www.acsnano.org

ARTIC

MoS₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH₃NH₃PbI₃ Perovskite Solar Cell with an Efficiency of over 20%

Leyla Najafi,^{†,#} Babak Taheri,^{‡,#} Beatriz Martín-García,[†] Sebastiano Bellani,[†] Diego Di Girolamo,[‡] Antonio Agresti,[‡] Reinier Oropesa-Nuñez,^{†,||}[®] Sara Pescetelli,[‡] Luigi Vesce,[‡] Emanuele Calabrò,[‡] Mirko Prato,[⊥][®] Antonio E. Del Rio Castillo,[†][®] Aldo Di Carlo,^{*,‡,§}[®] and Francesco Bonaccorso^{*,†,||}[®]

[†]Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

[‡]C.H.O.S.E. (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy

^{||}BeDimensional Srl., Via Albisola 121, 16163 Genova, Italy

¹Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

[§]L.A.S.E.–Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", Leninskiy Prosect 6, 119049 Moscow, Russia

Supporting Information

ABSTRACT: Interface engineering of organic–inorganic halide perovskite solar cells (PSCs) plays a pivotal role in achieving high power conversion efficiency (PCE). In fact, the perovskite photoactive layer needs to work synergistically with the other functional components of the cell, such as charge transporting/ active buffer layers and electrodes. In this context, graphene and related two-dimensional materials (GRMs) are promising candidates to tune "on demand" the interface properties of PSCs. In this work, we fully exploit the potential of GRMs by controlling the optoelectronic properties of molybdenum disulfide (MoS₂) and reduced graphene oxide (RGO) hybrids both as hole transport layer (HTL) and active buffer layer (ABL) in mesoscopic methylammonium lead iodide (CH₃NH₃PbI₃)

perovskite (MAPbI₃)-based PSCs. We show that zero-dimensional MoS₂ quantum dots (MoS₂ QDs), derived by liquid phase exfoliated MoS₂ flakes, provide both hole-extraction and electron-blocking properties. In fact, on one hand, intrinsic n-type doping-induced intraband gap states effectively extract the holes through an electron injection mechanism. On the other hand, quantum confinement effects increase the optical band gap of MoS₂ (from 1.4 eV for the flakes to >3.2 eV for QDs), raising the minimum energy of its conduction band (from -4.3 eV for the flakes to -2.2 eV for QDs) above the one of the conduction band of MAPbI₃ (between -3.7 and -4 eV) and hindering electron collection. The van der Waals hybridization of MoS₂ QDs with functionalized reduced graphene oxide (f-RGO), obtained by chemical silanizationinduced linkage between RGO and (3-mercaptopropyl)trimethoxysilane, is effective to homogenize the deposition of HTLs or ABLs onto the perovskite film, since the two-dimensional nature of RGO effectively plugs the pinholes of the MoS₂ QD films. Our "graphene interface engineering" (GIE) strategy based on van der Waals MoS₂ QD/graphene hybrids enables MAPbI₃-based PSCs to achieve a PCE up to 20.12% (average PCE of 18.8%). The possibility to combine quantum and chemical effects into GIE, coupled with the recent success of graphene and GRMs as interfacial layer, represents a promising approach for the development of next-generation PSCs.

KEYWORDS: perovskite solar cells, 2D materials, graphene, molybdenum disulfide (MoS_2), quantum dots, interface engineering

rganic–inorganic halide perovskite solar cells (PSCs) are in the spotlight of photovoltaic (PV) research to rival the leading technologies¹⁻⁴ (*i.e.*, crystalline

Received: July 22, 2018 Accepted: September 13, 2018

Figure 1. (a) Sketch of mesoscopic MAPbI₃-based PSC exploiting MoS₂ QDs:f-RGO hybrids as both HTL and ABL. (b) Scheme of the energy band edge positions of the materials used in the different components of the assembled mesoscopic MAPbI₃-based PSC. The energy band edge positions of MoS₂ flakes and MoS₂ QDs were determined from OAS and UPS measurements detailed in the text, while those of the other materials were taken from the literature: $FTO_{,}^{52} TiO_{2,}^{52} MAPbI_{3}$, ^{134–139} spiro-OMeTAD, ⁵² and Au.⁵² (c) State-of-the-art and predicted PCE evolution for PSCs, highlighting the synergistic potential of GIE and the formulation of advanced perovskite chemistries.

silicon solar cells^{5–7} and inorganic thin-film solar cells^{8,9}) since power conversion efficiency (PCE) exceeding $20\%^{10-12}$ can be obtained by affordable (low-cost and low-temperature) solution processing^{13–15} with a scaling-up prospective.^{16–19}

Methylammonium lead iodide (CH₃NH₃PbI₃) perovskite (MAPbI₃) has been intensively studied as light-harvesting material from the beginning of PSC development, 1,2,20-22 and the elemental composition engineering of its chemistry^{23,24} led to mixed cation and halide PSCs,²⁵ which boosted the certified PCE above 22% (*i.e.*, 22.1%²⁶ and 22.7%¹⁰). Although the archetypal MAPbI3 reached a certified maximum efficiency of $19.3\%^{27}$ (uncertified efficiency exceeding $20\%^{28-31}$), it still has a benchmarking role for the optimization and/or validation of PSC architectures $^{31-34}$ due to its historical breakthrough in PV technology over the last years (starting from 2009, with a PCE of $3.8\%^{21}$).¹⁰ In particular, MAPbI₃-based PSCs provide a platform to study and design the interfaces between each functional layer of the $PSCs_{j}^{16,35-41}$ whose carrier transport barriers determine undesirable hysteresis and instability effects in PSCs, $^{33,42-44}$ both in mesoscopic 31,45 and planar structures.⁴⁵ In fact, the photogenerated carriers have to be transported across the interfaces in the PSC structure, ^{38,46-48} and charge loss can occur due to energy barriers and/or interfacial defects.^{38,46–48} Therefore, appropriate energy level tailoring at the interfaces is pivotal in (1) increasing open circuit voltage (V_{oc}) ; (2) facilitating charge transfer and extraction,^{49,50} which contribute to increase the short circuit current (J_{sc}) and fill factor (FF);^{49,50} (3) eliminating hysteresis phenomena;^{51–53} and (4) extending the lifetime.^{54,55} In the run-up to reach the theoretical PCE limit (~31%)⁵⁶ of PSCs (practical limits of 29.5%⁵⁷ with value of 30.5%,⁵⁸ which have also been reported by considering intrinsic nonradiative recombination processes), graphene and related two-dimensional (2D) materials (GRMs) are emerging as a paradigm shift of interface engineering to boost the PV performance.^{56,59–73} Actually, the large variety of GRMs offers peculiar (opto)electronic properties^{74,75} that can be tuned on-demand by means of morphological modification^{76,77} and chemical functionalization.^{78–80} Moreover, GRMs can be produced from the exfoliation of their bulk counterpart in suitable solvents^{81–85} as functional inks.⁸⁶ The latter can be deposited on different substrates by established large-scale, cost-effective printing/coating techniques,^{87–90} compatible with solution-based manufacturing of PSCs.^{15,91–93}

With the aim to deeply exploit the use of 2D materials for engineering the interface of PSCs, herein we report a synergistic quantum-chemical approach for controlling the energy band levels and the thin-film morphology of lowdimensional, van der Waals hybrids between molybdenum disulfide quantum dots (MoS_2 QDs) and reduced graphene oxide (RGO) as hole transport layer (HTL) or active buffer layer (ABL) (between the HTL and Au electrode) in Scheme 1. Representative sketches of (a) the functionalization of RGO (structure based on the Lerf-Klinowski model)¹⁸⁶ with MPTS; (b) the hybridization of MoS_2 QDs and f-RGO.

mesoscopic MAPbI₃-based PSCs (Figure 1a). Notably, both 2D MoS₂ and RGO have been previously reported as possible HTLs^{64,72,94-103} or ABLs.^{64,104,105} However, their intrinsic work function (WF) (typically <4.8 eV for both pristine $MoS_2^{106-109}$ and $RGO^{110-113}$) is inferior to that of conventional HTL materials, including 2,2',7,7'-tetrakis(N,N-di-4methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) $(WF > 4.9,^{114,115}$ especially for the doped forms mostly exploited as $HTLs^{114-117}$ and poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PE-DOT:PSS) (WF ranging between 5.0 and 5.2 $eV^{118-121}$). This can limit the hole extraction process.^{95,122,123} Moreover, the optical band gap (E_{σ}) of both RGO (<2 eV,^{124,125} depending on its oxidation level^{124,125}) and MoS₂ (~1.2 eV for bulk^{126,127} and ~1.8 eV for single-layer¹²⁸⁻¹³⁰) results in a minimum energy of the conduction band (CB) (~-4.3 $eV^{131-133}$) lower than that of the lowest unoccupied molecular orbital (LUMO) (reported between -4.0¹³⁴⁻¹³⁷ and -3.7 eV^{114,138,139}), not providing electron-blocking properties.^{140,141} Therefore, physical/chemical modification of 2D MoS₂ and RGO are needed to tune the optoelectronic properties for their efficient implementation as HTLs.^{95,99,110,122,123,142,143} As shown in Figure 1b, a zero-dimensional (0D) anodic interlayer of MoS₂ QDs, derived by liquid phase exfoliation (LPE) of

MoS₂ flakes,¹⁴⁴ hold optimal electronic structure to effectively extract the photogenerated holes through an electron injection mechanism¹⁴⁵⁻¹⁴⁷ from their intrinsic n-type doping¹⁴⁸⁻¹⁵¹induced intraband gap states.^{152,153} The latter have been reported to be a consequence of the natural presence in MoS_2 of sulfur vacancies, ^{153–158} impurities, ^{159,160} and defects. ^{161–164} Quantum confinement effects open the MoS₂ optical band gap (from 1.4 eV for the flakes to >3.2 eV for the QDs), raising the minimum energy of the CB of MoS_2 (from -4.3 eV for the flakes to -2.2 eV for the QDs) above the energy of the LUMO of MAPbI₃ (between $-4.0^{134-137}$ and $-3.7 \text{ eV}^{114,138,139}$), thus blocking electron injection in HTL. Hole-extraction and electron-blocking properties of MoS₂ QDs synergistically suppress the interfacial charge recombination losses observed in benchmark devices (fluorine-doped tin oxide (FTO)/ compact TiO₂ (cTiO₂)/mesoporous TiO₂ (mTiO₂)/MAPbI₃/ 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD)/Au),34,165 and in previous cell architectures exploiting native MoS₂ flakes as ABLs.^{64,165} With the aim to form homogeneous (i.e., pinhole-free) nanometerthick HTLs, MoS₂ QDs, which do not cover totally the MAPbI₃ film after their deposition, are hybridized with chemically (3-mercaptopropyl)trimethoxysilane (MPTS)-functionalized RGO (f-RGO) flakes¹⁶⁶ (named MoS₂ QDs:f-

Figure 2. Morphological characterization of (a-d) the as-produced MoS₂ QDs and (e-h) f-RGO flakes. TEM and AFM images of (a, b) MoS₂ QDs and (e, f) f-RGO and the corresponding statistical analysis of (c, g) the lateral dimension and (d, h) the thickness, respectively. The statistical analyses were performed on 50 flakes from the different images collected. Representative height profiles (solid white lines) of the indicated sections (white dashed lines) are also shown in panels (b) and (f).

RGO). The RGO flakes are effective to plug the pinholes in MoS₂ QDs films, thus to homogenize the HTL. The choice of the functionalization for RGO relies on the bifunctional role of MPTS molecules, which effectively anchor onto the RGO flakes (*via* silanization-mediated bonding),^{167,168} while exposed thiol (SH) moieties enable f-RGO to interact with MoS₂ QDs (via S-S van der Waals physisorption¹⁶⁹ and/or S-vacancies passivation/filling^{170,171}). Our results show the potential of quantum and chemical effects in "graphene interface engineering" (GIE) to produce highly performant MAPbI₃-based PSCs with a PCE up to 20.12% (average PCE of 18.8%). The remarkable advances achieved also in the exploitation of graphene flake- and graphene QD-doped ETLs, including both mesoscopic TiO₂⁴⁵ and solution-processed SnO₂²⁸ make GIE a versatile tool for the design of record-high efficiency (solution-processed) next-generation PSCs (Figure 1c).

RESULTS AND DISCUSSION

Production and Characterization of MoS₂ QDs, f-RGO, and MoS₂ QDs:f-RGO. The MoS₂ QDs were produced through a facile and scalable one-step solvothermal approach starting from MoS₂ flakes previously obtained by LPE of bulk MoS₂ in 2-propanol (IPA),¹⁴⁴ followed by a sedimentation-based separation (SBS) process.^{172,173} The LPE process exploits hydrodynamic shear-force-controlled ultrasonication to overcome the van der Waals forces (15–20 meV Å^{-2,174} or ~5 meV/atom,^{175,176}) that bind MoS₂ layers.^{81,84,177,178} The SBS process separates various particles on the basis of their sedimentation rate in response to a centrifugal force acting on

them.^{84,179} Subsequently, the so-produced MoS₂ flakes were first produced by LPE and then solvothermally treated for the production of MoS_2 QDs.¹⁴⁴ Then, by exploiting SBS we selected MoS₂ QDs, while residual MoS₂ flakes were discarded as sediment.¹⁴⁴ Reduced graphene oxide was produced by thermal annealing (1000 °C under a 100 sccm flow of Ar (90%):H₂ (10%)) of graphene oxide $(GO)^{180,181}$ synthesized from graphite flakes using a modified Hummer's method.¹⁸² Subsequently, RGO was functionalized by MPTS via silanization-mediated chemical bonding.^{166,183} The silanization process was triggered by the hydrolization and condensation of the methoxy groups $(-OCH_3)$ of MPTS, which react with the O moieties of RGO (Scheme 1a).^{166,167} A solvent-exchange process^{95,184,185} was carried out to redisperse MoS₂ QDs and f-RGO dispersions in IPA. The hybrid MoS₂ QDs:f-RGO dispersion was obtaining by mixing f-RGO and MoS₂ QD dispersions with a material weight ratio of 1:2. The hybridization of the materials is completed by the exposed SH moieties of f-RGO, which interact with MoS₂ QDs via S-S van der Waals physisorption¹⁶⁹ and/or passivation/filling of the S-vacancies of MoS_2 QDs^{170,171} (Scheme 1b).

The details of material production and dispersion formulation are reported in the Experimental Methods section. It is worth noting that the final material dispersions were obtained in low boiling-point alcohol-based solvents, which are compatible with environmentally friendly, low-temperature, and solution-processed material deposition methods. By taking advantage of this approach, we exploited spray-coating deposition, since it can be applied on irregular surfaces with

Figure 3. (a) Mo 3d and S 2s, (b) C 1s and (c) Si 2s and S 2p XPS spectra for MoS₂ QDs:f-RGO. The deconvolution of the corresponding XPS spectra is also shown. (d) Absorption spectra of MoS₂ flakes and QDs. (e) Tauc plots of MoS₂ flakes and QDs. (f) Secondary electron threshold region of He-I UPS spectra of MoS₂ flakes and QDs, which were used for estimating the WF values. The inset shows VB region of He-I UPS spectra of MoS₂ flakes and QDs used for estimating E_F values. The shoulder observed in MoS₂ QDs UPS spectrum can be attributed to the presence of defective species (edge/S-vacancies) in a polydispersed sample.

higher reproducibility than that obtained with other deposition methods (*e.g.*, spin/blade coating and screen printing).¹⁸⁷ Moreover, with a broader context vision, spray coating is a promising technique to speed up the production of perovskite module fabrication^{188,189} in view of their market entry.^{190,191}

The lateral size and thickness of the as-produced MoS₂ QDs and f-RGO samples were evaluated by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. Figure 2a,b show representative TEM and AFM images of MoS2 QDs. Microscopy statistical analyses of lateral dimension (Figure 2c) and thickness (Figure 2d) show log-normal distributions peaking at ~2.6 and ~1.6 nm, respectively, which means that both one- and few-layer QDs were effectively produced (the monolayer thickness is between 0.7 and 0.8 nm^{128,192}). Notably, the thickness distribution of MoS₂ QDs is similar to that measured for the native MoS₂ flakes (average thickness of \sim 2.7 nm), whose morphological characterization is reported in the Supporting Information (SI) (Figure S1). Figure 2e,f report TEM and AFM images of f-RGO flakes, exhibiting an irregular shape and rippled paperlike morphology. Microscopy statistical analyses of lateral dimension (Figure 2g) and thickness (Figure 2h) display a lognormal distributions peaked at ~980 and ~1.3 nm, respectively. These values are comparable with those obtained for native RGO (average lateral dimension and thickness of 1.7 μ m and 1.8 nm, respectively)¹⁸³ (see Figure S2). Since the thickness of single-layer pristine graphene is ~0.34 nm,^{193,194} these data indicated that our methodology produced few-layer f-RGO flakes. The structural properties of the materials were investigated by Raman spectroscopy (see SI for additional Raman spectroscopy analysis details, Figure S3), confirming their exfoliated crystal structure.

X-ray photoelectron spectroscopy (XPS) measurements were carried out to determine the elemental composition, chemical phase, and interaction of the as-produced MoS₂ QDs:f-RGO samples. Figure 3a shows the S 2s and Mo 3d XPS spectra of MoS₂ QDs:f-RGO, together with their deconvolution. The peaks at the lowest binding energy $(\sim 226 \text{ eV})$ and the peak at $\sim 229 \text{ eV}$ are assigned to S $2s^{144,195,196}$ and Mo $3d_{5/2}$, respectively, of the semiconducting 2H (trigonal prismatic) phase of MoS₂.^{144,195,196} The peak centered at ~232.5 eV can be fitted with two components.^{64,144} The first component (\sim 232 eV) is assigned to Mo $3d_{3/2}$ of the 2H-MoS₂. Instead, the second one (~233 eV), as well as the low-intensity peak centered at ~236 eV, is associated with oxidized phases of Mo, 177,197 which can be produced during the LPE of bulk MoS₂. ^{144,177} However, the percentage content (%c) of oxidized Mo (<3%) indicates that only a small fraction of the material is oxidized. Noteworthy, the initial LPE step in IPA can overcome the drawbacks of the LPE of transition metal dichalcogenides^{144,198} (including MoS_2^{-144}) in conventional high boiling-point solvents, such as *N*-methyl-2-pyrrolidone (NMP)^{64,177,178,199} and *N*,*N*-dime-thylformamide (DMF),^{64,177,178} where high percentage contents of oxidized species (between 40% and 60%, depending on the process parameter) are typically produced.^{64,1'} Moreover, the functionalization process did not cause any additional oxidation of MoS2 QDs, since the %c of oxidized Mo in the hybrids (<3%) is also comparable to that of both MoS_2 flakes (<7%)¹⁴⁴ and MoS_2 QDs (~5%).¹⁴⁴ The component at ~228 eV appearing in the S 2s XPS spectrum is ascribed to the presence of S moieties of f-RGO and proves the interaction of the MPTS functionalization with MoS₂ QDs via S-S van der Waals physisorption¹⁶⁹ and/or passivation/

filling of the S-vacancies of $MoS_2 QDs$,^{170,171} as proposed in Scheme 1b. The ratio between %c of Mo 3d and S 2s ascribed to $MoS_2 QDs$ is <0.5, while for the $MoS_2 QDs$ the same ratio was >0.5.¹⁴⁴ This suggests that the functionalization process could restore the S-vacancies of the native MoS_2 , in agreement with the hybridization mechanism reported in Scheme 1b.

Figure 3b shows the C 1s spectrum of MoS₂ QDs:f-RGO, which is deconvoluted in six components, indicating the C sp² and sp³ network and oxygen functionalities of the f-RGO.²⁰⁰ The C sp² component, centered at 284.5 eV, dominates the spectrum (%c \approx 57%), indicating that the delocalized π conjugated structure was almost fully restored after the thermal reduction of the native GO (%c of C sp² \approx 48.5%¹⁸³).^{201,202} The component peaking at \sim 286.2 eV is assigned to C-O bonds ($\sqrt[6]{c} = 7.7\%$). A residue of C sp³ is still present (peak centered at 284.7 eV, %c \approx 20.3%) as well as carboxylate carbon O-C=O bonds (peak centered at 287.7 eV, %c \approx 1%). The component observed at \sim 290.7 eV is attributed to $\pi - \pi^*$ satellite structure (extended delocalized electrons),^{203,204} a characteristic of aromatic C structure. The component peaking at 284.0 eV is also significantly present (% c \sim 14%). This band can arise as a consequence of C lattice vacancies/distortions introduced mainly during the GO reduction process¹⁸³ and/or the hybridization of f-RGO with MoS₂ QDs. Regarding the MPTS functionalization of the RGO, Figure 3c shows the Si 2s and S 2p XPS spectra, together with their deconvolution. The appearance of the silane and S-doublet components peaking at ~153.5 and ~163.3 eV, respectively, 166,205 are fingerprints of the MPTS. The components peaking at ~168.4 and ~169.7 eV are attributed to a S 2p doublet of $SO_4^{2-.166,206}$ These oxidized species are due to both MPTS interacting with O moieties on RGO flakes^{167,207} and MPTS oxidized during the functionalization process. The %c of the oxidized groups is \sim 5% of the total S content. The ratio between the S content related to the MPTS and the C sp² of f-RGO is 3% and estimates the percentage extent of the functionalization of RGO with MPTS.¹⁸³ The interaction between the MPTS and the RGO flakes was confirmed by complementary Fourier-transform infrared (FTIR) measurements. After RGO functionalization, in the f-RGO FTIR spectrum (see SI, Figure S4), the Si-O-Si stretching band appears at 1078 cm⁻¹, shifted and broadened compared to pure MPTS (1089 cm^{-1}), indicating the coupling between the alkoxysilane groups and the oxygen groups of RGO, as proposed in Scheme 1. Even more, the Si-O-Si band is still present in MoS₂ QDs:f-RGO, keeping the same position. This indicated that no modification occurred in the silane-RGO interaction path, leaving only the SH groups as a linker option for the MoS2 QDs (see the SI for further discussion). The effectiveness of the MPTS functionalization was also macroscopically observed by noting the improved dispersibility of f-RGO in ethanol compared to that of RGO (Figure S5). In fact, MPTS are polar molecules able to decrease the surface energy of native RGO in alcohol-based solvents (~46.1 mN m⁻¹ in ethanol),^{208,209} enhancing dispersion stability and hindering formation of aggregates during film deposition.¹⁸³ In addition, XPS analysis also evidences that in the same energy range, the S 2p doublet due to MoS2 QDs is also present at 162.2 eV.

Optical absorption spectroscopy (OAS) and ultraviolet photoelectron spectroscopy (UPS) measurements were carried out in order to assess the charge-extraction/blocking capability of MoS_2 QDs. Native MoS_2 flakes were also measured for

comparison, since they have been previously reported as effective ABLs between MAPbI3 and spiro-OMeTAD in mesoscopic PSCs.⁶⁴ The UV-vis absorption spectrum of MoS₂ flakes (Figure 3d) shows peaks at ~670 and ~620 nm, which arise from the excitonic transitions, (known as A and B, respectively) the split valence bands and the minima of the conduction band at the K-point of the Brillouin zone of layered MoS₂.^{210,211} More in detail, the spin-orbit interaction and interlayer coupling are responsible for the valence band (VB) splitting. The energy difference between the A and B transitions is ~180 meV, which agrees with the values predicted by density functional theory (DFT) calculations (146 and 174 meV for monolayer and bilayer, respectively).²¹² The broad absorption band centered at ~400 nm arises from the C and D interband transitions between the density of state peaks in the valence and conduction bands.^{213,214} Differently, MoS₂ QDs do not show the absorption peaks of MoS₂ flakes, and their absorption edge shifts toward lower wavelength compared to the latter. This is a consequence of quantum 0D confinement,^{215,216} which affects the optical properties of nanostructures when their size is comparable to or smaller than the excitonic Bohr radius (~23 nm for MoS_2).²¹⁷ Quantum confinement, as well as edge effects, endow excitationdependent photoluminescence (PL) properties in MoS₂ QDs (Figure S6).^{144,215,218,219} In fact, the PL emission peak of MoS₂ QDs is red-shifted with increasing excitation wavelength.¹⁴⁴ In order to further confirm the effect of quantum confinement on the optical properties of MoS_2 , the \tilde{E}_g was evaluated by the $(\alpha h\nu)^n$ vs $h\nu$ (Tauc plot) analysis (Figure 3e) using the Tauc relation $Ah\nu = Y(h\nu - E_g)^n$, where A is the absorbance, h is Planck's constant, ν is the photon's frequency, and Y is a proportionality constant.²²⁰ The value of the exponent denotes the nature of the electronic transition, discriminating between direct-allowed transition (n = 2) and indirect-allowed transition (n = 0.5).²²¹ Bulk MoS₂ is an indirect band gap semiconductor with $E_g = 1.29$ eV.²²² With decreasing thickness, theoretical^{223,224} and experimental¹²⁸ studies revealed a progressive confinement-induced shift in the indirect band gap from the bulk value of 1.29 eV up to 1.90 eV, while the direct band gap increases by only 0.1 $e\hat{V}.^{128}$ As a consequence of these different scaling properties, MoS₂ undergoes a crossover from an indirect band gap semiconductor to a direct band gap material in the monolayer limit.^{128,223,224} The indirect-to-direct band gap transition has a strong impact on the PL emission, which shows a dramatic enhancement (by more than a factor of 1000) compared to that of the bulk counterpart.²²⁵ In the case of our MoS₂ flakes, PL was not detected, in agreement with a dominant few-layer nature evidenced by the AFM statistical analysis of the thickness (Figure 2h). Consequently, in Tauc analysis *n* was set equal to 0.5 (indirect-allowed transition). Differently, MoS₂ QDs, although showing similar thickness of the MoS₂ flakes (see Figure 2d,h), display remarkably PL, since additional quantum effects arising from 0D confinement activate direct band gap behavior, $^{215-217}$ as proved by PL emission (Figure S6). Then, in Tauc analysis *n* was set equal to 2 (direct-allowed transition). It is worth noting that n undergoes a size (*i.e.*, thickness and lateral dimension)-dependent transition from 2 in direct band gap bulk semiconductors to 1 in a direct band gap nanocrystal.²²⁶ Consequently, the calculated E_{g} value of MoS₂ QDs has to be considered qualitatively. Taking into account these considerations, the estimated $E_{\rm g}$ increases from ~1.4 eV for MoS₂ flakes to ~4.0 eV (~3.2 eV assuming n = 1,

ACS Nano

Figure S7) for MoS_2 QDs, in agreement with previous studies.²²⁷

Ultraviolet photoelectron spectroscopy measurements allowed the Fermi level energy $(E_{\rm F})$, *i.e.*, the WF, and VB to be determined. Figure 3f shows that secondary electron cutoff (threshold) energies of the He I (21.22 eV) UPS spectra are the same for MoS₂ flakes and QDs (\sim 16.8 eV), corresponding to a WF of ~4.6 eV. The inset in Figure 3f shows the UPS spectra region near the $E_{\rm F}$, which allows the maximum energy of the VB to be estimated at ~ -5.7 eV for MoS₂ flakes and ~-6.2 eV for MoS₂ QDs. Taking into account the E_g values estimated by Tauc analysis, the minimum energy of the CB is estimated at ~ -4.3 for MoS₂ flakes and ~ -2.2 eV for MoS₂ QDs. The results indicate that, differently from MoS₂ flakes, MoS₂ QDs have a minimum energy of the CB that is lower than that of the LUMO of MAPbI₃ (between $-4.0^{134-137}$ and $-3.7 \text{ eV}^{114,138,139}$). Consequently, MoS₂ QDs effectively act as electron-blocking material into the PSC structures (see Figure 1b). Furthermore, the UPS data revealed that both MoS₂ flakes and QDs cannot collect holes from their VB, since the corresponding energy levels (~-5.7 eV for MoS_2 flakes and ~ -6.2 eV for MoS₂ QDs) are inferior to that of MAPbI₃ $(\sim -5.4 \text{ eV}^{137-139})$. Since MoS₂ flakes film has been previously reported as HTL,^{64,72,94–99} the holes can be extracted from the MAPbI₃ by injecting electrons^{145–147} from intergap states of MAPDI₃ by injecting electrons from incomplete MoS_2 ^{152,153} The latter have been reported to be a consequence of the intrinsic presence in MoS_2 of S-vacancies, ^{153–158} impurities, ^{159,160} and defects. ^{161–164} The presence of these intergap states is confirmed by UPS data, which reveal an intrinsic n-type doping of MoS_2 flakes (E_F is just 0.3 eV inferior to the energy of the energy minimum of the CB and 1.1 eV superior to the energy maximum of the VB). This observation is also in agreement with previous studies,¹⁴⁸⁻¹⁵¹ which evidenced n-type-doping transport measurements in MoS₂-based field effect transistors.¹⁴⁸⁻¹⁵¹ Since XPS analysis revealed equal stoichiometry between MoS₂ flakes and MoS₂ QDs, the hole-extraction mechanism deduced for MoS₂ flakes can also be valid for MoS₂ QDs.¹⁴⁴ We also point out that a similar hole-extraction mechanism has been reported for a MoO₃ anodic interlayer,^{146,147,228} due to inherent n-type behavior that allows the material to act as donors in transparent conducting oxides.²²

Perovskite Solar Cell Architecture and Their Characterization. The optoelectronic characterization of MoS₂ QDs evidenced that they hold both hole-extraction and electronblocking properties, which are the most important requirements for a HTL.^{41,40,230} In order to deposit continuous and homogeneous films based on MoS₂ QDs, the latter were hybridized with f-RGO flakes, whose 2D nature spontaneously plugs the pinholes in MoS₂ QD films. With the aim to prove the effectiveness of MoS₂ QDs or MoS₂ QDs:f-RGO as HTL materials, both of them were incorporated into mesoscopic MAPbI₃-based PSCs to be used as HTL or ABL between MAPbI₃ and spiro-OMeTAD. The investigated PSC has the following architecture: FTO/cTiO₂/mTiO₂/MAPbI₃/ABL (MoS₂ QDs or f-RGO or MoS₂ QDs:f-RGO)/spiro-OMeTAD/Au. The ABLs were also tested as HTLs in the absence of spiro-OMeTAD. Additional details of the device fabrication are reported in Experimental Methods. It is important to note that MoS2 QDs and MoS2 QDs:f-RGO nanometer-thick films were deposited onto MAPbI₃ films by spray coating the corresponding dispersions in IPA. The compatibility of the IPA with the MAPbI₃ layer was assessed in

previous experiments.^{64,231} A representative $FTO/cTiO_2/mTiO_2/MAPbI_3/MoS_2$ QDs:f-RGO/spiro-OMeTAD/Au architecture was characterized by cross-sectional scanning electron microscopy (SEM) (Figure 4a). The MoS₂ QDs:f-

Figure 4. Morphological SEM characterization of PSCs. (a) Crosssectional SEM image of a representative $FTO/cTiO_2/mTiO_2/MAPbI_3/MoS_2$ QDs:f-RGO/spiro-OMeTAD/Au architecture. Top-view SEM images of (b) MAPbI_3 surface and (c) MoS_2 QDs:f-RGO film deposited onto a MAPbI_3 layer.

RGO layer is not resolved because of its nanometer-scale thickness. However, top-view SEM analysis (Figure 4b,c) of the MAPbI₃ surface shows that the contrast between different MAPbI₃ grains is reduced after the deposition of an ultrathin layer of MoS₂ QDs:f-RGO. This indicates the presence of a nanometer-thick film of MoS₂ QDs:f-RGO covering MAPbI₃. In addition, SEM/elemental analysis by energy-dispersive Xray spectroscopy (EDX) were performed on the different MAPbI₃-based PSCs (Figure S8), focusing on Pb (M, 2.34 keV), Mo (L α , 2.29 keV), and C (K α , 0.28 keV) peak signals, to evaluate the coverage of the MAPbI₃ surface with MoS₂ QDs and f-RGO. After the deposition of the MoS₂ QDs:f-RGO, a significant increase of the C signal relative to Pb was observed (C/(Pb + Mo) atomic ratio = 15 ± 2) compared to the reference device (without spiro-OMeTAD, C/Pb atomic ratio = 2.2 ± 0.1). This further confirms the coverage of the MAPbI₃ surface by the MoS₂ QDs:f-RGO film. Similar results were also evidenced by using only f-RGO (C/Pb atomic ratio $= 16 \pm 2$).

The capability of MoS_2 QDs-, f-RGO-, and MoS_2 QDs:f-RGO-based ABLs to effectively collect the photogenerated holes was proved by measuring the PV performance of PSCs without spiro-OMeTAD. The current–voltage (I-V) characteristics (Figure 5a) show that the best performances are obtained for PSCs adopting MoS_2 QDs:f-RGO as HTL. Such

Figure 5. (a, b) I-V characteristics of tested PSCs using MoS₂ QDs, f-RGO, and MoS₂ QDs:f-RGO as HTL (panel a) or ABL between MAPbI₃ and spiro OMeTAD. The data for HTL-free and ABL-free devices are shown as references. (c) Steady-state PL measurements of the MAPbI₃ after deposition of spiro-OMeTAD and ABL/spiro-OMeTAD. (d) Incident power conversion efficiency measurements of the various PSCs. The integrated current density of the curves is also shown on the right y-axis (red color).

PSCs exhibited a significant increase of PCE compared to those without HTL (7.60% vs 3.01%). Also MoS₂ QDs and f-RGO individually enhanced the PV performance of the HTLfree reference. In particular, MoS_2 QDs increased the J_{sc} of the HTL-free reference from 10.33 mA cm⁻² to 15.52 mA cm⁻², while f-RGO boosted the $V_{\rm oc}$ of the HTL-free reference from 0.69 V to 0.81 V. The poor V_{oc} obtained by the MoS₂ QDs is ascribed to a current leakage in the absence of complete coverage of the MAPbI₃ surface, leading to a charge recombination at the MAPbI₃/Au interface, since the metallic behavior of Au is not hole-selective.^{232,233} This drawback can be overcome by hybridizing MoS₂ QDs with f-RGO, whose planar nature can provide an effective coverage of the MAPbI₃. These data indicate that the individual components of MoS₂ QDs:f-RGO synergistically improve the PV performance of the cells. Although the measured PV performances are still lower compared to PSC based on conventional HTLs, these results are useful for the development of viable alternative HTLs based on GRMs.

After these preliminary tests, MoS_2 QDs, f-RGO, and MoS_2 QDs:f-RGO were tested as ABLs between MAPbI₃ and spiro-OMeTAD. As shown by the *I*-*V* curves of representative PSCs in Figure 5b, the PV performance increased with the addition of f-RGO and MoS_2 QDs:f-RGO as ABLs compared to the reference device. The "champion cell" using MoS_2 QDs:f-RGO reached a maximum PCE of 20.12%, a V_{oc} of 1.11 V, a J_{sc} of 22.81 mA cm⁻², and an FF of 79.75%. The reference device showed a PCE of 16.85%, with a V_{oc} 1.07 V, a J_{sc} of 20.28 mA cm⁻², and an FF of 76.9%. The device using only the MoS_2

QDs as ABL reached a PCE of only 14.40%, thus without improving the PV performance of the reference one. The incorporation of f-RGO remarkably increases the J_{sc} of the reference device up to 22.76 mA cm⁻², reaching a PCE of 18.64%. The enhanced J_{sc} of the PSCs exploiting f-RGO and MoS₂ QDs:f-RGO compared to the value obtained by both the reference device and the one based on MoS₂ QDs as ABL is attributed to the efficient charge collection in the presence of f-RGO and MoS₂ QDs:f-RGO, respectively. Notably, the optical absorption of the MoS2 QDs:f-RGO-based PSCs does not show significant differences compared to that of the MoS₂ QDs-based PSC, showing an increase of only ~3% and ~8% compared to f-RGO-based and reference PSCs, respectively (Figure S9). Hysteresis phenomena, such as anomalous dependence on the voltage scan direction/rate/range,^{43,234} voltage conditioning history,²³⁵ and device configuration,³⁶ could affect the I-V measurements.^{236,237} In order to exclude such effects, the PCE over time at the maximum power point was measured for a different batch of cells (Figure S10), confirming that the MoS₂ QDs:f-RGO improves the PSC performance of the reference PSC. Forward and reverse I-Vcurves were also collected (see comparative results of the different ABLs tested in the SI, Figure S11), showing that the presence of MoS₂ QDs:f-RGO as ABLs decreases the hysteresis phenomena compared to those of the other investigated PSCs, including the reference device adopting spiro-OMeTAD as HTL without ABL.

Steady-state PL measurements were performed to evaluate the capability of the ABLs to extract the photogenerated holes

Figure 6. Photovoltaic parameters measured at 1 sun with the relative standard deviation on 12 PSCs for the four investigated PSCs using spiro-OMeTAD as HTL and MoS₂ QDs, f-RGO, and MoS₂ QDs:f-RGO as ABLs: (a) J_{sc} ; (b) V_{oc} ; (c) FF; and (d) PCE. The average values are indicated by a square (\blacksquare).

from the MAPbI₃. In fact, the hole-extraction process hinders the radiative charge recombination in the absorber material,²³⁸⁻²⁴⁰ which then shows a PL quenching.^{241,242} Figure 5c shows that the addition of ABL between MAPbI₃ and spiro-OMeTAD suppressed the PL emission of MAPbI₃. Quantitatively, the PL decreased by 49.5%, 51.9%, and 65.8% in the presence of f-RGO, MoS₂ QDs, and MoS₂ QDs:f-RGO, respectively. This means that the ABLs can accelerate the holeextraction dynamics at the photoelectrode.^{239,243} However, I-V measurements clearly show the need of f-RGO to increase the J_{sc} indicating that other effects, such as the morphology of the ABL films, practically influence the PV performance of the PSCs. Incident power conversion efficiency (IPCE) measurements (Figure 5d) are consistent with the I-V ones. In fact, they show that f-RGO and MoS₂ QDs-f-RGO increased the IPCE in the 350-750 nm range by ~5% and ~7% compared to that of the reference device and the MoS₂ QDs-based PSCs, respectively. The trend of integrated current density (J_{IPCE}) values calculated from IPCE data in the 300-850 nm range at AM1.5G condition $(J_{IPCE}(MoS_2 QDs:f-RGO) > J_{IPCE}(f-RGO)$ > $J_{IPCE}(ref)$ > $J_{IPCE}(MoS_2 QDs)$ is in agreement with the J_{sc} of the different PSCs extrapolated by the corresponding I-Vcurves. The improvement of V_{oc} and FF compared to the PSCs

without spiro-OMeTAD is attributed to both the high WF values of the spiro-OMeTAD compared to those of ABLs, which assist the hole extraction, and the suppression of the contact between MAPbI₃ and Au, where charge recombination and/or chemical degradation of MAPbI₃ can occur.²⁴⁴

The statistical PV figures of merit (FoM) measured for each set of PSCs using spiro-OMeTAD as HTL and MoS₂ QDs, f-RGO, and MoS₂ QDs:f-RGO as ABLs are reported in Figure 6, in comparison with those obtained for ABL-free PSC (ref). Table 1 summarizes the PV FoM extracted by the *I*–*V* curves of the PSCs shown in Figure 6. These results demonstrate the reproducibility of the PV performance of the PSCs incorporating the ABLs. In particular, PSCs using MoS₂ QDs:f-RGO exhibited an average PCE value of 18.86 ± 0.72%, corresponding to an increase of 10.6% compared to the reference device without ABL (average PCE = 17.08 ± 0.73%).

In addition to PCE, the long-term stability of PSCs is crucial for real applications.²⁴⁵ Although MAPbI₃ revolutionized the worldwide PV research in the last year, it is intrinsically unstable due to its hydroscopicity and tendency to back-convert into its precursors, namely, PbI₂ and MAI, during moisture,^{246–250} oxygen,^{246–248,251–253} and light illumination^{246–248,251,254} exposure. In addition, MAPbI₃ undergoes a

Table 1. Photovoltaic FOM Extracted by the I-V Curves of the Best Performing Device and the Average PCE of Each Type of PSCs Using spiro-OMeTAD as HTL and MoS₂ QDs, f-RGO, and MoS₂ QDs:f-RGO as ABLs

structure of PSC	$V_{ m oc}$ $[V]$	$\begin{bmatrix}J_{\rm sc}\\{\rm [mA~cm^{-2}]}\end{bmatrix}$	FF [%]	PCE [%]	average PCE ^a [%]
spiro-OMeTAD	1.06	21.49	78.31	17.53	17.08 ± 0.73
MoS ₂ QDs/ spiro- OMeTAD	1.06	20.98	83.02	18.98	16.71 ± 1.60
f-RGO/spiro- OMeTAD	1.07	22.49	80.61	19.34	18.11 ± 0.96
MoS ₂ QDs:f- RGO/spiro- OMeTAD	1.11	22.81	79.75	20.12	18.76 ± 0.72

^{*a*}Average PCE on 12 devices for each type of PSC together with the standard error.

phase transition from the tetragonal to cubic phase at ~54 °C,^{255–257} a temperature that can be reached during typical solar cell operation, being incompatible with certification requirement of solar modules (-40-85 °C temperature range).²⁵⁷ This represents the major constraint for the market breakthrough of this technology.^{190,258} So far, the chemical engineering of the perovskite absorber elemental composition has been proved to address the instability issues.^{25,259,260} A device lifetime close to market requirements, e.g., 500 h stability and >20% PCE, has been recently achieved by formulating perovskites with mixed cations, i.e., formamidinium (FA), MA, and inorganic species (Cs or Ru).^{261,262} Oneyear stable PSCs were achieved by engineering an ultrastable 2D/3D (HOOC(CH₂)₄NH₃)₂PbI₄/CH₃NH₃PbI₃ perovskite junction.³⁹ Despite this result, interface engineering of PSCs also affects their stability,^{16,60,61,69,263} since the diffusion of elemental species such as iodine(I) and metal from the electrode materials (*e.g.*, Au²⁴⁴ or Ag²⁶⁴) has been recently correlated with the degradation of interfaces and the decay of the PV properties.²⁶⁵ In this context, the incorporation of graphene flakes into mTiO₂ has been demonstrated to increase the chemical stability of overlying MAPbI₃, which exhibited higher crystalline quality compared to that of MAPbI₃ deposited directly onto $mTiO_2^{69}$ and a freezed tetragonal phase regardless of the temperature.⁶⁹ An active buffer layer based on GRMs improved the charge extraction process compared to that of the ABL-free reference, preventing the degradation induced by the diffusion of Au and I.^{71,104,231,266,267} Although it was not the goal of our work to overcome the intrinsic instability of MAPbI₃, the stability of the devices after encapsulation was measured in ISOS-D-1 shelf life aging test protocol²⁶⁸ (Figure 7). After a 1032 h aging test, the ABL-based PSCs exhibited a decrease of PCE of only 13.5%, 11.2%, and 8.8% for MoS₂ QDs-, f-RGO-, and MoS₂ QDs:f-RGO-based PSCs, respectively. These reduced values are significantly lower than the ones shown by the reference PSC without ABL (24.6%).

The improved stability of the ABL-based PSCs compared to the reference PSC is ascribed to the surface passivation of the perovskite layer provided by the ABLs, which mitigate the I migration from the MAPbI₃ into the spiro-OMeTAD²⁶⁹ and the formation of Au pathways from the metal electrode to the MAPbI₃.²⁷⁰

Figure 7. Normalized PCE trends vs time extracted by I-V characteristics under 1 SUN illumination, periodically acquired during the shelf life test (ISOS-D-1) for the four PSCs.

CONCLUSIONS

In conclusion, solution-processed low-dimensional materials can be designed and combined to improve both efficiency and stability performances of PSCs via interface engineering. These results, coupled with the availability of a wide library of 2D materials, demonstrate that GIE is a powerful tool for boosting the PV performance of PSCs. Moreover, 2D materials can be directly produced from cost-effective and environmentally friendly solution-processed methods⁷⁸ from their bulk counterparts,^{81–84} allowing inks with on-demand (opto)electronic properties to be formulated.^{86–88} Solution-processed 2D materials can be deposited on different substrates using established printing/coating techniques,⁸⁷ in order to be integrated as functional layers (e.g., charge transport layers and ABLs) into the PSC structures.²⁷¹ By a deep exploitation of the potential offered by 2D materials,^{75,199} we "ad-hoc" designed MoS₂ QDs anchored to the functional site of RGO flakes to effectively collect the photogenerated holes (as well as to block electrons) from MAPbI₃ toward the anode contact in mesoscopic architecture, reaching a maximum PCE value of 20.12% (average PCE of 18.8%). The use of 2D materials is also beneficial for the stability increase of mesoscopic, indicating the feasibility toward next-generation PSCs, which exploit both GIE and efficient and stable perovskite chemistries, including mixed cation/halide and 2D perovskites.

EXPERIMENTAL METHODS

Production of Materials. Graphene oxide was synthesized from graphite flakes (Sigma-Aldrich, +100 mesh ≥75% min) using a modified Hummer's method.¹⁸² Briefly, 1 g of graphite and 0.5 g of NaNO₃ (Sigma-Aldrich, reagent grade) were mixed, followed by the dropwise addition of 25 mL of H₂SO₄ (Sigma-Aldrich). After 4 h, 3 g of KMnO₄ (Alpha Aesar, ACS 99%) was added slowly to the above solution, keeping the temperature at 4 °C with the aid of an ice bath. The mixture was let to react at room temperature overnight, and the resulting solution was diluted by adding 2 L of distilled water under vigorous stirring. The sample was filtered and rinsed with H₂O. Finally the sample was dried at 110 °C overnight.

Reduced graphene oxide was produced by thermal reduction of the as-produced GO^{180,181} in a quartz tube (120 cm length and 25 mm inner diameter) passing through a three-zone split furnace (PSC 12/--/600H, Lenton, UK). Experimentally, gas flows were controlled upstream by an array of mass flow controllers (1479A, mks, USA). Under a 100 sccm flow of Ar/H₂ (90/10%), 100 mg of GO was heated to 100 °C for 20 min to remove the presence of water residuals. Subsequently, a ramp of 20 °C min⁻¹ was used to reach

 $1000\ ^\circ C$ and stabilized at this temperature for 2 h. Finally, the oven was left to cool to room temperature.

The RGO was functionalized with MPTS (95%, Sigma-Aldrich) in an ethanol (absolute alcohol, \geq 99.8%, without additive, Sigma-Aldrich) solution by reflux at 60 °C for 15 h.¹⁶⁶ For this reaction 250 μ L of MPTS was added per mg of RGO. After the synthesis, the silane-functionalized RGO material was recovered by centrifugation (9000 rpm) and redispersed in ethanol (EtOH) by vortexing for a second centrifugation (9000 rpm) to remove unreacted silane. A solvent-exchange process^{184,185,95} was carried out to redisperse the f-RGO in IPA at a concentration of 0.4 mg mL⁻¹.

Molybdenum disulfide quantum dots were produced through a one-step solvothermal method starting from MoS₂ flakes, produced by LPE¹⁴⁴ of bulk MoS₂ crystals in IPA followed by SBS.^{172,173} In detail, 30 mg of MoS₂ bulk crystal (Sigma-Aldrich) was added to 50 mL of IPA and then ultrasonicated (Branson 5800 cleaner, Branson Ultrasonics) for 8 h. The resulting dispersion was ultracentrifuged (Optima XE-90 ultracentrifuge, Beckman Coulter) for 15 min at 2700g, in order to separate the unexfoliated MoS₂ crystals (collected as sediment) from the thinner MoS₂ flakes that remain in the supernatant. Then, the sample was refluxed in air under stirring for 24 h at 140 °C. The resulting dispersion was subsequently ultracentrifuged for 30 min at 24600g. Afterward, the supernatant was collected, obtaining the MoS₂ QDs dispersion. By evaporating the solvent, a concentration of 0.2 mg mL⁻¹ was obtained.

The hybrid dispersion between MoS_2 QDs and f-RGO was produced by mixing the as-produced component dispersions in a volume ratio of 1:1 (corresponding to a weight ratio of 1:2). By evaporating the solvent, the concentration was doubled in order to have the same amount of the material compared to the native dispersions.

Characterization of Materials. Transmission electron microscopy images were taken with a JEM 1011 (JEOL) TEM (thermionic W filament), operating at 100 kV. Morphological and statistical analysis was carried out by using ImageJ software (NIH) and OriginPro 9.1 software (OriginLab), respectively. The statistical analysis was performed on 50 flakes from the different TEM images collected. The lateral dimension of each flake was calculated as the maximum Feret's diameter. Samples for the TEM measurements were prepared by drop casting the material dispersions onto ultrathin carbon-coated copper grids rinsed with deionized water and subsequently dried under vacuum overnight.

Atomic force microscopy images were taken using a Nanowizard III (JPK Instruments, Germany) mounted onto an Axio Observer D1 (Carl Zeiss, Germany) inverted optical microscope. The AFM measurements were carried out by using PPP-NCHR cantilevers (Nanosensors, USA) with a nominal tip diameter of 10 nm. A drive frequency of ~295 kHz was used. Intermittent contact mode AFM images (512 × 512 data points) of 2.5 × 2.5 μ m² were collected by keeping the working set point above 70% of the free oscillation amplitude. The scan rate for acquisition of images was 0.7 Hz. Height profiles were processed by using the JPK Data Processing software (JPK Instruments, Germany), and the data were analyzed with OriginPro 9.1 software. Statistical analysis was carried out by means of Origin 9.1 software on multiple AFM images for each sample and calculated on 50 flakes. The samples were prepared by drop-casting the material dispersions onto mica sheets (G250-1, Agar Scientific Ltd., Essex, U.K.) and dried under vacuum.

Optical absorption spectroscopy measurements were carried out on material dispersions by using a Cary Varian 5000 UV-vis spectrometer.

X-ray photoelectron spectroscopy characterization was carried out on a Kratos Axis UltraDLD spectrometer, using a monochromatic Al $K\alpha$ source (15 kV, 20 mA). The spectra were taken on a 300 × 700 μ m² area. Wide scans were collected with a constant pass energy of 160 eV and an energy step of 1 eV. High-resolution spectra were acquired at a constant pass energy of 10 eV and energy step of 0.1 eV. The binding energy scale was referenced to the C 1s peak at 284.8 eV. The spectra were analyzed using the CasaXPS software (version 2.3.17). The samples were prepared by drop-casting the material dispersions onto a $\rm Si/SiO_2$ substrate (LDB Technologies Ltd.) and dried under vacuum.

Fourier-transform infrared spectroscopy was performed in a Bruker Vertex 70v (4000–400 cm⁻¹ range, 100 scans). The samples were prepared by drop casting MPTS, RGO, f-RGO, and MoS₂ QDs:f-RGO films on BaF₂ substrates (IR grade, Crystran, IR open window 4000 to 600 cm⁻¹).

Ultraviolet photoelectron spectroscopy analysis was performed to estimate the Fermi energy level $(E_{\rm F})$ of the materials under investigation with the same equipment used for XPS and adopting a He I (21.22 eV) discharge lamp. The $E_{\rm F}$ was measured from the threshold energy for the emission of secondary electrons during He I excitation. A -9.0 V bias was applied to the sample in order to precisely determine the low kinetic energy cutoff. The samples were prepared by drop casting onto 50 nm Au-sputter-coated silicon wafers.

Fabrication of Solar Cells. The solar cells containing four devices were fabricated on laser-patterned glass/FTO substrates (Pilkington, 8 Ω \Box^{-1}), which were washed for 15 min with acetone, ethanol, and deionized water in an ultrasonic bath, respectively. Furthermore, a compact 40 nm TiO₂ layer (c-TiO₂) was deposited onto the precleaned laser-patterned FTO glass *via* spray pyrolysis (450 °C) from a solution consisting of 0.16 M diisopropoxytitanium bis(acetylacetonate) (Ti(AcAc)₂) and 0.4 M acetyl acetone (AcAc) in ethanol. For the mesoporous TiO₂ (m-TiO₂) layer, anatase TiO₂ nanoparticle paste (30NRD, GreatCell SolarDyesol) was dissolved in ethanol by stirring at a w/w ratio of 1:6. A mesoporous layer was deposited onto c-TiO₂ by spin-coating 140 μ L of paste at 3000 rpm for 15 s and subsequently sintered at 480 °C for 30 min.

Successively, a MAPbI₃ perovskite absorber layer was deposited by a solvent engineering method. Briefly 717.76 mg mL^{-1} of \mbox{PbI}_2 and 247.56 mg mL⁻¹ of CH₃NH₃I were dissolved in DMF/DMSO (8:1, v/v) by stirring for 24 h at room temperature to obtain the perovskitebased solution. A 70 μ L amount of the perovskite solution was spin coated on the mesoporous layer with two-step spinning, first 1000 rpm for 10 s and then 5000 rpm for 45 s. Just 34 s before the end of the second spin-coating step, 0.7 mL of diethyl ether was dropped on the substrates. Subsequently, the perovskite layer was treated with a double-step annealing process, performed at 50 °C for 2 min and then at 100 °C for 10 min. After the heat treatment of the perovskite layer, the 2D materials dispersed in IPA were deposited by automated spray-coating equipment (Aurel) onto the perovskite layer by using N₂ flow (see SI, for the spray parameter settings, Figure S12). A 100 μ L amount of the HTL material solution containing spiro-OMeTAD (73.5 mg.mL⁻¹, Borun sublimed grade >99.8%) in chlorobenzene (Sigma-Aldrich) doped with 26 µL of tert-butylpyridine (TBP, Sigma-Aldrich, 96%), 16.6 µL of lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI, Sigma-Aldrich, 99.95%) of stock solution (520 mg in 1 mL acetonitrile, Sigma-Aldrich), and 7.2 μ L of cobalt(III) complex solution (FK209 from Lumtec) was deposited by spin coating at 2000 rpm for 20 s. Finally, 80 nm of Au counter electrode was deposited by thermal evaporation in high-vacuum conditions (10^{-6} mbar). For the shelf life tests, the device were encapsulated following the protocol previously reported in ref 269.

Characterization of Solar Cells. Scanning electron microscopy analysis of solar cells was performed using a Helios Nanolab 600 DualBeam microscope (FEI Company) and 10 kV and 0.2 nA as measurement conditions. For the EDX spectra acquisition and analysis on the solar cells we used the microscope combined with an X-Max detector and INCA system (Oxford Instruments) and 15 kV and 0.8 nA as measurement conditions. The samples were imaged without any metal coating or pretreatment. To evaluate the layered stack of the solar cell by cross section, the samples were prepared using focused ion beam coupled to the microscope.

Current–voltage characteristics of masked and encapsulated devices were acquired in air atmosphere by using a solar simulator (ABET Sun 2000, class A) at AM1.5 and 100 mW cm⁻² illumination conditions, calibrated with a certified reference Si cell (RERA Solutions RR-1002). Devices were not preconditioned before the I-V measurements. I-V scans were performed by using a scan rate of 20

mV s⁻¹. Incident photon to current conversion efficiency spectra (4) Stranks, S. D acquisition was carried out by means of a homemade setup composed Photovoltaic and Lig

acquisition was carried out by means of a homemade setup composed by a monochromator (Newport, model 74000) coupled with a Xe lamp (Oriel Apex, Newport) and a source meter (Keithley, model 2612). A homemade LabVIEW program controlled the spectra acquisition.

Shelf life test was carried out on encapsulated devices (by following the indications of the ISOS-D-1 shelf life aging test protocol).²⁷² In particular, the devices were kept in dark, dry conditions (relative humidity <50%) and at open circuit.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b05514.

Supplementary TEM, AFM measurements of MoS₂ and RGO flakes; gravitational sedimentation study of the RGO and f-RGO dispersion in EtOH; PL measurement of MoS₂ QDs; supplementary Tauc analysis of MoS₂ QDs; SEM/EDX measurements of the MAPbI₃/MoS₂ QDs:f-RGO; optical absorption spectroscopy measurements of PSCs; stabilized PCE measurements; spray coating parameter optimization for MoS₂ QDs, f-RGO, and MoS₂ QDs:f-RGO film deposition (PDF)

AUTHOR INFORMATION

Corresponding Authors

*Tel: +39 0672597456. E-mail: aldo.dicarlo@uniroma2.it.

*Tel: +39 01071781795. E-mail: francesco.bonaccorso@iit.it. ORCID [©]

Reinier Oropesa-Nuñez: 0000-0002-9551-6565 Mirko Prato: 0000-0002-2188-8059 Antonio E. Del Rio Castillo: 0000-0001-9678-1187

Antonio E. Del Rio Castillo: 0000-0001-96/8-118/

Aldo Di Carlo: 0000-0001-6828-2380 Francesco Bonaccorso: 0000-0001-7238-9420

Author Contributions

[#]L. Najafi and B. Taheri contributed equally.

Funding

This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no.785219-GrapheneCore2.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Electron Microscopy Facility–Istituto Italiano di Tecnologia for support in TEM data acquisition and IIT Clean Room Facility and Smart Materials Group for the access to carry out SEM/EDS measurements and FTIR characterization, respectively. A.D.C. gratefully acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Megagrant No. 14.Y26.31.0027.

REFERENCES

(1) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The Emergence of Perovskite Solar Cells. *Nat. Photonics* **2014**, *8*, 506.

(2) Park, N.-G. Perovskite Solar Cells: An Emerging Photovoltaic Technology. *Mater. Today* **2015**, *18*, 65–72.

(3) Grätzel, M. The Light and Shade of Perovskite Solar Cells. *Nat. Mater.* **2014**, *13*, 838.

(4) Stranks, S. D.; Snaith, H. J. Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. *Nat. Nanotechnol.* **2015**, *10*, 391.

(5) Green, M. The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution. *Prog. Photovoltaics* **2009**, *17*, 183–189.

(6) Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N.; Yamanishi, T. Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell. *IEEE J. Photovolt.* **2014**, *4*, 1433–1435.

(7) Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K. Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. *Nat. Energy* **2017**, *2*, 17032.

(8) Lee, T. D.; Ebong, A. U. A Review of Thin Film Solar Cell Technologies and Challenges. *Renewable Sustainable Energy Rev.* 2017, 70, 1286–1297.

(9) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic Technology: The Case for Thin-Film Solar Cells. *Science* **1999**, *285*, 692–698.

(10) (NREL), T. N. C. for P. (NCPV) at the N. R. E. L. Best Research-Cell Efficienciey available from: https://www.nrel.gov/pv/ assets/pdfs/pv-efficiencies-07-17-2018.pdf (accessed on 05/09/ 2018).

(11) Green, M. A.; Ho-Baillie, A. Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. *ACS Energy Lett.* **2017**, *2*, 822–830.

(12) Chuantian, Z.; Bolink, H.; Hongwei, H.; Jinsong, H.; David, C.; Liming, D. Advances in Perovskite Solar Cells. *Adv. Sci.* 2016, *3*, 1500324.

(13) Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.

(14) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. Il. Solvent Engineering for High-Performance Inorganic–organic Hybrid Perovskite Solar Cells. *Nat. Mater.* **2014**, *13*, 897.

(15) Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H. L. High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. *Science* **2015**, *347*, 522–525.

(16) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. *Science* **2015**, *350*, 944–948.

(17) Li, X.; Bi, D.; Yi, C.; Decoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Gratzel, M. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells. *Science* **2016**, 353, 58–62.

(18) Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. A Large Area (70 cm2) Monolithic Perovskite Solar Module with a High Efficiency and Stability. *Energy Environ. Sci.* **2016**, *9*, 3687–3692.

(19) Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D.-Y.; Vak, D. Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells. *Adv. Mater.* **2015**, *27*, 1241–1247.

(20) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. *Science* **2012**, *338*, 643– 647.

(21) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. **2009**, 131, 6050–6051.

(22) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. *Nanoscale* **2011**, *3*, 4088–4093.

(23) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il. High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234–1237.

(24) Ansari, M. I. H.; Qurashi, A.; Nazeeruddin, M. K. Frontiers, Opportunities, and Challenges in Perovskite Solar Cells: A Critical Review. J. Photochem. Photobiol., C 2018, 35, 1–24.

(25) Ono, L. K.; Juarez-Perez, E. J.; Qi, Y. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9, 30197–30246.

(26) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Iodide Management in Formamidinium-Lead-Halide-based Perovskite Layers for Efficient Solar Cells. *Science* **2017**, *356*, 1376–1379.

(27) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells. *Science* **2014**, *345*, 542–546.

(28) Yang, G.; Chen, C.; Yao, F.; Chen, Z.; Zhang, Q.; Zheng, X.; Ma, J.; Lei, H.; Qin, P.; Xiong, L.; Ke, W. Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells. *Adv. Mater.* **2018**, *30*, 1706023.

(29) Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; Yang, D. Enhanced Electronic Properties of SnO2 *via* Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. *ACS Nano* **2017**, *11*, 9176–9182.

(30) Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J. Is Cu a Stable Electrode Material in Hybrid Perovskite Solar Cells for a 30-Year Lifetime? *Energy Environ. Sci.* **2016**, *9*, 3650–3656.

(31) Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I. Colloidally Prepared La-Doped BaSnO3 Electrodes for Efficient, Photostable Perovskite Solar Cells. *Science* **2017**, 356, 167–171.

(32) Jun-Yuan, J.; Yi-Fang, C.; Mu-Huan, L.; Shin-Rung, P.; Tzung-Fang, G.; Peter, C.; Ten-Chin, W. CH3NH3PbI3 Perovskite/ Fullerene Planar-Heterojunction Hybrid Solar Cells. *Adv. Mater.* **2013**, *25*, 3727–3732.

(33) Kim, H.-S.; Park, N.-G. Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. *J. Phys. Chem. Lett.* **2014**, *5*, 2927–2934.

(34) Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. *J. Phys. Chem. Lett.* **2013**, *4*, 1532–1536.

(35) Zhao, P.; Kim, B. J.; Jung, H. S. Passivation in Perovskite Solar Cells: A Review. *Mater. Today Energy* **2018**, *7*, 267–286.

(36) Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. *Nat. Commun.* **2014**, *5*, 5784.

(37) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. *Science* **2013**, 342, 344–347.

(38) Yang, G.; Wang, C.; Lei, H.; Zheng, X.; Qin, P.; Xiong, L.; Zhao, X.; Yan, Y.; Fang, G. Interface Engineering in Planar Perovskite Solar Cells: Energy Level Alignment, Perovskite Morphology Control and High Performance Achievement. *J. Mater. Chem. A* 2017, *5*, 1658–1666.

(39) Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K. One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering. *Nat. Commun.* **2017**, *8*, 15684.

(40) Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite Solar Cells Employing Organic Charge-Transport Layers. *Nat. Photonics* **2014**, *8*, 128. (41) Grill, I.; Aygüler, M. F.; Bein, T.; Docampo, P.; Hartmann, N. F.; Handloser, M.; Hartschuh, A. Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. *ACS Appl. Mater. Interfaces* **2017**, *9*, 37655–37661.

(42) Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. *J. Phys. Chem. Lett.* **2014**, *5*, 1511–1515.

(43) Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumuller, T.; Christoforo, M. G.; McGehee, M. D. Hysteresis and Transient Behavior in Current-Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells. *Energy Environ. Sci.* **2014**, *7*, 3690–3698.

(44) Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-Less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency. *Energy Environ. Sci.* 2015, *8*, 1602–1608.

(45) Pascoe, A. R.; Yang, M.; Kopidakis, N.; Zhu, K.; Reese, M. O.; Rumbles, G.; Fekete, M.; Duffy, N. W.; Cheng, Y.-B. Planar versus Mesoscopic Perovskite Microstructures: The Influence of CH3NH3PbI3Morphology on Charge Transport and Recombination Dynamics. *Nano Energy* **2016**, *22*, 439–452.

(46) Yang, B.; Xiangyue, M.; Shihe, Y. Interface Engineering for Highly Efficient and Stable Planar P-I-N Perovskite Solar Cells. *Adv. Energy Mater.* **2018**, *8*, 1701883.

(47) Schulz, P.; Edri, E.; Kirmayer, S.; Hodes, G.; Cahen, D.; Kahn, A. Interface Energetics in Organo-Metal Halide Perovskite-Based Photovoltaic Cells. *Energy Environ. Sci.* **2014**, *7*, 1377–1381.

(48) Sum, T. C.; Chen, S.; Xing, G.; Liu, X.; Wu, B. Energetics and Dynamics in Organic–inorganic Halide Perovskite Photovoltaics and Light Emitters. *Nanotechnology* **2015**, *26*, 342001.

(49) Azhar, F.; Lukas, S.-M.; Germà, G.-B.; Rajan, J.; Ivan, M.-S. Interfaces in Perovskite Solar Cells. *Adv. Energy Mater.* **2017**, 7 (22), 1700623.

(50) Schulz, P. Interface Design for Metal Halide Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1287–1293.

(51) Sherkar, T. S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H. J.; Koster, L. J. A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. *ACS Energy Lett.* **2017**, *2*, 1214–1222.

(52) Pantaler, M.; Cho, K. T.; Queloz, V. I. E.; García Benito, I.; Fettkenhauer, C.; Anusca, I.; Nazeeruddin, M. K.; Lupascu, D. C.; Grancini, G. Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. *ACS Energy Lett.* **2018**, *3*, 1781–1786.

(53) Peng, J.; Wu, Y.; Ye, W.; Jacobs, D. A.; Shen, H.; Fu, X.; Wan, Y.; Duong, T.; Wu, N.; Barugkin, C.; Nguyen, H. T.; Zhong, D. Interface Passivation Using Ultrathin Polymer–fullerene Films for High-Efficiency Perovskite Solar Cells with Negligible Hysteresis. *Energy Environ. Sci.* **2017**, *10*, 1792–1800.

(54) Lira-Cantú, M. Perovskite Solar Cells: Stability Lies at Interfaces. Nat. Energy 2017, 2, 17115.

(55) Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M. Tailored Interfaces of Unencapsulated Perovskite Solar Cells for > 1,000 h Operational Stability. *Nat. Energy* **2018**, *3*, 68–74. (56) Sha, W. E. I.; Ren, X.; Chen, L.; Choy, W. C. H. The Efficiency Limit of CH3NH3PbI3 Perovskite Solar Cells. *Appl. Phys. Lett.* **2015**, *106*, 221104.

(57) Baloch, A. A. B.; Hossain, M. I.; Tabet, N.; Alharbi, F. H. Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH3NH3PbI3) Solar Cells. *J. Phys. Chem. Lett.* **2018**, *9*, 426–434.

(58) Pazos-Outón, L. M.; Xiao, T. P.; Yablonovitch, E. Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells. *J. Phys. Chem. Lett.* **2018**, *9*, 1703–1711.

(59) Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F.; Di Carlo, A. Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy Lett. 2017, 2, 279–287.

(60) Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A. E.; Cina, L.; Bonaccorso, F.; Di Carlo, A. Graphene–Perovskite Solar Cells Exceed 18% Efficiency: A Stability Study. *ChemSusChem* **2016**, *9*, 2609–2619.

(61) Kakavelakis, G.; Maksudov, T.; Konios, D.; Kioseoglou, G.; Stratakis, E.; Kymakis, E. Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer. *Adv. Energy Mater.* **2017**, *7*, 1602120.

(62) Agresti, A.; Pescetelli, S.; Cina, L.; Dimitrios, K.; Kakavelakis, G.; Kymakis, E.; Di Carlo, A. Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer. *Adv. Funct. Mater.* **2016**, *26*, 2686–2694.

(63) Cho, K. T.; Grancini, G.; Lee, Y.; Konios, D.; Paek, S.; Kymakis, E.; Nazeeruddin, M. K. T. Beneficial Role of Reduced Graphene Oxide for Electron Extraction in Highly Efficient Perovskite Solar Cells. *ChemSusChem* **2016**, *9*, 3040–3044.

(64) Capasso, A.; Matteocci, F.; Najafi, L.; Prato, M.; Buha, J.; Cinà, L.; Pellegrini, V.; Di Carlo, A.; Bonaccorso, F. Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. *Adv. Energy Mater.* **2016**, *6*, 1600920.

(65) Shan, C.; Gaoquan, S. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices. *Adv. Mater.* 2017, *29*, 1605448.

(66) Van Le, Q.; Choi, J.-Y.; Kim, S. Y. Recent Advances in the Application of Two-Dimensional Materials as Charge Transport Layers in Organic and Perovskite Solar Cells. *FlatChem.* **2017**, *2*, 54–66.

(67) Chen, W.; Li, K.; Wang, Y.; Feng, X.; Liao, Z.; Su, Q.; Lin, X.; He, Z. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. *J. Phys. Chem. Lett.* **2017**, *8*, 591–598.

(68) Muduli, S. K.; Varrla, E.; Kulkarni, S. A.; Han, G.; Thirumal, K.; Lev, O.; Mhaisalkar, S.; Mathews, N. 2D Black Phosphorous Nanosheets as a Hole Transporting Material in Perovskite Solar Cells. J. Power Sources **2017**, 371, 156–161.

(69) Biccari, F.; Gabelloni, F.; Burzi, E.; Gurioli, M.; Pescetelli, S.; Agresti, A.; Del Rio Castillo, A. E.; Ansaldo, A.; Kymakis, E.; Bonaccorso, F.; Di Carlo, A. Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection. *Adv. Energy Mater.* **2017**, *7*, 1701349.

(70) Ruina, D.; Yangyang, W.; Jie, W.; Xianyu, D. Metal–Organic-Compound-Modified MoS2 with Enhanced Solubility for High-Performance Perovskite Solar Cells. *ChemSusChem* **2017**, *10*, 2869–2874.

(71) Kakvelakis, G.; Paradisanos, I.; Paci, B.; Generosi, A.; Papachatzakis, M.; Maksukov, T.; Najafi, L.; Del Rio Castillo, A. E.; Kioseoglou, G.; Stratakis, E.; Bonaccorso, F.; Kymakis, E. Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer. *Adv. Energy Mater.* **2018**, *8*, 1702287.

(72) Dasgupta, U.; Chatterjee, S.; Pal, A. J. Thin-Film Formation of 2D MoS2 and Its Application as a Hole-Transport Layer in Planar Perovskite Solar Cells. *Sol. Energy Mater. Sol. Cells* **2017**, *172*, 353–360.

(73) Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical Functionalization of Graphene and Its Applications. *Prog. Mater. Sci.* **2012**, *57*, 1061–1105.

(74) Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A.; et al. Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems. *Nanoscale* **2015**, *7*, 4598– 4810. (75) Xiaodong, Z.; Yiyong, M.; Dongqing, W.; Fan, Z.; Xinliang, F. Two-Dimensional Soft Nanomaterials: A Fascinating World of

Materials. Adv. Mater. 2015, 27, 403–427. (76) Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; Terrones, H. Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications. Nano Today 2010, 5, 351–372.

(77) Jia, X.; Campos-Delgado, J.; Terrones, M.; Meunier, V.; Dresselhaus, M. S. Graphene Edges: A Review of Their Fabrication and Characterization. *Nanoscale* **2011**, *3*, 86–95.

(78) Samori, P.; Palermo, V.; Feng, X. Chemical Approaches to 2D Materials. *Adv. Mater.* **2016**, *28*, 6027–6029.

(79) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. *Chem. Rev.* **2012**, *112*, 6156–6214.

(80) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. *Nat. Chem.* **2013**, *5*, 263.

(81) Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid Exfoliation of Layered Materials. *Science* **2013**, *340*, 1226419.

(82) Ciesielski, A.; Samori, P. Graphene via Sonication Assisted Liquid-Phase Exfoliation. *Chem. Soc. Rev.* **2014**, *43*, 381–398.

(83) Parvez, K.; Yang, S.; Feng, X.; Müllen, K. Exfoliation of Graphene *via* Wet Chemical Routes. *Synth. Met.* **2015**, *210*, 123–132.

(84) Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and Processing of Graphene and 2d Crystals. *Mater. Today* **2012**, *15*, 564–589.

(85) Del Rio Castillo, A. E.; Pellegrini, V.; Ansaldo, A.; Ricciardella, F.; Sun, H.; Marasco, L.; Buha, J.; Dang, Z.; Gagliani, L.; Lago, E.; Bonaccorso, F. High-Yield Production of 2D Crystals by Wet-Jet Milling. *Mater. Horiz.* **2018**, *5*, 890–904.

(86) Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-Crystal-Based Functional Inks. *Adv. Mater.* **2016**, *28*, 6136–6166.

(87) Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-Throughput Solution Processing of Large-Scale Graphene. *Nat. Nanotechnol.* **2009**, *4*, 25.

(88) Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. *Nat. Nanotechnol.* **2008**, *3*, 101.

(89) Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; Chu, D. Inkjet-Printed Graphene Electronics. *ACS Nano* **2012**, *6*, 2992–3006.

(90) Secor, E. B.; Lim, S.; Zhang, H.; Frisbie, C. D.; Francis, L. F.; Hersam, M. C. Gravure Printing of Graphene for Large-Area Flexible Electronics. *Adv. Mater.* **2014**, *26*, 4533–4538.

(91) You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. *ACS Nano* **2014**, *8*, 1674–1680.

(92) Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; Fan, F. Efficient and Stable Solution-Processed Planar Perovskite Solar Cells *via* Contact Passivation. *Science* **2017**, *355*, 722–726.

(93) Chueh, C.-C.; Li, C.-Z.; Jen, A. K.-Y. Recent Progress and Perspective in Solution-Processed Interfacial Materials for Efficient and Stable Polymer and Organometal Perovskite Solar Cells. *Energy Environ. Sci.* **2015**, *8*, 1160–1189.

(94) Singh, E.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. *ACS Appl. Mater. Interfaces* **201**7, *9*, 3223–3245.

(95) Bellani, S.; Najafi, L.; Capasso, A.; Del Rio Castillo, A. E.; Antognazza, M. R.; Bonaccorso, F. Few-Layer MoS2 Flakes as a Hole-Selective Layer for Solution-Processed Hybrid Organic Hydrogen-Evolving Photocathodes. J. Mater. Chem. A 2017, 5, 4384–4396. (96) Capasso, A.; Del Rio Castillo, A. E.; Najafi, L.; Pellegrini, V.; Bonaccorso, F.; Matteocci, F.; Cinà, L.; Di Carlo, A. Spray Deposition of Exfoliated MoS2 Flakes as Hole Transport Layer in Perovskite-Based Photovoltaics. In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO); 2015; pp 1138–1141.

(97) Kohnehpoushi, S.; Nazari, P.; Nejand, B. A.; Eskandari, M. MoS 2 : A Two-Dimensional Hole-Transporting Material for High-Efficiency, Low-Cost Perovskite Solar Cells. *Nanotechnology* **2018**, *29*, 205201.

(98) Xing, G.; Wei, C.; Hai, L.; Zhongwei, W.; Zhiyuan, Z.; Shuit-Tong, L.; Hua, Z.; Baoquan, S. A Solution-Processed Hole Extraction Layer Made from Ultrathin MoS2 Nanosheets for Efficient Organic Solar Cells. *Adv. Energy Mater.* **2013**, *3*, 1262–1268.

(99) Xing, W.; Chen, Y.; Wang, X.; Lv, L.; Ouyang, X.; Ge, Z.; Huang, H. MoS2 Quantum Dots with a Tunable Work Function for High-Performance Organic Solar Cells. *ACS Appl. Mater. Interfaces* **2016**, *8*, 26916–26923.

(100) Wu, Z.; Bai, S.; Xiang, J.; Yuan, Z.; Yang, Y.; Cui, W.; Gao, X.; Liu, Z.; Jin, Y.; Sun, B. Efficient Planar Heterojunction Perovskite Solar Cells Employing Graphene Oxide as Hole Conductor. *Nanoscale* **2014**, *6*, 10505–10510.

(101) Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X.; Wang, Z.; Wang, J.; Xu, J.; Yang, S. High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. *Small* **2015**, *11*, 2269–2274.

(102) Palma, A. L.; Cinà, L.; Pescetelli, S.; Agresti, A.; Raggio, M.; Paolesse, R.; Bonaccorso, F.; Di Carlo, A. Reduced Graphene Oxide as Efficient and Stable Hole Transporting Material in Mesoscopic Perovskite Solar Cells. *Nano Energy* **2016**, *22*, 349–360.

(103) Yeo, J.-S.; Kang, R.; Lee, S.; Jeon, Y.-J.; Myoung, N.; Lee, C.-L.; Kim, D.-Y.; Yun, J.-M.; Seo, Y.-H.; Kim, S.-S.; Na, S. I. Highly Efficient and Stable Planar Perovskite Solar Cells with Reduced Graphene Oxide Nanosheets as Electrode Interlayer. *Nano Energy* **2015**, *12*, 96–104.

(104) Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.; Grätzel, M. Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. *Science* **2017**, *358*, 768–771.

(105) Nouri, E.; Wang, Y.-L.; Chen, Q.; Xu, J.-J.; Paterakis, G.; Dracopoulos, V.; Xu, Z.-X.; Tasis, D.; Mohammadi, M. R.; Lianos, P. Introduction of Graphene Oxide as Buffer Layer in Perovskite Solar Cells and the Promotion of Soluble N-Butyl-Substituted Copper Phthalocyanine as Efficient Hole Transporting Material. *Electrochim. Acta* 2017, 233, 36–43.

(106) Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H.; Roh, Y. G. Large Work Function Modulation of Monolayer MoS2 by Ambient Gases. *ACS Nano* **2016**, *10*, 6100–6107.

(107) Zhou, P.; Song, X.; Yan, X.; Liu, C.; Chen, L.; Sun, Q.; Zhang, D. W. Controlling the Work Function of Molybdenum Disulfide by *in Situ* Metal Deposition. *Nanotechnology* **2016**, *27*, 344002.

(108) Baik, S. S.; Im, S.; Choi, H. J. Work Function Tuning in Two-Dimensional MoS2 Field-Effect-Transistors with Graphene and Titanium Source-Drain Contacts. *Sci. Rep.* **2017**, *7*, 45546.

(109) Kim, J. H.; Lee, J.; Kim, J. H.; Hwang, C. C.; Lee, C.; Park, J. Y. Work Function Variation of MoS2 Atomic Layers Grown with Chemical Vapor Deposition: The Effects of Thickness and the Adsorption of Water/oxygen Molecules. *Appl. Phys. Lett.* **2015**, *106*, 251606.

(110) Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L.-J.; Kong, J. Work Function Engineering of Graphene Electrode *via* Chemical Doping. *ACS Nano* **2010**, *4*, 2689–2694.

(111) Chang, K. K.; Soon, C. K.; Young, K. S. Increased Work Function in Few-Layer Graphene Sheets *via* Metal Chloride Doping. *Adv. Funct. Mater.* **2012**, *22*, 4724–4731.

(112) Garg, R.; Dutta, K. N.; Choudhury, R. N. Work Function Engineering of Graphene. *Nanomaterials* **2014**, *4*, 267.

(114) Harwell, J. R.; Baikie, T. K.; Baikie, I. D.; Payne, J. L.; Ni, C.; Irvine, J. T. S.; Turnbull, G. A.; Samuel, I. D. W. Probing the Energy Levels of Perovskite Solar Cells *via* Kelvin Probe and UV Ambient Pressure Photoemission Spectroscopy. *Phys. Chem. Chem. Phys.* **2016**, *18*, 19738–19745.

(115) Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; McGehee, M. D. Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells. *J. Am. Chem. Soc.* **2014**, *136*, 10996–11001.

(116) Saygili, Y.; Turren-Cruz, S. H.; Olthof, S.; Saes, B. W. H.; Pehlivan, I. B.; Saliba, M.; Meerholz, K.; Edvinsson, T.; Zakeeruddin, S. M.; Grätzel, M.; Correa-Baena, J. P. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant. *ChemPhysChem* **2018**, *19*, 1363–1370.

(117) Schölin, R.; Karlsson, M. H.; Eriksson, S. K.; Siegbahn, H.; Johansson, E. M. J.; Rensmo, H. Energy Level Shifts in Spiro-OMeTAD Molecular Thin Films When Adding Li-TFSI. *J. Phys. Chem. C* 2012, *116*, 26300–26305.

(118) Nardes, A. M.; Kemerink, M.; de Kok, M. M.; Vinken, E.; Maturova, K.; Janssen, R. A. J. Conductivity, Work Function, and Environmental Stability of PEDOT:PSS Thin Films Treated with Sorbitol. *Org. Electron.* **2008**, *9*, 727–734.

(119) Huang, J.; Miller, P. F.; Wilson, J. S.; de Mello, A. J.; de Mello, J. C.; Bradley, D. D. C. Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene Sulfonate) Films. *Adv. Funct. Mater.* **2005**, *15*, 290–296.

(120) Hwang, J.; Amy, F.; Kahn, A. Spectroscopic Study on Sputtered PEDOT-PSS: Role of Surface PSS Layer. *Org. Electron.* 2006, 7, 387–396.

(121) Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Built-in Field Electroabsorption Spectroscopy of Polymer Light-Emitting Diodes Incorporating a Doped poly(3,4-Ethylene Dioxythiophene) Hole Injection Layer. *Appl. Phys. Lett.* **1999**, *75*, 1679–1681.

(122) Jun, L.; Yuhua, X.; Yunxiang, G.; Dingshan, Y.; Michael, D.; Liming, D. Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells. *Adv. Mater.* **2012**, *24*, 2228–2233.

(123) Lin, Y.; Li, X.; Xie, D.; Feng, T.; Chen, Y.; Song, R.; Tian, H.; Ren, T.; Zhong, M.; Wang, K.; Zhu, H. Graphene/semiconductor Heterojunction Solar Cells with Modulated Antireflection and Graphene Work Function. *Energy Environ. Sci.* **2013**, *6*, 108–115.

(124) Huang, H.; Li, Z.; She, J.; Wang, W. Oxygen Density Dependent Band Gap of Reduced Graphene Oxide. *J. Appl. Phys.* **2012**, *111*, 54317.

(125) Shen, Y.; Yang, S.; Zhou, P.; Sun, Q.; Wang, P.; Wan, L.; Li, J.; Chen, L.; Wang, X.; Ding, S.; Zhang, D. W. Evolution of the Band-Gap and Optical Properties of Graphene Oxide with Controllable Reduction Level. *Carbon* **2013**, *62*, 157–164.

(126) Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The Indirect to Direct Band Gap Transition in Multilayered MoS2 as Predicted by Screened Hybrid Density Functional Theory. *Appl. Phys. Lett.* **2011**, *99*, 261908.

(127) Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and Strain Effects on Electronic Structures of Transition Metal Dichalcogenides: 2H-MX2 Semiconductors (M = Mo, W; X = S, Se, Te). *Phys. Rev. B: Condens. Matter Mater. Phys.* **2012**, *85*, 033305.

(128) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. *Phys. Rev. Lett.* **2010**, *105*, 136805.

(129) Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J.-S.; Baik, J.; Shin, H. J.; Hong, S. C. Band-

Gap Transition Induced by Interlayer van Der Waals Interaction in MoS2. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2011**, *84*, 045409.

(130) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. *Nat. Nanotechnol.* **2012**, *7*, 699.

(131) Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band Offsets and Heterostructures of Two-Dimensional Semiconductors. *Appl. Phys. Lett.* **2013**, *102*, 12111.

(132) Wu, M.; Yao, X.; Hao, Y.; Dong, H.; Cheng, Y.; Liu, H.; Lu, F.; Wang, W.; Cho, K.; Wang, W.-H. Electronic Structures, Magnetic Properties and Band Alignments of 3d Transition Metal Atoms Doped Monolayer MoS2. *Phys. Lett. A* **2018**, *382*, 111–115.

(133) Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. *J. Phys. Chem. C* 2015, 119, 13169–13183.

(134) Qiu, J.; Qiu, Y.; Yan, K.; Zhong, M.; Mu, C.; Yan, H.; Yang, S. All-Solid-State Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays. *Nanoscale* **2013**, *5*, 3245–3248.

(135) Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent Progress in Electron Transport Layers for Efficient Perovskite Solar Cells. *J. Mater. Chem. A* **2016**, *4*, 3970–3990.

(136) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. *Sci. Rep.* **2012**, *2*, 591.

(137) Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. J. Am. Chem. Soc. 2014, 136, 8094–8099.

(138) Olthof, S. Research Update: The Electronic Structure of Hybrid Perovskite Layers and Their Energetic Alignment in Devices. *APL Mater.* **2016**, *4*, 91502.

(139) Schulz, P.; Whittaker-Brooks, L.; MacLeod, B.; Olson, D.; Yueh-Lin, L.; Antoine, K. Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells. *Adv. Mater. Interfaces* **2015**, *2*, 1400532.

(140) Ratcliff, E. L.; Garcia, A.; Paniagua, S. A.; Cowan, S. R.; Giordano, A. J.; Ginley, D. S.; Marder, S. R.; Berry, J. J.; Olson, D. C. Investigating the Influence of Interfacial Contact Properties on Open Circuit Voltages in Organic Photovoltaic Performance: Work Function Versus Selectivity. Adv. Energy Mater. 2013, 3, 647–656.

(141) Steim, R.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. Interface Modification for Highly Efficient Organic Photovoltaics. *Appl. Phys. Lett.* **2008**, *92*, 93303.

(142) Zhong, H.; Quhe, R.; Wang, Y.; Ni, Z.; Ye, M.; Song, Z.; Pan, Y.; Yang, J.; Yang, L.; Lei, M.; Shi, J. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations. *Sci. Rep.* **2016**, *6*, 21786.

(143) Yun, J.-M.; Noh, Y.-J.; Yeo, J.-S.; Go, Y.-J.; Na, S.-I.; Jeong, H.-G.; Kim, J.; Lee, S.; Kim, S.-S.; Koo, H. Y.; Kim, T. W. Efficient Work-Function Engineering of Solution-Processed MoS2 Thin-Films for Novel Hole and Electron Transport Layers Leading to High-Performance Polymer Solar Cells. *J. Mater. Chem. C* 2013, *1*, 3777–3783.

(144) Najafi, L.; Bellani, S.; Martín-García, B.; Oropesa-Nuñez, R.; Del Rio Castillo, A. E.; Prato, M.; Moreels, I.; Bonaccorso, F. Solution-Processed Hybrid Graphene Flake/2H-MoS2 Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. *Chem. Mater.* **2017**, *29*, 5782–5786.

(145) Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. *Adv. Mater.* **2011**, *23*, 2226–2230.

(146) Fumagalli, F.; Bellani, S.; Schreier, M.; Leonardi, S.; Rojas, H. C.; Ghadirzadeh, A.; Tullii, G.; Savoini, A.; Marra, G.; Meda, L.; Grätzel, M.; Lanzani, G.; Mayer, M. T.; Antognazza, M. R.; Di Fonzo, F. Hybrid Organic-inorganic H2-Evolving Photocathodes: Understanding the Route towards High Performance Organic Photoelectrochemical Water Splitting. J. Mater. Chem. A 2016, 4, 2178– 2187.

(147) Chen, L.-M.; Xu, Z.; Hong, Z.; Yang, Y. Interface Investigation and Engineering – Achieving High Performance Polymer Photovoltaic Devices. J. Mater. Chem. 2010, 20, 2575.

(148) Lu, C.-P.; Li, G.; Mao, J.; Wang, L.-M.; Andrei, E. Y. Bandgap, Mid-Gap States, and Gating Effects in MoS2. *Nano Lett.* **2014**, *14*, 4628–4633.

(149) Fivaz, R.; Mooser, E. Mobility of Charge Carriers in Semiconducting Layer Structures. *Phys. Rev.* **1967**, *163*, 743–755.

(150) El-Mahalawy, S.; Evans, B. Temperature Dependence of the Electrical Conductivity and Hall Coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. *Phys. Status Solidi B* **2018**, *79*, 713–722.

(151) Dolui, K.; Rungger, I.; Sanvito, S. Origin of the N-Type and P-Type Conductivity of MoS2Monolayers on a SiO2 Substrate. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2013**, *87*, 165402.

(152) Yuan, S.; Roldán, R.; Katsnelson, M. I.; Guinea, F. Effect of Point Defects on the Optical and Transport Properties of MoS2 and WS2. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2014**, *90*, 041402.

(153) Vancsó, P.; Magda, G. Z.; Pető, J.; Noh, J.-Y.; Kim, Y.-S.; Hwang, C.; Biró, L. P.; Tapasztó, L. The Intrinsic Defect Structure of Exfoliated MoS2 Single Layers Revealed by Scanning Tunneling Microscopy. *Sci. Rep.* **2016**, *6*, 29726.

(154) Cho, K.; Min, M.; Kim, T.-Y.; Jeong, H.; Pak, J.; Kim, J.-K.; Jang, J.; Yun, S. J.; Lee, Y. H.; Hong, W.-K.; Lee, T. Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. *ACS Nano* **2015**, *9*, 8044–8053.

(155) Liu, D.; Guo, Y.; Fang, L.; Robertson, J. Sulfur Vacancies in Monolayer MoS2 and Its Electrical Contacts. *Appl. Phys. Lett.* **2013**, *103*, 183113.

(156) Le, D.; Rawal, T. B.; Rahman, T. S. Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application. *J. Phys. Chem. C* **2014**, *118*, 5346–5351.

(157) Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; Long, G. Hopping Transport through Defect-Induced Localized States in Molybdenum Disulphide. *Nat. Commun.* **2013**, *4*, 2642.

(158) Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M.; Nicotra, G. Novel near-Infrared Emission from Crystal Defects in MoS2Multilayer Flakes. *Nat. Commun.* **2016**, *7*, 13044.

(159) Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74–80.

(160) Yung-Chang, L.; O, D. D.; Hannu-Pekka, K.; Yoshiko, N.; V, K. A.; Ying-Sheng, H.; Kazu, S. Properties of Individual Dopant Atoms in Single-Layer MoS2: Atomic Structure, Migration, and Enhanced Reactivity. *Adv. Mater.* **2014**, *26*, 2857–2861.

(161) Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. *Nano Lett.* **2013**, *13*, 4212–4216.

(162) McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-Dominated Doping and Contact Resistance in MoS2. *ACS Nano* **2014**, *8*, 2880–2888.

(163) Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. *Nano Lett.* **2013**, *13*, 2615–2622.

(164) Santosh, K. C.; Longo, R. C; Addou, R.; Wallace, R. M; Cho, K. Impact of Intrinsic Atomic Defects on the Electronic Structure of MoS 2 Monolayers. *Nanotechnology* **2014**, *25*, 375703.

(165) Zhao, Y.; Nardes, A. M.; Zhu, K. Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. *J. Phys. Chem. Lett.* **2014**, *5*, 490–494. (166) Martín-García, B.; Polovitsyn, A.; Prato, M.; Moreels, I. Efficient Charge Transfer in Solution-Processed PbS Quantum Dotreduced Graphene Oxide Hybrid Materials. J. Mater. Chem. C 2015, 3, 7088–7095.

(167) Hou, S.; Su, S.; Kasner, M. L.; Shah, P.; Patel, K.; Madarang, C. J. Formation of Highly Stable Dispersions of Silane-Functionalized Reduced Graphene Oxide. *Chem. Phys. Lett.* **2010**, *501*, 68–74.

(168) Yao, H.; Jin, L.; Sue, H.-J.; Sumi, Y.; Nishimura, R. Facile Decoration of Au Nanoparticles on Reduced Graphene Oxide Surfaces *via* a One-Step Chemical Functionalization Approach. *J. Mater. Chem. A* **2013**, *1*, 10783.

(169) Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R. Functionalization of Two-Dimensional MoS_2 : On the Reaction Between MoS_2 and Organic Thiols. *Angew. Chem., Int. Ed.* **2016**, *55*, 5803–5808.

(170) Förster, A.; Gemming, S.; Seifert, G.; Tománek, D. Chemical and Electronic Repair Mechanism of Defects in MoS2Monolayers. *ACS Nano* **2017**, *11*, 9989–9996.

(171) Ding, Q.; Czech, K. J.; Zhao, Y.; Zhai, J.; Hamers, R. J.; Wright, J. C.; Jin, S. Basal-Plane Ligand Functionalization on Semiconducting 2H-MoS2Monolayers. ACS Appl. Mater. Interfaces 2017, 9, 12734–12742.

(172) Green, A. A.; Hersam, M. C. Solution Phase Production of Graphene with Controlled Thickness *via* Density Differentiation. *Nano Lett.* **2009**, *9*, 4031–4036.

(173) Sun, X.; Luo, D.; Liu, J.; Evans, D. G. Monodisperse Chemically Modified Graphene Obtained by Density Gradient Ultracentrifugal Rate Separation. *ACS Nano* **2010**, *4*, 3381–3389.

(174) Björkman, T.; Gulans, A.; Krasheninnikov, A. V.; Nieminen, R. M. Van Der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. *Phys. Rev. Lett.* **2012**, *108*, 235502.

(175) Toulhoat, P. R.; Raybaud, P.; Kresse, G.; Hafner, J. *Ab Initio* Density Functional Studies of Transition-Metal Sulphides: I. Crystal Structure and Cohesive Properties. *J. Phys.: Condens. Matter* **1997**, *9*, 11085.

(176) Bučko, T.; Hafner, J.; Lebègue, S.; Ángyán, J. G. Improved Description of the Structure of Molecular and Layered Crystals: *Ab Initio* DFT Calculations with van Der Waals Corrections. *J. Phys. Chem. A* 2010, *114*, 11814–11824.

(177) Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L. F.; Vaia, R. A. Mechanism for Liquid Phase Exfoliation of MoS2. *Chem. Mater.* **2016**, *28*, 337–348.

(178) Shen, J.; He, Y.; Wu, J.; Gao, C.; Keyshar, K.; Zhang, X.; Yang, Y.; Ye, M.; Vajtai, R.; Lou, J.; Ajayan, P. M. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. *Nano Lett.* **2015**, *15*, 5449–5454.

(179) Bonaccorso, F.; Zerbetto, M.; Ferrari, A. C.; Amendola, V. Sorting Nanoparticles by Centrifugal Fields in Clean Media. *J. Phys. Chem. C* **2013**, *117*, 13217–13229.

(180) Gao, X.; Jang, J.; Nagase, S. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. *J. Phys. Chem. C* 2010, *114*, 832–842.

(181) Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. *Carbon* **2012**, *50*, 3210–3228.

(182) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.

(183) Bellani, S.; Najafi, L.; Martín-García, B.; Ansaldo, A.; Del Rio Castillo, A. E.; Prato, M.; Moreels, I.; Bonaccorso, F. Graphene-Based Hole-Selective Layers for High-Efficiency, Solution-Processed, Large-Area, Flexible, Hydrogen-Evolving Organic Photocathodes. *J. Phys. Chem. C* 2017, *121*, 21887–21903.

(184) Zhang, X.; Coleman, A. C.; Katsonis, N.; Browne, W. R.; van Wees, B. J.; Feringa, B. L. Dispersion of Graphene in Ethanol Using a Simple Solvent Exchange Method. *Chem. Commun.* **2010**, *46*, 7539–7541.

(185) Sun, H.; Del Rio Castillo, A. E.; Monaco, S.; Capasso, A.; Ansaldo, A.; Prato, M.; Dinh, D. A.; Pellegrini, V.; Scrosati, B.; Manna, L.; Bonaccorso, F. Binder-Free Graphene as an Advanced Anode for Lithium Batteries. *J. Mater. Chem. A* **2016**, *4*, 6886–6895. (186) Gao, W. The Chemistry of Graphene Oxide: Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications; Gao, W., Ed.; Springer International Publishing: Cham, 2015; pp 61–95.

(187) Pham, N. P.; Burghartz, J. N.; Sarro, P. M. Spray Coating of Photoresist for Pattern Transfer on High Topography Surfaces. J. Micromech. Microeng. 2005, 15, 691.

(188) Song, Z.; McElvany, C. L.; Phillips, A. B.; Celik, I.; Krantz, P. W.; Watthage, S. C.; Liyanage, G. K.; Apul, D.; Heben, M. J. A Technoeconomic Analysis of Perovskite Solar Module Manufacturing with Low-Cost Materials and Techniques. *Energy Environ. Sci.* 2017, *10*, 1297–1305.

(189) Yang, Z.; Zhang, S.; Li, L.; Chen, W. Research Progress on Large-Area Perovskite Thin Films and Solar Modules. *J. Materiomics* **2017**, *3*, 231–244.

(190) Ono, L. K.; Park, N.-G.; Zhu, K.; Huang, W.; Qi, Y. Perovskite Solar Cells—Towards Commercialization. *ACS Energy Lett.* **2017**, *2*, 1749–1751.

(191) Berry, J. J.; van de Lagemaat, J.; Al-Jassim, M. M.; Kurtz, S.; Yan, Y.; Zhu, K. Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. *ACS Energy Lett.* **201**7, *2*, 2540–2544.

(192) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700.

(193) Huang, Y.; Wu, J.; Hwang, K. C. Thickness of Graphene and Single-Wall Carbon Nanotubes. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2006**, *74*, 245413.

(194) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. *Science* **2004**, *306*, 666–669.

(195) Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS Investigation of Preferential Sputtering of S from MoS2 and Determination of MoSx Stoichiometry from Mo and S Peak Positions. *Appl. Surf. Sci.* **1999**, *150*, 255–262.

(196) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. *Adv. Mater.* **2012**, *24*, 2320–2325.

(197) Weber, T.; Muijsers, J. C.; van Wolput, J. H. M. C.; Verhagen, C. P. J.; Niemantsverdriet, J. W. Basic Reaction Steps in the Sulfidation of Crystalline MoO3 to MoS2, As Studied by X-Ray Photoelectron and Infrared Emission Spectroscopy. *J. Phys. Chem.* **1996**, *100*, 14144–14150.

(198) Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato, M.; Castillo, A. E.D.R.; Bonaccorso, F. Engineered MoSe₂ -Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. *Adv. Energy Mater.* **2018**, *8*, 1703212.

(199) Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. *Science* **2015**, *347*, 1246501.

(200) Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. *Carbon* **2009**, *47*, 145–152.

(201) Dong, X.; Su, C.-Y.; Zhang, W.; Zhao, J.; Ling, Q.; Huang, W.; Chen, P.; Li, L.-J. Ultra-Large Single-Layer Graphene Obtained from Solution Chemical Reduction and Its Electrical Properties. *Phys. Chem. Chem. Phys.* **2010**, *12*, 2164–2169.

(202) Becerril, H. A.; Stoltenberg, R. M.; Tang, M. L.; Roberts, M. E.; Liu, Z.; Chen, Y.; Kim, D. H.; Lee, B.-L.; Lee, S.; Bao, Z. Fabrication and Evaluation of Solution-Processed Reduced Graphene Oxide Electrodes for P- and N-Channel Bottom-Contact Organic Thin-Film Transistors. *ACS Nano* **2010**, *4*, 6343–6352.

(203) Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution *In Situ* X-Ray-Based Spectroscopies. *J. Phys. Chem. C* **2011**, *115*, 17009–17019.

(204) Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New Insights into the Structure and Reduction of Graphite Oxide. *Nat. Chem.* **2009**, *1*, 403.

(205) Johnson, P. A.; Levicky, R. X-Ray Photoelectron Spectroscopy and Differential Capacitance Study of Thiol-Functional Polysiloxane Films on Gold Supports. *Langmuir* **2004**, *20*, 9621–9627.

(206) Rodriguez, J. A.; Jirsak, T.; Freitag, A.; Hanson, J. C.; Larese, J. Z.; Chaturvedi, S. Interaction of SO2 with CeO2 and Cu/CeO2 Catalysts: Photoemission, XANES and TPD Studies. *Catal. Lett.* **1999**, *62*, 113–119.

(207) Lee, C. Y.; Le, Q. V.; Kim, C.; Kim, S. Y. Use of Silane-Functionalized Graphene Oxide in Organic Photovoltaic Cells and Organic Light-Emitting Diodes. *Phys. Chem. Chem. Phys.* **2015**, *17*, 9369–9374.

(208) Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. *J. Colloid Interface Sci.* **2014**, *430*, 108–112.

(209) Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Wettability and Surface Free Energy of Graphene Films. *Langmuir* **2009**, *25*, 11078–11081.

(210) Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C. Raman Study and Lattice Dynamics of Single Molecular Layers of MoS2. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1991**, *44*, 3955–3962.

(211) Kopaczek, J.; Polak, M. P.; Scharoch, P.; Wu, K.; Chen, B.; Tongay, S.; Kudrawiec, R. Direct Optical Transitions at K- and H-Point of Brillouin Zone in Bulk MoS2, MoSe2, WS2, and WSe2. *J. Appl. Phys.* **2016**, *119*, 235705.

(212) Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2012**, *85*, 205302.

(213) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. *Nano Lett.* **2011**, *11*, 5111–5116.

(214) Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum Disulfide (MoS2) as a Broadband Saturable Absorber for Ultra-Fast Photonics. *Opt. Express* **2014**, *22*, 7249– 7260.

(215) Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L.; Chu, P. K. Quantum Confinement Effects across Two-Dimensional Planes in MoS2 Quantum Dots. *Appl. Phys. Lett.* **2015**, *106*, 233113.

(216) Dong, H. H.; Ju, H. D.; Seob, C. J.; Minsu, P.; Seok, S. T. Dual Role of Blue Luminescent MoS2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon. *Small* **2014**, *10*, 3858– 3862.

(217) Mukherjee, S.; Maiti, R.; Katiyar, A. K.; Das, S.; Ray, S. K. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices. *Sci. Rep.* **2016**, *6*, 29016.

(218) Gan, Z.; Xu, H.; Hao, Y. Mechanism for Excitation-Dependent Photoluminescence from Graphene Quantum Dots and Other Graphene Oxide Derivates: Consensus, Debates and Challenges. *Nanoscale* **2016**, *8*, 7794–7807.

(219) Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V. K.; Ajayan, P. M.; Shaijumon, M. M. Electrochemical Synthesis of Luminescent MoS2 Quantum Dots. *Chem. Commun.* **2015**, *51*, 6293–6296.

(220) Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. *Mater. Res. Bull.* **1968**, *3*, 37–46.

(221) Pankove, J. I.; Kiewit, D. A. Optical Processes in Semiconductors. J. Electrochem. Soc. **1972**, *5*, 156C–156C.

(222) Mague, J. T. *Gmelin Handbook of Inorganic Chemistry*, 8th ed.; Rh Organometallics, 1984.

(223) Li, T.; Galli, G. Electronic Properties of MoS2 Nanoparticles. *J. Phys. Chem. C* 2007, *111*, 16192–16196.

(224) Lebègue, S.; Eriksson, O. Electronic Structure of Two-Dimensional Crystals from *Ab Initio* Theory. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2009**, *79*, 115409. (225) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. *Nano Lett.* **2010**, *10*, 1271–1275.

(226) Feng, Y.; Lin, S.; Huang, S.; Shrestha, S.; Conibeer, G. Can. Tauc Plot Extrapolation Be Used for Direct-Band-Gap Semiconductor Nanocrystals? *J. Appl. Phys.* **2015**, *117*, 125701.

(227) Hao, H.; Cuicui, D.; Hongyan, S.; Xun, F.; Jin, L.; Yanlei, T.; Wenbo, S. Water-Soluble Monolayer Molybdenum Disulfide Quantum Dots with Upconversion Fluorescence. *Part. Part. Syst. Charact.* 2015, 32, 72–79.

(228) Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. *Adv. Mater.* **2011**, *23*, 2226–2230.

(229) Kröger, M.; Hamwi, S.; Meyer, J.; Riedl, T.; Kowalsky, W.; Kahn, A. Role of the Deep-Lying Electronic States of MoO3 in the Enhancement of Hole-Injection in Organic Thin Films. *Appl. Phys. Lett.* **2009**, *95*, 123301.

(230) Balis, N.; Stratakis, E.; Kymakis, E. Graphene and Transition Metal Dichalcogenide Nanosheets as Charge Transport Layers for Solution Processed Solar Cells. *Mater. Today* **2016**, *19*, 580–594.

(231) Agresti, A.; Pescetelli, S.; Najafi, L.; Del Rio Castillo, A. E.; Oropesa-Nuñez, R.; Busby, Y.; Bonaccorso, F.; Di Carlo, A. Graphene and Related 2D Materials for High Efficient and Stable Perovskite Solar Cells. In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO); 2017; pp 145–150.

(232) Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Electro-Optics of Perovskite Solar Cells. *Nat. Photonics* 2015, 9, 106.

(233) Greiner, M. T.; Lu, Z.-H. Thin-Film Metal Oxides in Organic Semiconductor Devices: Their Electronic Structures, Work Functions and Interfaces. *NPG Asia Mater.* **2013**, *5*, e55.

(234) Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M. Understanding the Rate-Dependent J-V Hysteresis, Slow Time Component, and Aging in CH3NH3PbI3 Perovskite Solar Cells: The Role of a Compensated Electric Field. *Energy Environ. Sci.* **2015**, *8*, 995–1004.

(235) Zhao, Y.; Liang, C.; Zhang, H.; Li, D.; Tian, D.; Li, G.; Jing, X.; Zhang, W.; Xiao, W.; Liu, Q.; Zhang, F. Anomalously Large Interface Charge in Polarity-Switchable Photovoltaic Devices: An Indication of Mobile Ions in Organic-Inorganic Halide Perovskites. *Energy Environ. Sci.* **2015**, *8*, 1256–1260.

(236) Elumalai, N. K.; Uddin, A. Hysteresis in Organic-Inorganic Hybrid Perovskite Solar Cells. *Sol. Energy Mater. Sol. Cells* **2016**, *157*, 476–509.

(237) Chen, B.; Yang, M.; Priya, S.; Zhu, K. Origin of J–V Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. **2016**, 7, 905– 917.

(238) Jiménez-López, J.; Cambarau, W.; Cabau, L.; Palomares, E. Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells. *Sci. Rep.* **2017**, *7*, 6101.

(239) Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates. *Nat. Commun.* **2013**, *4*, 2761.

(240) Bhosale, J. S.; Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S. Steady-State Photoluminescent Excitation Characterization of Semiconductor Carrier Recombination. *Rev. Sci. Instrum.* **2016**, *87*, 13104.

(241) Chang, L.; Kai, W.; Pengcheng, D.; Chao, Y.; Tianyu, M.; Xiong, G. Efficient Solution-Processed Bulk Heterojunction Perovskite Hybrid Solar Cells. *Adv. Energy Mater.* **2015**, *5*, 1402024.

(242) Wang, X.; Bhosale, J.; Moore, J.; Kapadia, R.; Bermel, P.; Javey, A.; Lundstrom, M. Photovoltaic Material Characterization With Steady State and Transient Photoluminescence. *IEEE J. Photovolt.* **2015**, *5*, 282–287.

(243) Ginger, D. S.; Greenham, N. C. Photoinduced Electron Transfer from Conjugated Polymers to CdSe Nanocrystals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1999**, *59*, 10622–10629. (244) Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. *ACS Nano* **2016**, *10*, 6306–6314.

(245) Park, N.-G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards Stable and Commercially Available Perovskite Solar Cells. *Nat. Energy* **2016**, *1*, 16152.

(246) Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Stability of Perovskite Solar Cells. *Sol. Energy Mater. Sol. Cells* **2016**, *147*, 255–275.

(247) Qin, X.; Zhao, Z.; Wang, Y.; Wu, J.; Jiang, Q.; You, J. Recent Progress in Stability of Perovskite Solar Cells. *J. Semicond.* **2017**, *38*, 11002.

(248) Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J. Organometal Halide Perovskite Solar Cells: Degradation and Stability. *Energy Environ. Sci.* **2016**, *9*, 323–356.

(249) Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. *Energy Environ. Sci.* **2017**, *10*, 516–522.

(250) Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation Observations of Encapsulated Planar CH3NH3PbI3 Perovskite Solar Cells at High Temperatures and Humidity. *J. Mater. Chem. A* **2015**, *3*, 8139–8147.

(251) Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and Oxygen Induced Degradation Limits the Operational Stability of Methylammonium Lead Triiodide Perovskite Solar Cells. *Energy Environ. Sci.* **2016**, *9*, 1655–1660.

(252) Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. *Angew. Chem.* **2015**, *127*, 8326–8330.

(253) Pearson, A. J.; Eperon, G. E.; Hopkinson, P. E.; Habisreutinger, S. N.; Wang, J. T.-W.; Snaith, H. J.; Greenham, N. C. Oxygen Degradation in Mesoporous Al₂O₃/CH₃NH₃PbI_{3-x}Cl_x Perovskite Solar Cells: Kinetics and Mechanisms. *Adv. Energy Mater.* **2016**, *6*, 1600014.

(254) Nie, W.; Blancon, J.-C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J.; Tretiak, S. Light-Activated Photocurrent Degradation and Self-Healing in Perovskite Solar Cells. *Nat. Commun.* **2016**, *7*, 11574.

(255) Docampo, P.; Bein, T. A Long-Term View on Perovskite Optoelectronics. Acc. Chem. Res. 2016, 49, 339-346.

(256) Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. *Adv. Energy Mater.* **2015**, *5*, 1500477.

(257) Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. Thermal Degradation of CH3NH3PbI3 Perovskite into NH3 and CH3I Gases Observed by Coupled Thermogravimetry-Mass Spectrometry Analysis. *Energy Environ. Sci.* **2016**, *9*, 3406–3410.

(258) Qiu, L.; Ono, L. K.; Qi, Y. Advances and Challenges to the Commercialization of Organic–inorganic Halide Perovskite Solar Cell Technology. *Mater. Today Energy* **2018**, *7*, 169–189.

(259) Slavney, A. H.; Smaha, R. W.; Smith, I. C.; Jaffe, A.; Umeyama, D.; Karunadasa, H. I. Chemical Approaches to Addressing the Instability and Toxicity of Lead–Halide Perovskite Absorbers. *Inorg. Chem.* **2017**, *56*, 46–55.

(260) McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B. A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells. *Science* **2016**, *351*, 151– 155.

(261) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Cesium-Containing Triple Cation Perovskite

Solar Cells: Improved Stability, Reproducibility and High Efficiency. *Energy Environ. Sci.* 2016, 9, 1989–1997.

(262) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. *Science* **2016**, *354*, 206–209.

(263) Busby, Y.; Agresti, A.; Pescetelli, S.; Di Carlo, A.; Noel, C.; Pireaux, J.-J.; Houssiau, L. Aging Effects in Interface-Engineered Perovskite Solar Cells with 2D Nanomaterials: A Depth Profile Analysis. *Mater. Today Energy* **2018**, *9*, 1–10.

(264) Jiangwei, L.; Qingshun, D.; Nan, L.; Liduo, W. Direct Evidence of Ion Diffusion for the Silver-Electrode-Induced Thermal Degradation of Inverted Perovskite Solar Cells. *Adv. Energy Mater.* **2017**, *7*, 1602922.

(265) Cacovich, S.; Cina, L.; Matteocci, F.; Divitini, G.; Midgley, P. A.; Di Carlo, A.; Ducati, C. Gold and Iodine Diffusion in Large Area Perovskite Solar Cells under Illumination. *Nanoscale* **201**7, *9*, 4700–4706.

(266) Capasso, A.; Matteocci, F.; Najafi, L.; Prato, M.; Buha, J.; Cinà, L.; Pellegrini, V.; Di Carlo, A.; Bonaccorso, F. Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. *Adv. Energy Mater.* **2016**, *6*, 1600920.

(267) Taheri, B.; Nia, N. Y.; Agresti, A.; Pescetelli, S.; Ciceroni, C.; Castillo, A. E. D. R.; Cinà, L.; Bellani, S.; Bonaccorso, F.; Di Carlo, A. Graphene-Engineered Automated Sprayed Mesoscopic Structure for Perovskite Device Scaling-Up. 2D Mater. **2018**, DOI: 10.1088/2053-1583/aad983.

(268) Reese, M. O.; Gevorgyan, S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A. Consensus Stability Testing Protocols for Organic Photovoltaic Materials and Devices. *Sol. Energy Mater. Sol. Cells* **2011**, *95*, 1253–1267.

(269) Matteocci, F.; Cinà, L.; Lamanna, E.; Cacovich, S.; Divitini, G.; Midgley, P. A.; Ducati, C.; Di Carlo, A. Encapsulation for Long-Term Stability Enhancement of Perovskite Solar Cells. *Nano Energy* **2016**, *30*, 162–172.

(270) Matteocci, F.; Busby, Y.; Pireaux, J.-J.; Divitini, G.; Cacovich, S.; Ducati, C.; Di Carlo, A. Interface and Composition Analysis on Perovskite Solar Cells. *ACS Appl. Mater. Interfaces* **2015**, *7*, 26176–26183.

(271) Petridis, C.; Kakavelakis, G.; Kymakis, E. Renaissance of Graphene-Related Materials in Photovoltaics due to the Emergence of Metal Halide Perovskite Solar Cells. *Energy Environ. Sci.* **2018**, *11*, 1030–1061.

(272) Reese, M. O.; Dameron, A. A.; Kempe, M. D. Quantitative Calcium Resistivity Based Method for Accurate and Scalable Water Vapor Transmission Rate Measurement. *Rev. Sci. Instrum.* 2011, *82*, 85101.