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Summary. — The solar photosphere provides an incomparable laboratory to study
turbulent convection in a dissipative non-equilibrium system. The evaluation of the
entropy production rate on the solar photosphere and its probability distribution
are the key issues for studying the non-equilibrium dynamics of the solar convec-
tion. The local entropy production rate is not offhandedly measurable on the solar
photosphere, but it can be easily evaluated using the vertical heat flux as a proxy,
which is given by the product between the line-of-sight velocity and the surface tem-
perature. In this work, we present some preliminary results on statistics of the local
entropy production rate via the vertical heat flux, using line-of-sight velocity and
temperature maps of the solar photosphere which are derived from high-resolution
spectro-polarimetric data making use of the Center of Gravity Method and the
Stefan-Boltzmann law.

1. – Introduction

In the great variety of natural systems in a non-equilibrium state, the turbulent solar
convection is among the most interesting. Convection occurs in an internal layer of the
Sun, the so-called convection zone, but the signature of this process is visible on the solar
photosphere as a collection of bright structures, with a typical size of 1 Mm, surrounded
by a network of dark lanes [1-4]. The high-resolution spectro-polarimetric data provided
by modern ground-based and space telescopes allow us to investigate with unprecedented
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detail the dynamics of the photosphere and use the Sun as a natural laboratory to study
the physical nature of the turbulent convection at high Rayleygh number [5-7]. Also,
the photospheric motions can drive both the oscillation [8] and the reconnection [9] of
small scale flux tubes. These two processes are the most invoked to address the Coronal
heating problem.

Turbulent convection can be viewed as a dissipative process near a Non-Equilibrium
Steady State (NESS) and the Sun provides an unequaled laboratory to perform the anal-
ysis of the entropy production rate characteristics in these systems. A reliable approach
to characterize natural systems in a non-equilibrium state, is the analysis of their entropy
production rate σ(�r, t) [10], which can be quantified as:

σ(�r, t) =
∑

i

Ji(�r, t)Xi(�r, t) > 0(1)

where Ji(�r, t) is a generic thermodynamic flux quantity and Xi(�r, t) is the associated
generalized thermodynamic force or affinity, the i index accounts for the different contri-
butions to the entropy production rate, and r is the position t is the time.

2. – Evaluating a proxy of the entropy production rate

Since the solar surface convection is a good example of NESS, following [11, 12], we
can evaluate the local entropy production rate σ(r, t) directly from the vertical heat flux
jz(r, t), assuming that the transport occurs mainly in the vertical (radial) direction:

σ(�r, t) ≈ V0jz(�r, t)∇z

(
1
T

)
(2)

where V0 is the volume over which the local properties are evaluated and ∇z

(
1
T

)
is the

vertical gradient of the temperature T which is responsible for maintaining the convec-
tion. Here, the local vertical heat flux is used as a proxy of the local entropy production
rate and it can be computed as follows:

jz(�r, t) ≈ vLoS(�r, t)δT (�r, t)(3)

where vLoS(�r, t) is the plasma velocity along the line-of-sight (LoS) and δT (�r, t) =
T (�r, t) − T0, with T0 being the average bulk temperature.

3. – Dataset and data analysis

The dataset used has been acquired on November 21st 2006 with the Interferomet-
ric BIdimensional Spectropolarimeter (IBIS [13, 14]), a high spectral resolution instru-
ment based on Fabry-Perot interferometers, see e.g. [15-21], installed at the Dunn Solar
Telescope (DST), located in National Solar Observatory (NSO), New Mexico. For this
dataset, IBIS acquired the Stokes profiles in the spectral region containing the Fe I 630.15
nm and 630.25 nm lines and co-spatial broadband images in a nearby spectral region.
The FoV imaged by the instrument is 40×40 arcsec2, which corresponds approximately
on the solar surface to 30×30 Mm2, approximately at the solar disk center, so in our
dataset the radial direction coincide with the LoS direction. The spatial resolution is
0.17 arcsec, corresponding to �120 km on the solar surface, the time resolution is 89
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seconds and the whole duration of the dataset is about one hour (41 time steps in to-
tal). The dataset has been calibrated using the IBIS pipeline [22]. For more details and
information on the dataset, see [23-26].

The vertical heat flux has been evaluated from LoS velocity maps and temperature
maps, using Eq.3. The LoS velocity maps are calculated using the Center of Gravity
(CoG [27-29]) method applied to the Fe I 630.15 nm spectral line, as also discussed and
compared to spectropolarimetric inversion results in [25]. The temperature maps are
calculated using the Stefan-Boltzmann law [30,31] applied to the broadband images. As
customarily done in solar convention studies, the temperature and LoS velocity maps
have been filtered through a subsonic kh − ω filter, in order to remove the signal from
the acoustic oscillations in the solar photosphere [32]. An example of vertical heat flux
map J1 is reported in Fig. 1 (left panel). We masked out the regions with an estimate
magnetic flux greater than ≈ 50 Gauss (masked in black in the image), in order to analyze
a quiet, i.e., non-magnetic, convective pattern. For further details on the LoS velocity
and temperature maps computation, see [12]. To improve the statistics of our data, we
compute a running average of jz over time steps interval τ :

Jτ (�r, t) =
1
τ

∫ t+τ

t

jz(�r, t′)dt′(4)

Therefore, hereafter, J1(�r, t) is the vertical heat flux for each temporal frame, J2(�r, t) is
the average of the vertical heat flux between two temporal frames, J3(�r, t) between three
temporal frames, and so on. The Probability Density Functions (PDFs), evaluated using
the Kernel Method [33], for different value of Jτ are reported in Fig. 1 (right panel). The
PDFs are clearly asymmetric, and this confirms that the solar photospheric turbulent
convection is a non-equilibrium system, with a spontaneous production of entropy. In
addition, we can also notice that the PDFs, going from J1 to J29, tighten, and this is a
relevant behaviour that will be investigated in future works.

Fig. 1. – Left panel: sample vertical heat flux map. Black pixels mask those regions excluded
from analysis. Right panel: PDFs of various Jz: black for J1, purple for J5, blue for J10, light
blue for J15, green for J20, yellow for J25 and red for J29.
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4. – Conclusions and future perspectives

In this work we estimate the entropy production rate of the solar turbulent convection,
using the vertical heat flux as a proxy, evaluated using LoS velocity and temperature maps
obtained from IBIS high-resolution spectro-polarimetric data. We show that the PDFs
are evidently asymmetric, confirming that the turbulent solar convection is a system in a
non-equilibrium state. These preliminary results, especially the tightening of the PDFs as
τ increases, pave the way for future works, devoted to a more complete characterization
of the non-equilibrium dynamical state of the solar turbulent convection.
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[30] RODRÍGUEZ HIDALGO I. et al., Astron. Astrophys., 264 (1992) 661
[31] CACCIN B. and PENZA V., Proceeding of the 1st Solar and Space Weather

Euroconference ESA SP, 463 (2000) 680
[32] TITLE A.M. et al., Astrophys. J., 336 (1989) 475
[33] KAISER A. and SCHREIBER T., Physica D, 166 (2002) 43-62


