N.
Chapman, A. B. Bharath, and K. H. Parker, “Retinal vascular tree mor-
phology: A semi-automatic quantification,” IEEE Trans. Biomed. Eng.,
vol. 49, no. 8, pp. 912–917, Aug. 2002.

[2] S. Chauduri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum,
“Detection of blood vessels in retinal images using two-dimensional
matched filters,” IEEE Trans. Med. Imaging, vol. 8, no. 3, pp. 263–269,
Jun. 1989.

[3] I. Liu and Y. Sun, “Recursive tracking of vascular networks in an-
giograms based on the detection-deletion scheme,” IEEE Trans. Med.
Imaging, vol. 12, no. 2, pp. 334–341, Apr. 1993.

[4] X. Jiang and D. Mojon, “Adaptive local thresholding by verification
based multithreshold probing with application to vessel detection in
retinal images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1,
pp. 131–137, Jan. 2003.

[5] J. J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van
Ginneken, “Ridge based vessel segmentation in color images of the
retina,” IEEE Trans. Med. Imaging, vol. 23, no. 4, pp. 501–509, Aug.
2004.

[6] L. O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE
Trans. Circuits Syst., vol. 35, no. 10, pp. 1257–1272, Oct. 1988.

[7] T. Roska and L. O. Chua, “CNN Universal Machine: An analogic array
computer,” IEEE Trans. Circuits Syst., vol. 40, no. 3, pp. 163–173, Mar.
1993.

[8] C. Alonso-Montes, D. L. Vilariño, and M. G. Penedo, “CNN-based
automatic retinal vascular tree extraction,” in Proc. 9th Int. Workshop
Cell. Neural Networks and Appl., Hsin-Chu, Taiwan, R.O.C., 2005, pp.
61–64.

[9] R. Dixon and C. Taylor, “Automated asbestos fibre counting,” in Proc.
Inst. Phys. Conf. Ser., 1979, vol. 44, pp. 178–185.

[10] R. Zwiggelaar, S. M. Astley, C. R. M. Boggis, and C. J. Taylor, “Linear
structures in mammographic images: Detection and classification,”
IEEE Trans. Med. Imaging, vol. 23, no. 9, pp. 1077–1086, Sep. 2004.

[11] K. Slot, “Large-neighborhood templates implementation in discrete-
time CNN universal machine with nearest neighbor connection pat-
terns,” in Proc. IEEE 3rd Int. Workshop Cellular Neural Networks,
1994, pp. 213–218.

[12] N. A. Fernández, D. L. Vilariño, V. M. Brea, and D. Cabello, “On the
emulation of large neighborhood templates with binary CNN-based ar-
chitectures,” in Proc. 9th Int. Workshop Cell. Neural Networks Appl.,
Hsin-Chu, Taiwan, R.O.C., 2005, pp. 274–277.

[13] G. Costantini, D. Casali, and R. Perfetti, “Cellular neural network tem-
plate for rotation of grey-scale images,” Electron. Lett., vol. 39, no. 25,
pp. 1803–1805, Dec. 2003.

[14] D. Ỹ. Aksun, “A high-precision high-resolution WTA—MAX circuit
of O(N) complexity,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 49, no. 1, pp. 48–53, Jan. 2002.

[15] J. Ramílrez-Angulo, G. Ducoudray-Acevedo, R. G. Carvajal, and A.
López-Martín, “Low-voltage high-performance voltage-mode and
current-mode wta circuits based on flipped voltage followers,” IEEE
Trans. Circuits Syst. II: Exp. Briefs, vol. 52, no. 7, pp. 420–423, Jul.
2005.

[16] M. Forti, “A study on WTA cellular neural networks,” Int. J. Circ.
Theor. Appl., vol. 29, pp. 537–552, 2001.

[17] G. Linán-Cembrano, A. Rodríguez-Vázquez, S. Espejo, and R.
Domínguez-Castro, “ACEK16K: A 128� 128 focal plane analog
processor with digital I/O,” in Proc. 7th IEEE Int. Workshop Cellular
Neural Networks Applic., Frankfurt, Germany, Jul. 2002, pp. 132–149.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on February 1, 2010 at 11:42 from IEEE Xplore.  Restrictions apply. 




