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A multi-particle drift-diffusion model and its
application to organic and inorganic electronic

device simulation
Daniele Rossi, Francesco Santoni, Matthias Auf der Maur, Member, IEEE and Aldo Di Carlo, Member,

IEEE .

Abstract— In this work we present a novel generalized
multi-particle drift-diffusion model capable to overcome
some limitations imposed by the classic drift-diffusion
model by taking into account multiple carrier populations.
We demonstrate the model’s ability and flexibility in simu-
lating systems from different application contexts. We con-
clude that the developed multi-particle drift-diffusion model
allows to investigate a wide range of complex mechanisms,
such as sub-band charge transport calculation or inter-
system crossing, that are crucial for the understanding and
design of organic and inorganic semiconductor devices
largely employed for both photovoltaics and light emitting
applications.

Index Terms— Band-to-band transition, drift-diffusion,
exciton transport, OLED, organic optoelectronic, semicon-
ductor device modeling.

I. INTRODUCTION

The traditional approach for semiconductor transport model-
ing in electronic devices, used extensively both in commercial
technology computer aided design (TCAD) software and in
academic codes, is based on a set of semi-classical transport
equations for an electron and a hole population, assumed each
in local thermal equilibrium with the host material. Particle
fluxes are then driven solely by gradients of thermodynamic
potentials, namely the carriers’ electrochemical potentials and
the inverse temperature. This model is known as the drift-
diffusion model or the van Roosbroeck equations [1], and has
been the workhorse of electronic device simulation during the
last fifty years. The assumption of local thermal equilibrium
implies that the carrier densities can be written as integrals
of the product of a Fermi function with some density of
states (DOS). Most often, a density of states resulting from a
parabolic dispersion, an idealization around the band extrema
of a perfectly periodic crystal, is assumed, leading to Fermi
integrals, for which analytic approximations exist. As a further
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simplification, usually the Boltzmann approximation is used,
so that the densities are given by the familiar exponential
expressions.

An alternative approach to describing electronic transport in
devices is to directly solve the Boltzmann transport equation
(BTE), for example by self-consistent ensemble Monte Carlo
technique [2]. While this allows to completely drop any a
priori assumption on the occupation probabilities in the phase
space, it is a computationally much heavier approach to the
problem. Especially in organic electronics, the kinetic Monte
Carlo (kMC) technique has found increasing interest during
the last years. This approach is particularly suited to describe
systems where transport occurs via hopping between localized
states. kMC implementations have also been extended to
include transport of excitons, which is of particular interest
in organic optoelectronics [3], [4].

Multi-particle transport models have been employed since
decades in process simulation, like e.g. in Yoshida et al. [5] for
modeling of ion implantation. Over the years, several exten-
sions of the van Roosbroeck equations have been developed
also for device simulation. These implementations have been
designed for specific situations, e.g. as done by Römer et al.
[6] for multiple quantum well (MQW) LED simulation, or by
Kantner et al. [7] for transport modeling in quantum dot (QD)
systems.

The purpose of this work is to formulate and implement an
extendible framework for multi-particle drift-diffusion simula-
tions, which is flexible enough to be applied to most devices
where such a concept is applicable. For this, we propose
a generalization of the semi-classical drift-diffusion based
two-carrier transport model, which can overcome some of
its limitations and may thus relax the necessity to resort to
more expensive approaches like Monte Carlo in a number of
relevant device structures. Our modeling approach is based
on two ingredients, namely (1) the generalization to more
than two carrier populations, each individually assumed in
a local thermal equilibrium characterized by a local quasi
Fermi level, and (2) a strictly thermodynamically consistent
formulation of the transitions between populations, appearing
as recombination-generation terms in the coupled system of
equations. The model is designed for situations, where the
total particle population can be split into sub-populations
that are coupled weakly with each other compared to the
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Fig. 1. The basic assumption of the multi-particle drift-diffusion model:
several particle populations exist (e.g. in different bands, as on the right),
which are in individual local thermal equilibrium and weakly coupled with
each other. τr and τrec are the characteristic intra-band (relaxation)
and inter-band (recombination) scattering times.

relaxation inside the populations, as schematically shown in
Fig. 1. The standard drift-diffusion model is a special case
of this, with a valence and a conduction band population,
each with its own quasi Fermi level, are coupled by inter-
band recombination with a rate that is usually lower than the
intra-band scattering rates. This multi-particle drift-diffusion
model (mp-DD) improves the flexibility of the drift-diffusion
model as such, and it also increases reusability, since the
same implementation can be adjusted to different application
contexts.

In the following we will describe the salient features of
the model and will show a few application examples of our
implementation.

II. THE MODEL

The multi-particle drift-diffusion model is based on the
generalized van Roosbroeck system and allows to define any
number of carriers, each one with its own properties as charge,
spin and DOS. For simplicity we stick to the stationary case,
in which the model reads as [1], [8]

∇ · (ε0εr∇ϕ−P0) = −q
∑
i

zini − qC (1a)

∇ · (µini∇φi) = sgn(zi)Ri , ∀i. (1b)

The Poisson equation (1a) determines the electrostatic po-
tential ϕ from the sum of the charge densities resulting from
all charged carrier densities ni, and possibly other fixed charge
distributions, indicated by C, which are not treated as mobile
carriers. q and zi in (1a) are the elementary charge and the
i-th carrier’s charge number. We also include explicitly a
fixed polarization P0, which models e.g. spontaneous and
piezoelectric polarization in certain materials like III-nitrides
[9]. The continuity equations (1b) describe the transport of all

carriers included in the system. The carrier fluxes are written
in terms of the gradient of the quasi Fermi potentials φi, ji =
−sgn (zi)µini∇φi, where µi is the carrier mobility, given by a
suitable mobility model. The quasi Fermi potentials are related
to the electrochemical potentials or quasi Fermi levels via
Ef,i = −qφi [8]. Ri is the total net recombination-generation
rate of the i-th carrier, which in general will depend on
different carrier densities and thus couples the different carrier
populations. As primary variables in our implementation, we
prefer the quasi Fermi potentials over the densities, since this
allows to write the equations in a more generic form. The
densities ni are then given by the generic expression [10]

ni =

∫ ∞
−∞

Di(E)
1

exp(E+sgn(zi)qφi−ziqϕ
kBT

)± 1
dE . (2)

Here, Di(E) is the DOS of the i-th carrier, and the ±
in the occupation factor indicates that we allow for Bose-
Einstein statistics in order to describe also other types of quasi-
particles like excitons. Therefore zi can be also 0. In analogy
to chemistry, all recombination rates are written as reactions
between different species in the system in the general form
[11]:

∑
j

αjnj 
 0 →
∑
j

αjφj = 0 (3a)

ri = αi

[
1− e

− q
kBT

∑
j
αjφj

]∑
{θj}

γ({θj})

×
∏
j

[
1

2
(1− sgn(αj))± fj(θj)

]|αj |

.

(3b)

Equation (3a) shows the reaction and corresponding ther-
modynamic equilibrium condition in the isothermal case. αj
is an integer giving the stoichiometric weight of the j-th
particle in the reaction, i.e. how many particles of population
i are involved. Its sign distinguishes whether the particle is
generated or destructed in the reaction. Equation (3b) is based
on the formulation of the interband scattering terms appearing
in the BTE [12], using however for the distribution functions
the equilibrium expressions, and generalizing to any number
of particles involved in the reaction. It gives the general
expression for the net recombination rate of the i-th carrier
for a specific recombination process, which contributes to the
total net recombination rate Ri =

∑
ri entering (1b). The

{θj} indicates the set of degree of freedoms of the different
particles, like e.g. crystal momentum or spin. Note that the
occupation factors f in general depend on their respective
degree of freedoms via the energy levels. The sign in front
of f depends on the sign of α and the type of statistics.
A distinctive and important feature of the model of (1)–(3)
is its inherently thermodynamically consistency. In fact, we
can associate thermodynamic equilibrium with φj = 0, which
leads to both zero carrier flux and vanishing net recombination.
Therefore, the solution of the non-linear Poisson equation with
φj = 0 provides the unique equilibrium solution of the system
(1). From (3b) we can derive the necessary recombination
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Fig. 2. Some common recombination mechanisms. (a) One-carrier
relaxation process, like exciton decay; (b) two-carrier process like ra-
diative recombination or band-to-band transfer; (c) three-carrier process
like Auger recombination.

models, involving any number of carriers. Some of the most
common are schematically shown in Fig. 2. In the following
we will give a few examples and show that the generic
formulation indeed reduces to the well-known formulas used
with the Van Roosbroeck system.

A. Single carrier mechanisms
Single carrier mechanisms (Fig. 2a) such as non-radiative

and radiative decay of excitons are relevant e.g. in organic light
emitting diodes (OLEDs) or organic photovoltaics (OPV). The
reaction for exciton density (x) becomes as follows:

x
 0 → φx = 0 (4a)
r(θ) = γ(θ)fθ(φx)− γ′(θ) [1 + fθ(φx)] (4b)

γ′(θ) = γ(θ) exp

(
−Ex(θ)

kBT

)
(4c)

As before, θ parametrizes the internal degrees of freedom,
and the last equation results from the detailed balance [10],
requiring that at equilibrium forward and backward reaction
must be equal. Ex(θ) is the energy level of the exciton in state
θ. Note that we treat excitons as quasi particles that obey Bose-
Einstein statistics, therefore a term 1 + fθ appears in (4b). It
can be expected that this only holds for not too high exciton
densities [13]. Substituting (4c) in (4b) and summing over the
internal degrees of freedom, we obtain the net recombination
rate as

R =

[
1− exp

(
qφx
kBT

)]∑
θ

γ(θ)fθ(φx). (5)

Equation (5) can be simplified, when we can assume that
γ is independent on θ. In that case, the sum of fθ over all θ
evaluates to the density x, so that

Rdecay =
x

τ

[
1− exp

(
qφx
kBT

)]
, (6)

where we have defined the decay time as τ = 1/γ. Note that
whenever the Boltzmann approximation can be used for the
density x the last formula can be rewritten as Rdecay=(x −
x0)/τ , with x0 the equilibrium density. This is the familiar

formula for a decay process in relaxation time approximation
[14].

B. Two-carrier mechanisms

Two-carrier mechanisms which involve charged carriers
(same or different species) such as direct (DIR) or band-
to-band (BB) recombinations [15], or neutral carriers such
as triplet-to-triplet annihilation (TTA) [16], up to combined
species such as triplet-to-polaron quenching (TPQ) [17] are
relevant in both organic and inorganic optoelectronic devices.
Considering two carriers (n1 and n2) which belong to dif-
ferent energy levels (E1 and E2) as shown in Fig. 2(b), the
corresponding reaction can be written as follows:

n1 + n2 
 0 → φn1
= φn2

(7a)
r(θ1, θ2) = γ1,2fθ1 (1− fθ2)− γ2,1fθ2 (1− fθ1) (7b)

γ(θ1, θ2) = γ1,2(θ1, θ2) = γ2,1(θ1, θ2) exp

(
−E2 − E1

kBT

)
.

(7c)

Equation (7b) describes forward and backward reaction be-
tween states θ1 and θ2, where fθ1 and fθ2 depend respectively
on φn1

and φn2
. In case E1 > E2, γ1,2 is the emission

coefficient, while γ2,1 is the capture coefficient, and they are
related to each other by (7c). According to both Fermi-Dirac
(FD) or Bose-Einstein (BE) and substituting (7c) in (7b) we
can obtain a generic valid formulation for two carriers, whether
they are either different species or the same.

r =
∑
θ1,θ2

γ(θ1, θ2) exp

(
−E1 − E2

kBT

)
fθ1(φn1

)[1− fθ2(φn2
)]

×
[
1− exp

(
q(φn2 − φn1)

kBT

)]
(8)

As an example, considering electrons (n1) and holes (n2)
in a semiconductor crystal with parabolic bands, the sum in
(8) becomes an integral over the crystal momenta k1 and k2.

r =

[
1− exp

(
q(φp − φn)

kBT

)]
1

(2π)
6

×
∫
γ̃(k1, k2)f1(1− f2)dk1dk2

(9)

Here, the transitions are explicitly dependent on the crystal
momenta as γ̃(k1, k2). Then, using Boltzmann approximation
we obtain the well-known formula for direct recombination as

RDIR = CDIRnp

[
1− exp

(
q(φp − φn)

kBT

)]
, (10)

where CDIR is the radiative rate parameter [15].
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C. Three-carriers mechanisms
Although mechanisms such as eeh and hhe Auger recombi-

nations involve three carriers of different species, the reaction
in (11b) includes the initial states θ1, θ2 and θ4 and the final
state θ3 of the excited carrier n3 as shown in Fig. 2(c).

2n1 + n2 
 n3 → 2φn1
= φn2

+ φn3
(11a)

r(θ1, θ2, θ3, θ4) = γfθ1 (1− fθ2) fθ4 (1− fθ3)

− γ′fθ2 (1− fθ1) fθ3 (1− fθ4)
(11b)

We obtain the following formula for the Auger recombina-
tion rate of carrier i

ri = αi
∑

θ1,θ2,θ3,θ4

γ(θ1, θ2, θ3, θ4)fθ1 (1− fθ2) fθ4 (1− fθ3)

×
[
1− exp

(
−q(φn3

− 2φn1
+ φn2

)

kBT

)]
.

(12)

Here, the factor αi accounts for the fact, that two carriers
of population 1 disappear in the reaction (α1 = 2), while only
one of population 2 disappears (α2 = 1) and one of population
3 is created (α3 = −1).

As in the example before, in the case we can use the
Boltzmann approximation, (12) simplifies to

RAuger = CAugern
2p

(
1− n∗

N∗

)
×
[
1− exp

(
−q (φn∗ − 2φn + φp)

kBT

)]
.

(13)

Here, the star indicates the quantities of the carriers in the
higher band, and the second carrier is described as a hole. The
factor (1− n∗/N∗) models empirically the dependency on the
occupation of the final electronic states. It is obtained from the
(1−fθ3) term in (12), using the Boltzmann approximation, so
that N∗ here is the effective density of states for population 3.
This approximated model describes Auger recombination and
reduces to the standard model when φn∗=φn and n∗ � N∗

is assumed [18].

III. RESULTS AND DISCUSSION

The model described in section II has been implemented
using the Galerkin finite element method (FEM) in the simu-
lation software TiberCAD [19]. A Newton method with line
search is used for the solution of the non-linear equations.

In the following we present a few simulation examples from
contexts, where a multi-particle drift-diffusion model can be
useful.

A. Thermionic emission
As a first example, we show that our mp-DD reproduces

the current across a heterointerface or at a Schottky con-
tact, including thermionic emission [20]. We approximate
a Schottky contact by substituting the metal with a highly

doped semiconductor and a band offset with respect to the
semiconductor. This allows comparing the analytical formula
for a Schottky contact with thermionic emission only to
the numerical results. The current density across a Schottky
contact for a semiconductor with parabolic bands is given by
[20]

JMS = λRA
∗T 2 exp

(
− φB
kBT

)[
exp

(
qVa
kBT

)
− 1

]
, (14)

where, T is the temperature, λR is a material-specific cor-
rection factor and A∗ is the Richardson constant that depends
on the electron effective mass (m∗) and it is given by

A∗ =
4πqm∗k2B

h3
. (15)

For the simulation we assume a silicon Schottky contact
with barrier of φB = 0.8 eV. We consider 1 µm thick lightly
n-doped Si bulk with N−d = 1017 cm−3. The second contact
is modeled as an ideal ohmic contact. First we simulate the
device using the standard DD approach, where the Schottky
contact is modeled by appropriate boundary conditions.

With the mp-DD it is possible to describe the reaction at
the metal-semiconductor interface considering different pop-
ulation for metal and semiconductor. To do this we slightly
modify the structure including at the anode side an additional
3 nm thick layer (∆xm), highly doped with N−d = 1020

cm−3. In the first layer we define the semiconductor carriers
(n), while in the additional layer only the contact material’s
electrons (n′) are present. The Schottky barrier is implemented
by setting an energy gap between the band edges of the two
electron populations, with a value of ∆EMS = 0.86 eV. This
value is chosen such that the effective barrier between the
semiconductor conduction band edge and the quasi Fermi level
in the contact material results to be 0.8 eV as required. The
corresponding energy band profile near the anode is shown in
Fig. 3(a). At semiconductor-metal interface (MS), the electron
populations are coupled to each other through an interfacial
two carrier band-to-band process with rate constant Cnn′ .

Rnn′ = Cnn′n

(
1− n′

N ′

)[
exp

(
Ef,n′ − Ef,n

kBT

)
− 1

]
.

(16)
By appropriately choosing Cnn′ , in this case Cnn′ = 5.1×

106 cm·s−1, we can match exactly the result of the standard
DD model, as shown in Fig. 3(b). This parameter controls
the effective charge transfer between the contact and the
semiconductor, and can therefore be related to the parameters
in (14). The current calculated with the mp-DD model is
obtained as

JMS = qRnn′ ' qCnn′NC
(

1− n′

N ′

)
×[

exp

(
Ef,n′ − Ef,n

kBT

)
− 1

]
.

(17)

Comparing this expression for reverse bias with (14) and
considering that Va=Ef,n−Ef,n′ , we obtain
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(a)

(b)

Fig. 3. (a) Energy band diagram of a silicon Schottky barrier with φB =

0.8 eV and N−
d =1017 cm−3 at Va = 0.2 V operation; (b) JV curves

comparison of the analytic model (dashed red), classical DD (blue dots)
and mp-DD (black).

Cnn′ '
λRA

∗T 2

qNC
, (18)

from which we obtain Cnn′ = 5.0541×106 cm·s−1, thus in
agreement with the value reported above used for the fitting.
Therefore, the two models are equivalent in terms of the
description of the thermionic emission current at reverse bias.
Note that we could formulate an alternative model for the MS
interface by introducing an overlapping thin layer (∆xint),
within which semiconductor and metal electrons coexist and
are coupled by a rate constant Cnn′ . In this case, the current
in (17) would be obtained by integrating the rate Rnn′ over
the overlapping region ∆xint.

B. Intermediate Band Solar Cells
The intermediate band solar cell (IBSC) is one of the third

generation photovoltaic concepts that potentially allows to

increase the ideal maximum power conversion efficiency of
conventional single bandgap solar cells, from 40.7% [21] up
to 63.2% [22]. This is possible by adding an intermediate band
(IB) within the forbidden bandgap of the absorbing material of
a solar cell, providing an additional photogeneration of carriers
by two-step absorption of sub-bandgap photons promoting
electrons from the valence band (VB) to the intermediate
band and from there to the conduction band (CB). Ideally
this process should allow increasing the short-circuit current
(JSC) maintaining at the same time a high open-circuit voltage
(VOC). The IB is typically obtained by growing quantum dot
(QD) arrays in a semiconductor or by simply adding metal
atoms as dopant in the active material [23].

With the aim to show the model’s ability to calculate the
charge transport within an intermediate band, we perform
simulations on a GaAs-based p-i-n IBSC [24]. The doping
densities set in the p-emitter and n-base are, respectively,
N+
a = 7 × 1016 cm−3 and N−d = 5 × 1016 cm−3, while

all material parameters used are referred to GaAs at 300
K [25]. Simulations account for defect-mediated (Shockley-
Read-Hall) recombination, with τn = 5 × 10−7 s and τp =
1 × 10−6 s [15], and direct recombination set by CDIR =
7.2 × 10−10 cm−3·s−1 [15]. As depicted in Fig. 4(a), the IB
energy level inside the bandgap adds two additional possible
transitions at ∆ECI = 0.48 eV and ∆EIV = 0.95 eV, which
both contribute to the optical absorption.

The IB is modeled using an effective DOS of NIB = 5 ×
1016 cm−3 [24], with Gaussian distribution having σ = 0.05
eV and located at 0.15 eV below the conduction band edge.
The charge carrier generation profile is calculated assuming il-
lumination from the anode (p-emitter) and using an occupation
dependent model given by

G12 = C12
n1
N1

(
1− n2

N2

)
. (19)

Here, C12 is a constant transition rate from state 1 to
state 2, n1 the carrier density in state 1 and n2 the carrier
density in state 2, N1and N2 are the available densities of
final states. The IB is coupled to the conduction and valence
bands by means of band-to-band rates, similar as in section
III-A. We used a capture time of 1 ns from conduction
band to intermediate band, and a bimolecular rate constant
of CIV = 1 × 10−11 cm3·s−1 between the valence band and
IB.

In Fig. 4(b) we report results of two different sets of
simulations that we performed accounting (full lines) and ne-
glecting (dashed lines) the band-occupation for charge carrier
generation. In both cases we used constant transition rates of
CCI=CIV = CCV = 5 × 1020 cm−3·s−1, that correspond
to an effective absorption coefficient of 1 × 104 cm−1. It
can be observed, that inclusion of the occupation dependency
in the IB absorption terms is important, as it considerably
reduces the effective absorption. In fact, JSC decreases from
44 (full lines) to 29.3 mA·cm−2 (dashed lines), which is still
higher than the value of the GaAs reference cell [26]. The
decrease of JSC and VOC are due respectively to the minor
carrier density available for transport because of the electro-
static profile variation and to the introduction of a narrow-
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(a)

(b)

Fig. 4. (a) Band diagrams in short-circuit current condition for the
p-i-n structure simulated. EC , EV and EIB are energy levels and
Ef,C , Ef,V and Ef,IB are their respective quasi Fermi levels; (b)
JV characteristics comparison between experimental results on GaAs
solar cell [27] and on IBSC simulations with different values of µIB

and generation modeled as: full lines using constant generation, while
dashed lines using the occupation dependent generation model.

gap effective material. Both these effects are in accordance
with experimental results achieved by Blokhin et al. [27].
Furthermore, we investigate the impact of different mobilities
of electrons within the IB (from 10−6 to 1 cm2·V−1·s−1). The
results shown in Fig. 4(b) indicate that the IB mobility affects
the Voc of the cell. Interestingly, a larger mobility decreases
Voc. This can be interpreted such that at high IB mobility
photogenerated carriers will be transported preferably in the
IB, which has higher carrier density. Therefore, part of the
electrons are extracted towards the contact through the IB,
instead of being promoted to the CB, leading to an overall
loss of Voc.

Note that such a result cannot be obtained when treating
the IB by means of trap states in a standard DD model, as
done e.g. in [24], which can not consider transport in the IB.
Thus, we conclude that the classical DD approach can only
simulate the limit case of vanishing transport in the IB, while
the multi-particle DD allows going beyond this limitation, even

(a)

(b)

Fig. 5. (a) Energy levels and work-functions of the simulated TADF
OLED stack; (b) Representation of exciton states and recombination
rate constants accounted for within the host-guest system of the emitter.

accounting for more additional sub-bands.

C. Thermally Activated Delayed Fluorescence OLED
Thermally activated delayed fluorescence (TADF) materials

have shown great potential for efficient OLEDs [28]. The
triplet recycling via reverse inter-system crossing (RISC)
mechanism allows to have metal-free organic fluorescent
molecule able to overcome its intrinsic limit of 25%, by
harvesting both singlets and triplets exciton states, indicated
respectively by S1(g) and T1(g). This mechanism occurs in
the TADF emitter when the lifetime of triplets is sufficiently
long and, at the same time, if the singlet-triplet energy gap is
small enough (in the order of few kBT ) to promote the triplet
into singlet conversion by thermal activation. Therefore, the
total fluorescence is given by two contributions: the prompt
fluorescence due to radiative decay of the singlets and the de-
layed fluorescence given by the emission of singlets generated
through RISC. With the aim to solve both carriers and excitons
transport for a TADF OLED we simulated the 130 nm thick
stack reported in Fig. 5, where the emitter layer (EML) is
made by an host-guest system.

Electron and hole mobilities are provided depending on the
region and on the material, using either field-assisted [29] or
constant mobility models as reported in Table I.
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TABLE I
CHARGED CARRIER MOBILITY PARAMETERS.

Layer Material Holes Electrons Units Ref.
HIL TCTA µ=2×10−5 µ=1×10−7 cm2/Vs [30]
EML
(host)

CBP µ0=3.8×10−4

E0=1.63×105
µ0=4×10−4

E0=1.82×107
cm2/Vs
V/cm

[31]

EML
(guest)

4CzIPN µ0=7×10−5

E0=2.7×105
µ0=1.1×10−5

E0=3.81×105
cm2/Vs
V/cm

[32]

ETL TBPi µ=1×10−7 µ=5×10−5 cm2/Vs [33]

Concerning the neutral carriers, the model accounts for
excitons of both host and guest materials. Singlet and triplet
states of guest have ES(g) = 2.43 eV and ET (g) = 2.40
eV that make ∆EST = 0.03 eV suitable to guarantee the
activation of TADF process. Differently, for host material
we account only for the triplets with ET (h) = 2.60 eV,
neglecting the singlets because of their rather high energy such
as ES(h) = 3.00 eV. Considering all the charge and neutral
carries, the simulation is performed accounting 8 different
charged (see Table I) and 3 neutral (see Fig. 5a) particles
with their own Fermi levels. All main kinetic mechanisms
included in the simulations involving excitons are schemat-
ically reported in Fig. 5(b). Non-radiative recombination in
the host is set by τnr,T (h) = 1 × 10−5 s, while for guest
material both non-radiative and radiative recombinations are
included setting characteristic lifetimes τnr,S(g) = 1 × 10−5

s, τnr,T (g) = 1×10−5 s and τr,S(g) = 1×10−8 s. The inter-
system crossing (ISC) is modeled by a coupling of singlet and
triplet populations according to

RISC = CISCnS

(
1 +

nT
NT

)[
1− exp

(
Ef,T − Ef,S

kBT

)]
.

(20)

where we have set the rate constant to CISC = 3 × 106

s−1. Note that this model includes RISC as the reverse process
of ISC, and that the former will dominate whenever Ef,T >
Ef,S . As described in section II-B, the empirical factor 1 +
nT /NT accounts for the dependency on the occupation of
the final states. The sign here is positive, though, since we
assume excitons to follow Bose-Einstein rather than Fermi-
Dirac statistics.

All charged and neutral carrier energy states are distributed
according to Gaussian DOS with N0 = 1× 1020 cm−3, with
characteristic disorders of σn,p = 0.1 eV and σexciton =
0.05 eV, respectively. Exciton generation is modeled by a
bimolecular electron-hole recombination term, using a rate
constant of CG = 1 × 10−13 cm−3·s−1 and respecting the
1:3 ratio between singlets and triplets.

In accordance with experimental results reported by Baldo
et al. [16] we included in simulations the most important
bimolecular degradation processes such as triplet-to-triplet
annihilation (TTA) and triplet-to-polaron quenching (TPQ),
modeled as

RTTA = CTTAn
2
T

[
1− exp

(
−2Ef,T
kBT

)]
(21a)

RTPQ = CTPQnTnQ

[
1− exp

(
−Ef,T
kBT

)]
. (21b)

In the former, two triplets interact leading to the loss of one
of them, while in the latter a triplet vanishes interacting with a
polaron. The quencher, which can be an electron or a hole, is
indicated by the index Q. In our case we assumed TPQ only
due to holes.

The rate constants are set under the assumption to have
percentage losses for TTA and TPQ of 15% and 30%, respec-
tively, at 6 V operation. The resulting parameters for host and
guest materials are CTTA,h = 5×10−10 cm−3·s−1, CTTA,g =
5 × 10−9 cm−3·s−1, CTPQ,h = 2 × 10−12 cm−3·s−1 and,
CTPQ,g = 6× 10−12 cm−3·s−1.

Results in Fig. 6 provide a clear understanding of the
importance of RISC on the radiative emission within the
emitter. Figure 6(a) shows a comparison between the overall
radiative recombination (black line) and the RISC rate (red
line) within the EML. The inclusion of singlet-triplet coupling
in guest material improves the total emission by ∼ 20%.
Figure 6(b) reports the internal quantum efficiency (IQE)
at different operation voltage. As expected, while the non-
radiative contribution is insensitive to the polarization voltage,
both TPQ and TTA mechanisms, especially the latter, lead to
IQE drop for increasing drive current.

IV. CONCLUSIONS

We have presented an implementation of a generalized
multi-particle drift-diffusion model capable to overcome the
limitations imposed by the standard drift-diffusion model
based on two-carrier transport equations. The modeling ap-
proach provides the possibility to take into account multi-
ple carrier sub-populations, each assumed in a thermal lo-
cal equilibrium, and guarantees a strictly thermodynamically
consistent formulation for recombination-generation between
populations. We have demonstrated its ability and flexibility
to describe systems with different application contexts. First
we have reproduced the thermionic emission for a metal-
semiconductor interface modeling a typical Schottky contact,
successfully matching results obtained using the classical DD
and finding the expression of the effective transfer rate Cnn′
as functional parameter of Richardson constant (A∗).

Then we have investigated the ability of the model on the
calculation of charge transport within the intermediate band
for a GaAs-based IBSC device. Exploiting a band-occupation
dependent generation model we have investigated the impact
of the additional sub-band absorption contributions on the
device operation. Results obtained on the Jsc increase and
VOC decrease than GaAs solar cell baseline are in accordance
with experimental results found in literature.

Finally, we have simulated a TADF OLED device explicitly
treating charge carrier and exciton sub-populations with the
aim to analyze singularly all mechanisms which determine
the optical emission. The model allowed us to calculate the
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(a)

(b)

Fig. 6. (a) Radiative emission (black) and RISC (red) within the emitter
at 6 V operation; (b) Quantum efficiency contributions given by non-
radiative recombination (orange), triplet-to-polaron quenching (blue and
cyan), triplet-to-triplet annihilation (light and dark green) and the IQE
given by radiative emission (red) at different voltage operation calculated
with mp-DD.

emission profile and to estimate every single radiative and non-
radiative recombination contribution during the device opera-
tion, especially the thermally activated delayed fluorescence
contribution given by the triplet recycling.

The model is not limited to the electronic particle but could
describe on equal footing ions opening to a consistent solution
of system were electrons and ions play a fundamental role
in the device behavior (electrochemical device, dye sensitized
solar cells, fuel cells, chemical storage devices, etc.).
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