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where function E(x) is the expected likelihood afx,  w', = E(qi lD, ) ,  the 
variable y I =  1 if Q has value i in the mth data cases, and 0 otherwise. 
A more general learning method over various conditional probability 
distributions has been described in [3]. 

Testing The aim in the testing procedure of speakcr ideFtification is 
to determine the right person given an observation, i=arg, max 
p(M,)O), i = 1,. . . , N ,  where M, is the model of speaker i. It means 
we have to calculatc the postenor probability, p(MjlO),  i = I ,  . . . , N. 
According to the Bayes rule, p ( M I 0 )  =p(OlM)*p(M)/p(O). Since no 
knowledge about the prior probability p ( 0 )  is known and probability 
p ( M )  is the same for all the models, we use p ( O l M )  in substitllte of 
p ( M j 0 )  for simplicity. It can be achieved by computing the joint 
probability using (9). 

Experiments: In our experiments, we defined the topology of the 
DBNs as shown in Fig. 1, which is unrolled for first two slices. 4;. 
i = I, 2, 3, j= I, 2, . . . , Tare hidden nodes and have discrete values, 
o:, i = I, 2, 3, j =  1, 2, . . . , 7 can be observed and satisfy Gaussian 
distributions, here 7 is the length of time slices. 

... 

... 

... 

Fig. 1 %polo0 o/DBNs used in experiments 

For computational reasons, a subset of the YONO database including 
the fint 30 speakers (speaker ID from 101 to 132, excluding 123 and 
129 since no data of these WO speakers exist in YOHO corpus) is used, 
and only the first session (24 sentences) is used for training. In the 
feature selection, the Hamming window size is 32 ms (,256 samples), 
and silence and unvoiced segments are discarded based on an energy 
threshold. The feature vector is composed by 16 MFCC. All the verify 
sentences (40 per speaker) arc used in thc test procedure. We compare 
the recognition rates over different numbers of speakers of DBNs to 
other classical methods such as Gaussian mixNre model (FMM), 
continuous hidden Markov model (CHMM), single Gaussian and 
vector quantisation (VQ) in Table 1. It can be seen that the DBNr- 
based method has achieved encouraging results. 

Table 1: Recognition rate results under various methods over 
different number o f  speakers 

DBNs 
GMM 

Number of rpeakea 

GMM 

Number of rpeakea 
Firs 10 (%) Pint 20 (%i Finf 30 (%) 

99.5000 95,1250 94.7500 

CHMM 99.2500 94,1250 94.4167 

Conclusion: Dynamic Bayesian networks are expressive models 
for stochastic processing. We have presented a framework using 
dynamic Bayesian networks for speaker identification and have 

achieved considerable results in the experiments on a subset of 
YOHO corpus. 

Real-time room acoustic response 
simulation by IIR adaptive filter 

G. Costantini a n d  A. Uncini 

A new 1111 adaptive filter for real-time, mom acoustic reqmnse 
simulation is proposed, the struucurs of which derives from Jot's 
model of an artificial reverbmat~r. The simultaneous perturbation 
stochastic approximation (SPSA) vlgotilhm is used to set pwimeter 
values. RCSUIIS show good slmilaity between the desired and arlificial 
resLl0nse. 

Introduction: It is common knowledge that different types of inusic 
require different acoustical characteristics, related to their particular 
requirements. Every closed space induces some reflections of the 
signal generated inside and, together with other phenomena, have 
influence on the auditory feeling of a listener. For example, listening 
to a sacred music choir requires a very reverberant place, that stirs the 
complex of vocal sounds, and works like a powerful case of reso- 
nance; a piano concert, however, requires B drier ambient, that allows 
careful distinction of every single note. Therefore, there exists the 
problem of rendering a listening place adaptable to different rypes of 
music, artificially reproducing acoustical characteristics of a panicular 
ambient. Our research objective is to obtain an accurate reproduction 
of an acoustical impulse responsc (IR) of a generic room through a 
real-time musical signal processing, introducing similar reverberation 
and spectral characteristics of a target ambient. 

Reverberation: The reverberation phenomenon consists in a persis- 
tence of sound gradually attenuated during a certain temporal interval 
afier the sound sourcc has stopped. This is due to the multiple wall 
reflection of acoustic spherical waves in the listening room, which 
reflects them with an absorption coefficient a, dependent on the 
constitutive materials [I]. Reflected waves can be divided in1.o two 
classcs. First, there are the early reflections, i.e. waves reflected only 
once before reaching the listencr; this part is very important to create 
in the listencr's brain the idea o f  the room spatial dimensions. Then, 
many other wavc-rays are reflected more times by the walls before 
reaching the listener, thus creating a very dense whole of echoes that 
arrive at the listener in random times and constitute the reverberating 
tail. 

To quantify the reverberation entity in a room, the reverberation time 
T6, is defined as the time for the impulse response decaying from -5 to 
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-65 dB of its maximum levcl. An ambient is very reverberant if 
T60>2s, while it is verydry i fTsO<ls .  

Arrificiol reverherution: Schroeder was the pioneer who first 
attempted to make digital reverberation. The first prototype he t r ied 
called comb filter (or plain reverberritor), consisted of  a single delay 
line of m samples with a feedback loop containing an attenuation gain 
g. To simulate the frequcncy selective absorption of air and walls, 
Schroeder modified the plain rcverberator, inserting a lowpass filter in 
the feedback loop; in order to increase the time echoes densiry and to 
decrease the metallic effect produced by comb filtcrs, he cascaded 
multiple all-pass filters. Schroeder's structure is composed of four 
parallel comb filters, followed by two cascaded all-pass ones [Z]. The 
Schroeder frequency rcsponse results provide a good quality, but it is 
rather 'anonymous'. 

An evolution of Schroeder's model was developed by Moorer [3]. He 
observed that Schroeder's model can well modelise only the revcrbera- 
lion tail, while a room is characterised by its early ieflcctions, that have 
to be reproduced by an FIR filter Thus Moorer added an FIR filter 
before the Schraeder reverberator with the aim of efficaciously repro- 
ducing the early reflections. Moorer chase the length ofthis FIR filter to 
reproduce the first 60-80 ms of the real impulse response. 

Employed slmcture: The Moorer and Schroeder models can he used 
to provide a well-sounding effect, setting by hand the coefficient of  
the basic blocks (comb and all-pass) that compose them. Our 
objective i s  quite different: we seek to obtain a general purpose 
effect; we want to simulate artificially, as faithfully as  possible, the 
acoustic response of  a particular room. Starting by a defined filtering 
structure and a desired IR, we have to find a procedure to correctly 
identify the coefficients of the filter, so that it can satisfy the 

~ the reverberated signal sounds well, i.e. it comes out pleasurable for 
the subjective hearing; 
~ the dry signal filtered by the identified reverberator is as similar as  
possible to the signal really produced inside the room, the IR of which 
is measured; 
- the shllcture is purposed for any real-time implementation. 

The ~tructure chosen for the artificial reverberator is shown in Fig. 1. It 
is a generalisation of the filtering rtrucmre developed by Jot in 1992 [4]. 

following: 

Fig. 1 Generalised Jot reverhemtorflow diagram 

A structure that can efficaciously simulate a desired IR must have the 
properties of. 

Elasticity: the filter must have quite a number of frcc parameters and 
must allow free variations of its characteristics; 
Rubushress: the filter must be stable and able to produce every kind o f  
IR, with different TG0; 
Emugh complexity: the structure must generate an high echo density 

A SINC~UIC these satisfy these properties is an 'adaptive filter'; 
The novelly that Jot introduced compared to the Moorer model, is 

the presence, in the 1IR part, of a feedback coefficients matrix G ,  this 
being for two main reasons: 

- remixing in time the echoes, the aim being to cancel the periodicity 
effect introduced by the comb filters and also by the FIR filter; 
-increasing the number of free parameters for a better approximation of  
the real IR. 

For the G matrix we chose g,, = 0 ( i =  I,. . . , 6), 50 every comb is 
fedback on all the others, except on itself. The hi and c coefficients are 
employed for scaling every comb and all-pass contribution, thus 
increasing the elasticity of the filter. Thus the employed smchlre is 
characterised by the following parameters: 

-go,  &i, 0, for the six comb filters (18 coefficients); 
- the  G matrix (36 coefficients); 
- b, and c (7 coefficicnts); 
- gr and Ri far the two all-pass filters (4 coeficients); 

for a total number of  65 free coefficients. We can indicate the transfer 
function of the whole shucture with F(r. w), where ri. indicates the free 
coeilicients vector. 

Identification procedure: The identification procedure requires find- 
ing the values of the 65 coefficients that make the IR of the filter as 
similar as possible to the desired IR. It is impossible to accomplish 
this procedure by setting the parameters by hand; we have to employ, 
on the contrary, an automatic procedure, in which the coefficients of 
the filter are iteratively corrected by a suitable adaptation algorithm, 
based on the difference e(n) hetween the desired response d(n) and the 
filter output response d(n), to make the error e(") as low as possible. 

The optimisation algorithm used for the reverberator filter identifica- 
tion is the simultaneous perturbation stochastic approximation (SPSA); 
it was developed by Spall in 1992 [5]. Let us consider the problem of 
minimising a scalar differentiable loss function J(ir), where I+ is the p -  
dimensional vector of parameters: the optimisation problem cnn be 
translated into finding the minimising ri* such that iU/*=O. 

The choice of the loss function J(.) represents the crucial point of the 
entire identification pmccdure: the final result depends on the capacity 
of the loss function to express the filter reverberation qualiq, also 
regarding the sentence 'it well sounds'. J ( - )  must quantify the similarity 
between the artificial response and the real response, as well as 
guaranteeing a good quality of artificial reverberation. 

0.10 

0.05 

9 4 . 0 5  

4 .10  

4.15- -25- o 0.10 0.20 0.30 0.40 o zwo 4wo 6000 
time, 5 frequency, Hz 

d 

Fig. 2 Comparison bemeen desired and artifcial response 
U Dcsired time response 
h Desired frequency response 
c Artificial Time response 
d Artificial frequency response 

The loss function we propose in this Letter carrier out: 

(i) A comparison between the powerp(1) ofsimulated IR and real IR, to 
re-create the envelope and the echo distribution; we windowed the 
temporal axis in N windows, calculated the power in each window and 
minimised the maximum power. It  allows LIS to simulate rather well the 
temporal behaviour of the real IR, reproducing it with the same T,o and 
echo distribution. 
(ii) A comparison behueen the real and the artificial frequency 
responses, minimising the mean squarc error, to obtain a similar 
frequency colouration between the real and artificial entire frequcncy 
reSp0"SC. 
(iii) A tirther frequency test, minimising the maximum shifting, to 
reduce the defects introduced by the employed structure. We windowed 
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the frequency axis in M windows; then minimised the maximum error 
between the frequency responses in each window. 

Simulation results; The adaptive filter described above has been 
tested by reproducing impulse rcsponses artificially generated by an 
acoustical cditing tool based on ray tracing and image-source meth- 
ods. We set this tool to generate typical IR, assuming rectangular 
perpendicular rooms. 

We report the results related to a small ambicnt, with a medium wall 
absorption coefiicient a=0.95. Figs. 20 and h show the time response 
and the frequency response. respectively, of this room, assuming a 
sample frequency/, = 11025 Hz. For the FIR filter, we chose the first IR 
60 ms. At the end o f  the identification procedure, we obtained the filter 
responses shown in Figs. 2c and d .  A good similarity between the 
desired and the artificial time and frequency response can be observed: 
the artificial reverb reached the same T,,, and the same harmonic 
content of the desired test mom responses. 
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Simplification of soft-bit speech decoding 
and application to MELP encoded speech 

Xiaobei Liu and So0 Ngee Koh 

A simplified soft~bit speech decoding (SBSD) algorithm is pmposed 
and is used in decoding the encoded speech parameters from the 
mixed excitation linear prediction (MELP) coder Simulation results 
show that the simplificd algorithm can reduce significantly the 
decoding camplexigv and memory rcquiremenl of SBSD at a slight 
penalty o r a  marginal drop in performance. 

Introduction: Soft-bit speech decoding (SBSD). as a method which 
successfully uses the residual redundancy to  achieve error conceal- 
ment, can be applied to almost all speech coding algorithms with 
significant improvements in the quality of the decoded speech when 
the encoded hits are received with errors [1-3]. The main reason that 
deters the use of SBSD in real-time applications is the exorbitant 
complexity and memory requirement of the decoding algorithm, 
especially for parameters that are encodcd by a large number of bits. 

The complexity issue is only considered in [2] in which the authors 
propose to  employ lower dimensional vector quantisers (VQs). 
However, this approach requires the redesign of codebooks at the 
encoder end. In this Letter, a simple but effective simplified SBSD 
without modifying the encoder is proposed and is applied to mixed 
excitation linear prediction (MELP) encoded speech parameters [4, 51. 
Simulation results show that while our proposed method reduces 

significantly the decoding complexity and memory requirement, it 
only costs a slight degradation in the quality of the decoded speech. 

Complexity ofSBS0:  The SBSD algorithm can be divided into two 
steps. First, the decoder uses the received sequence &= (8,& . . . , 
&) to compute the a posteriori probability (APP) o f  each of' the 
possible transmitted bit combination &=(xi@), .&(I), . . . , 
xUM- I ) ) ,  where i is the index of the parameter Q and 
i t  (0, I ,  . . . , 2"- 1 }. The resulting equation is: 

whcrc C i s  the normalisation constant. Secondly, the APPs are used for 
MMSE estimation o f  the reconstructed parameter Gk as shown in (2): 

From the above, we can sec that the total complexity for calculating 
each panmeter is about 22M for both multiplication and addition, The 
mcmory required is 22M also for storing the a priori index transition 
probabilities P(&l&-,), 

SimplFied SBSD: Suppose & is the combination of the first N 
significant bits of A, which means &{xl(M--N), 
xi(M-N+ I), . . . ,  xi(,&- I ) ) ,  N j M .  To reduce the memory 
requirement o f  SBSD, we propose to divide the 2M parameter indices 
into 2N groups and each group includes 2M-N o f d ~  with the same d. 
The transition probabilities between groups are used instead of the 
individual index transition probabilitics. The transition probability 
between each two groups is calculated as 

Equation ( I )  now becomes 

where 

P ( d - , I L , ) =  X P(&I i , - , )  ( 5 )  
d,=i 

From the above, it can be found that the memory requirement is 
reduced to 22N and the numbers of multiplications and additions are 

and 22M, respectively. To further reduce the number of calcula- 2"+N 

tions, we propose to ignore the 'index transmission probabilities' 
P(&l&) [I]  below a certain vduc  T since they conhihule negligibly 
to the reconstructed parameters. Suppose R out of the 2M index 
transmission probabilities remain after ignoring the others, the numbers 
of multiplications and additions then become less than R . 2" and 
R . 2", respectively. 

Resu1t.s and discussion: To test the performance o f  the proposed 
procedure, the simplified SBSD is first applied to  the MELP encoded 
pitch parameter [6 ]  which is quantised to 7 bits and requires 16 384 
arithmetic operations and words. Table 1 shows thc parameter SNR 
(PSNK) ofpitch at Eb/N, = 0 d B  obtained by thc simplified SBSD for 
diffcrcnt values of Tand R. It should be noted that the PSNR of pitch 
with the unmodified SBSD is 16.6 d B  and its value without the iise of 
SBSD is only 9.77 dB. 

From Table I ,  it can be observed that the performance improves with 
increasing value of N and decreasing value of 7 However, when N > 4  
or T< IO-', the amount of improvement becomes marginal whereas the 
number of arithmetic operations increases rapidly. When T= IO-', 
there is even a slight decrease in the PSNK, which can be explained by 
the indices with the transmission probabilities below being; \aery 
unlikely to be the correct transmitted indices and taking them into 
account in the reconstruction of the parameters will only degrade the 
decoder performance. 
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