
materials

Article

Transmittance and Reflectance Effects during Thermal
Diffusivity Measurements of GNP Samples with the
Flash Method

Stefano Bellucci 1 , Gianluigi Bovesecchi 2,*, Antonino Cataldo 1,3, Paolo Coppa 2,
Sandra Corasaniti 2 and Michele Potenza 2

1 INFN-Laboratori Nazionali di Frascati, Frascati, 00044 Rome, Italy; Stefano.Bellucci@lnf.infn.it (S.B.);
antonino.e.cataldo@gmail.com (A.C.)

2 Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy;
coppa@uniroma2.it (P.C.); sandra.corasaniti@uniroma2.it (S.C.); m.potenza23@gmail.com (M.P.)

3 Neuroscience, Imaging and Clinical Science Department, University “G. d’Annunzio”,
66100 Chieti (Pescara), Italy

* Correspondence: gianluigi.bovesecchi@gmail.com

Received: 11 January 2019; Accepted: 21 February 2019; Published: 27 February 2019
����������
�������

Abstract: Thermal diffusivity of GNPs (graphene nano-platelets) is an important thermo-physical
property as it is useful to predict the material behavior in many heat transfer applications. GNP
samples were pressed at different loads to obtain different densities, and then thermal diffusivity
was measured with the flash method. All samples were coated with a thin layer (~1 µm) of
colloidal graphite (Aquadag®) on both sides to reduce reflectance of their surfaces and consequently
increase the emissivity. Carrying out measurements on both samples with and without coating,
a difference between the two series of measurements was found: This is attributed to a non-negligible
transmittance of the uncoated samples due to the porosity of GNPs. Furthermore, assuming a spatial
distribution of the light within the samples according to the Lambert-Bougert-Beer law, the extinction
coefficient of GNP at different densities has been evaluated processing experimental data with
a nonlinear least square regression, (NL-LSF, nonlinear least square fitting), whose model contains the
extinction coefficient as unknown. The proposed method represents a further improvement of thermal
diffusivity data processing, crucial to calculate the extinction coefficient when data with and without
coating are available; or to correct biased thermal diffusivity data when the extinction coefficient
is already known. Moreover, reflectance effects have been highlighted comparing asymptotic
temperature reached during the tests on coated and uncoated samples at different densities. In fact,
the decrease of asymptotic temperature of the uncoated samples gives the percentage of the light
reflected and consequently an estimate of the reflectance of the GNP surface.
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1. Introduction

Graphene, since its recent discovery, has attracted a growing attention in the scientific community
due to its particular properties, e.g., [1]. There are different methods to produce graphene. Even if
chemical vapor deposition is the most commonly used [2,3], an easier and quicker method is the
exfoliation assisted by microwave irradiation: This procedure produces few layered graphene with
micron sized lateral dimensions, called graphene nano-platelets (GNP) [4–6].

In the present work graphene nano-platelets in the form of free standing low density
conglomerates were investigated.
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Among the different peculiar properties of GNP, the thermo-physical ones result interesting, due to
their influence on heat storage and propagation. Due to recent discovery of graphene, many data are
still missing.

Thermal diffusivity is the thermo-physical property influencing the thermal behavior during
transient evolution of materials. Furthermore, its determination is useful to evaluate thermal
conductivity, when not possible or hard with other methods. Among the different methods to
measure it, flash method [7] is perhaps the most commonly used due to its easy of application.
Homemade systems can be easily assembled, and commercial instruments are also available (e.g., [8]).
The procedure consists of irradiating a surface of a sample, in the shape of a thin slab, and measuring the
temperature increase on the opposite side, preferably with a non-contact thermometer as a pyrometer.
The method is particularly suited to slabs, even thin foils, and requires a pulse thermal source, generally
a photographic flash or a laser.

But attention must be paid to some problems which can arise during measurements or
data processing:

• a very short energy pulse can produce a meaningful temperature increase on the irradiated
surface which can even damage it; this can be avoided with a low power source (a photographic
flash), but temperature increase on the opposite side results very low, and temperature detection
becomes difficult;

• an error can arise when the time length of the flash pulse is comparable with the temperature
transition on the opposite face: In such case the approximation of the analytical trend of the pulse
with a Dirac-delta function cannot be considered any more valid, and a meaningful systematic
error is introduced [6,9].

In [6] the authors reported the evaluated thermal diffusivity data of graphene nano-platelets,
in the shape of thin and flat disks, through a homemade flash method. Samples had been coated
before measurements with a thin layer (~1µm of colloidal graphite, Aquadag®, by Agar Scientific Ltd,
Stansted, Essex, UK) in order to make them opaque and good absorber in the infrared wavelength
band used for measurements. The results are summarized in Figure 1. In order to avoid the error
arising from the finite time length of the pulse, a special analytical solution was developed, which uses
a suited regression analytical model in the nonlinear least square fitting of the experimental data.
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Figure 1. Trend of thermal diffusivity α and thermal conductivity λ as a function of density (ρ) [6].

Samples measured and reported in [6], see Figure 2, had been blackened with a thin layer of
colloidal graphite (Aquadag®) in order to increase the emissivity of their surface. A higher absorbance
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of the irradiated surface is so obtained, producing an increase of the detector output. The coating
thickness is so thin (~1 µm) to negligibly influence the obtained results.
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When the samples were measured uncoated, values of thermal diffusivity lower than the coated
ones were found. This difference results higher at lower densities, while at higher densities the two
series of data practically coincide. The only possible explanation of this is a non-complete opacity of
the uncoated samples: In fact, if the thermal wave impinging on the sample surface is not completely
absorbed by it but penetrates in a layer of the sample due to its partial transparency, the transmitted
heat arrives in advance to the rear surface, and thermal diffusivity results apparently higher.

Other authors dealt with the same or similar problems, e.g., [10,11]. The effect is much more
evident when highly transparent material is tested (e.g., glasses [12,13]).

In the present paper, a different solution of the basic heat conduction equation is obtained in
order to avoid this error. This solution is used for updating the NL-LSF model. The new model takes
into account not only the time trend of the flash pulse but also the space distribution of the radiation
into the samples, evaluated from the Lambert-Bougert-Beer law. This trend replaces the Dirac delta
function of the thermal power absorbed by the irradiated surface in the case of completely opaque
samples. The extinction coefficient behaves as an unknown parameter in the NL-LSF of experimental
data, and its best estimate is supplied by the regression procedure.

The temperature asymptotic increase during tests was evaluated as explained in Section 5.2.
Theoretically, being the supplied thermal power constant, this asymptotic temperature should not
change when density increases, because mass and specific heat remain practically the same, also after
compression. However, measurements carried out on the uncoated samples showed a linear decrease
of the asymptotic temperature. This effect can be attributed to reflectance: In fact, when GNP
samples are pressed with higher loads, their surfaces appear much smoother and shinier, i.e., their
reflectance increases. Thus, even with the same supplied thermal power, the asymptotic temperature
results smaller.

On the basis of the above mentioned considerations both the data of uncoated and coated samples
were processed with two different regression models, the first taking into account the transmittance,
while the second not. From the difference between the two results an estimation of the partial
transmittance coefficient of the GNP uncoated samples is obtained. The main result of this procedure
is twice: Either it is possible to evaluate the extinction coefficient of the graphene nanoplatelets when
data of coated and uncoated samples are both measured, or row data of uncoated samples can be
corrected through the use of the extinction coefficient already known or measured.
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2. Analytical Solution

2.1. Parker Solution

Under the following hypotheses:

• homogeneous and isotropic materials;
• pulse heating (Dirac δ);
• adiabatic condition of the slab after the pulse;
• homogeneously irradiated surface;
• one-dimensional heat propagation;
• thermo-physical properties constant in the temperature range of the test;

the Parker solution [7] is used as regression model in NL-LSF. This procedure gives the best
estimate of two quantities: The temperature increase (T∞ − T0) and the thermal diffusivity α.

T(x, τ) = T0 + (T∞ − T0)

[
1 + 2

∞

∑
n=1

cos
(nπx

L

)
exp

(
−n2π2ατ

L2

)]
(1)

2.2. Double Exponential

When the time length of the flash pulse is comparable with the temperature transition on the
opposite face, the hypothesis of pulse heating (Dirac δ) is no more applicable and consequently
Equation (1) is no more suited for data processing. In literature [14,15] analytical solutions for square
wave and triangular wave thermal pulse are also present.

In [6] a better description of the real flash signal was adopted, approximating the pulse with two
overlapping exponentials, each with its own time constant:

S(τ) = A[exp(−R1τ)− exp(−R2τ)] (2)

where A represents the signal intensity connected with the supplied energy, while R1, and R2 are
the inverses of the two time constants, the first linked to the lamp filament temperature increase,
and the second to the time constant of the flash capacitor discharge. The way to determine R1 and R2

is described in [6].
Using Equation (2) as input, in the way described by the Green function method [16], the solution

is as follows (see Appendix A of [6]):

T(L, τ) = A′


1− exp(−R1τ)

R1
− exp(−R2τ)− 1

R2
+ 2

∞
∑

n=1

[
(−1)n

×

exp(R1τ)− exp
(
−
(nπ

L

)2
ατ

)
(nπ

L

)2
α− R1

−
exp(R2τ)− exp

(
−
(nπ

L

)2
ατ

)
( nπ

L
)2

α− R2





(3)

Equation (3) represents the temperature response of the rear surface (x = L) of a sample irradiated
at x = 0 by a flash whose signal is described by Equations (2) and (3) has been used as regression model
to fit the data both of coated and uncoated samples.

2.3. Solution Involving GNP Partial Transparency

GNP samples are soft and porous, and consequently the irradiated surfaces result no more
perfectly opaque, but partially transparent. Equation (3) does not consider the samples transparency,
and if it is used in data processing for uncoated GNP leads to an overestimation of the thermal
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diffusivity. To avoid this error some practical solutions must be adopted to increase absorbance of the
irradiated surface, as for example coating the surfaces with a high absorbing medium [6]. Alternatively,
an analytical model that takes into account the transmittance effects could be used in data processing.
The previous section reports the temperature response of a sample when the thermal input pulse is
a function of time described in Equation (2). For this purpose, the Green function method has been
used, which allows to determine the temperature response of the sample for any type of pulse when
the temperature response to a Dirac δ input is known. An analogue procedure can be followed when
the thermal pulse is a function of both space and time. In first approximation, it is possible to assume
a spatial distribution of the light penetrating into the sample as described by the Bougher-Beer law:

I(x) = I0 exp(−aλx) (4)

where I0 is the light intensity in x = 0 and aλ is the extinction coefficient, dependent on radiation
wavelength and material. In a first step, aλ can be assumed independent on wavelength, and the flash
signal described by:

S(τ, x) = B·a· exp(−a·x)[exp(−R1τ)− exp(−R2τ)] (5)

Beside the inverse of two time constants of the flash R1 and R2, B is a factor proportional to the
light intensity and a the extinction coefficient averaged in the wavelength range of the impinging
light. Using Equation (5) as thermal input, the solution of the heat conduction equation is (details are
reported in Appendix A):

T(L, τ) = B′
{

F(τ)(1− exp(−a L)) + 2
∞

∑
n=1

[
G(τ)

(
1 +

(nπ

a L

)2
)−1(

− exp(−a L) + (−1)n)]} (6)

where,

F(τ) =
1− exp(−R1τ)

R1
− exp(−R2τ)− 1

R2

and,

G(τ) =
exp(−R1τ)− exp

(
−
( nπ

L
)2

ατ
)

( nπ
L
)2

α− R1
−

exp(−R2τ)− exp
(
−
( nπ

L
)2

ατ
)

( nπ
L
)2

α− R2

Equation (6) represents the temperature response in x = L when the sample is irradiated in x = 0
by a thermal pulse described by Equations (5) and (6) can be used in different ways in data processing.
When the thermal diffusivity of the perfectly opaque material is known (e.g., of GNP coated samples
with the standard procedure), processing data of uncoated samples using Equation (6) as regression
model in NL-LSF gives the joint best estimate of a and B′. Alternatively, when the extinction coefficient
a is known (because already measured), fitting data of uncoated samples with Equation (6) gives the
best estimate of the effective thermal diffusivity α, again together with B′. Both thermal diffusivity and
extinction coefficient cannot be evaluated at the same time using only Equation (6), because they result
strongly correlated, that is their correlation coefficient in the covariance matrix of the unknowns [17]
is near to 1 and multiple couples of the two parameters are equally possible. Other authors [12,13]
find that these two parameters are uncorrelated, but their data refer to highly transparent materials,
glasses or similar: In such a case, the temperature trend is meaningfully different from present data,
i.e., the initial temperature on the measured side is higher than the ambient one, due to transmittance.

The procedures to find out the best estimate of the thermal diffusivity uses both data of coated
and uncoated samples. First with a nonlinear regression procedure, which supplies the best estimate
of A′ and α fitting data of coated samples using only Equation (3). Then the best estimate of B′ and a is
given from the regression of uncoated sample data with Equation (6). Figure 3 shows a typical result of
this procedure, where data of coated and uncoated samples and fitted curves are presented. Both data
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are used to evaluate at the same time the effective thermal diffusivity and extinction coefficient using
the Equations (3) and (6) as regression models.
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Figure 4 shows the results of three different samples. Data of the first 5 ms are missing due to the
reasons exposed in [6] (overlapping of the direct flash signal due to ambient reflections).
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(100, 200 and 450 N).

Driving a to infinite (opaque samples), Equation (6) tends to Equation (3), i.e., the thermal trend is
only function of time.
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3. Sample Preparation and Test Setup

The conglomerate was prepared processing a dispersion of GNP in isopropyl alcohol by means of
an ultrasonic probe for 10 min. The obtained dispersion is slowly filtered on a membrane filter of PTFE
(pore size 0.2 µm) that allows to obtain a solid GNP conglomerate. Thus, these conglomerates result
soft and porous, and are subsequently dried in an oven at 80 ◦C to eliminate the alcohol residuals.
Afterward, in order to get samples with different densities, the GNPs were compressed at different
pressures [6].

The following devices were assembled for the flash method experimental set-up (Figure 5):

• a quantum radiation detector (mercury cadmium telluride, MCT, active area 1 mm2, Pro-Lite
Technology Ltd, Melton Mowbray, Leicestershire, UK), cooled with liquid nitrogen (77 K) in
a dewar surrounding it;

• a ZnSe infrared lens (focal length 50 mm, manufacturer, city, state, country), transparent to visible
and IR radiation from 0.5 to 13 µm, located in front of the MCT detector (ZSL);

• a photographic flash Universal 1500 S Elinchrom (F), 200 W nominal maximum power
(Elinchrom SA, Renens, Switzerland). Tests were carried out with one half of this maximum power;

• data acquisition system (NI USB-6229, National Instruments, Austin, Texas, USA) set at a sampling
rate of 25 kHz, and ±10 V range.
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sample holder (SH), sensor amplifier (SA), sensor power supply (SPS), zinc selenide lenses (ZSL).

GNP samples obtained by filtration are relatively soft and present very low densities.
Their inconsistency and brittleness prevent their handling for direct measurement. So, they were
pressed with an MTS loading machine equipped with a load cell MTS 661.20F-02 (with applicable
loads from 50 to 10,000 N, MTS Systems Corporation, Eden Prairie, Minnesota, USA). Eight samples
were pressed with different loads and then coated with Aquadag® on both sides. As already said,
the coating thickness is negligible and was not taken into account in data processing. Table 1 shows
the different loads and the resulting densities. Density was calculated measuring the sample weight
(with an analytical balance with a 1 mg resolution) and its geometrical sizes.

The detected signal during tests is related to the temperature of the rear surface of the sample.
In order to find out this relation, a type K flat thermocouple (homemade) was applied to the measured
surface of the sample during one specific test, and an asymptotic temperature increase of 22 ◦C was
measured, corresponding to a pyrometer signal increase of 0.226 V. Thus, a sensitivity of the pyrometer
of 10.3·mV·◦C−1 is deduced. The linearity between the detector output (in V) and the temperature
increase (in ◦C) leads to write, as in [6]:

S[V] = c + d·t [◦C] (7)
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Through the conversion factor between signal and temperature it is possible to calculate the
asymptotic temperature reached in each test.

Table 1. Different tested samples, pressing load, and resulting density.

Sample # Load (N) Diameter (mm) Thickness (mm) Mass (g) ρ (kg·m−3)

1 100 31 2.36 0.184 103.1 ± 1.7
2 200 31 1.49 0.201 180.7 ± 3.1
3 450 34 0.88 0.200 248.1 ± 4.8
4 550 32 0.65 0.186 352.9 ± 9.3
5 1500 34 0.39 0.200 569.3 ± 9.7
6 3000 34 0.29 0.201 785 ± 27
7 5000 34 0.23 0.184 859 ± 38
8 7000 35 0.21 0.184 950 ± 28

The applied load could change the structure of the GNP and the mutual orientation of GNP into
the sample, just as discussed in [6].

In order to exclude damage in the GNP internal structure, a SEM characterization was carried out
on two samples, loaded at 550 and 5000 N.

The SEM characterization provides some hints about the evolution of GNP samples: The images
at lower magnification, Figures 6a and 7a, suggest a reduction of the interparticle distances, upon
increasing the loading. Nevertheless, the single particle structure is not affected by any kind of
breaking: The observation at highest magnification shows more in details the modification on the
interparticle distances, in which the “packaging” increases by increasing the applied load, Figures 6b
and 7b, but the packaging does not affect the structure of GNPs, that preserve their 2D structure,
e.g., fewer number of layers and literal size grain dimension, see Figures 6c and 7c.
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4. Results

4.1. Thermal Diffusivity

Thermal diffusivity values are obtained with the following procedure, valid when samples are
partially transparent:

• pressing samples at predefined loads;
• testing uncoated samples five times each, and evaluating the thermal diffusivity with NL-LSF

analysis using Equation (3) as model;
• coating samples and testing them again five times, evaluating their thermal diffusivity again

using NL-LSF with Equation (3).

Table 2 reports these thermal diffusivity values of coated and uncoated samples obtained
processing data with the same Equation (3). At the same low density, thermal diffusivities of uncoated
samples result apparently higher of about 10%, while this differences tend to zero when density
increases. As already said in Section 2.3, this is due to the effect of transmittance: If samples are
partially transparent, the thermal wave reaches the rear surface in a shorter time as respect to opaque
samples. At higher densities no difference between coated and uncoated samples is evident, being the
samples are practically opaque. Figure 8 shows the experimental results, fitting curves and confidence
limits for the coated and uncoated samples. For densities above 250 kg·m−3, the uncertainty bands are
overlapped, that is the transmittance effects are negligible.

Table 2. Results of thermal diffusivity measurements of graphene samples with and without coating
(* Uncoated, ** Coated).

Sample # Load (N) ρ (kg·m−3) α·107 (m2·s−1) * sα/α (%) α·107 (m2·s−1) ** sα/α (%)

1 100 103.1 ± 1.7 419 ± 2.1 0.5 355 ± 10.3 2.9
2 200 180.7 ± 3.1 304 ± 1.2 0.4 265 ± 2.6 1.0
3 450 248.1 ± 4.8 187 ± 1.6 0.9 163 ± 1.5 0.9
4 550 352.9 ± 9.3 158 ± 0.8 0.5 130 ± 1.4 1.1
5 1500 569.3 ± 9.7 85.6 ± 1.8 2.1 69.1 ± 0.8 1.1
6 3000 785 ± 27 68.3 ± 3.7 5.4 53.0 ± 0.2 0.4
7 5000 859 ± 38 51.1 ± 0.6 1.1 47.2 ± 0.4 0.9
8 7000 950 ± 28 37.1 ± 0.6 1.6 36.6 ± 0.5 1.4
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4.2. Extinction Coefficient Results

These results are obtained through a NL-LSF on data of uncoated samples, using Equation (6) as
regression model. The regression parameters to be evaluated are B′, proportional to flash intensity,
and the extinction coefficient a. During tests thermal diffusivity is assumed constant, using the same
values already found for coated samples. In Table 3 and in Figure 9 the determined values of extinction
coefficient at different densities are reported. It is evident that the extinction coefficient depends on
density: In fact, as density increases porosity decreases and samples become more and more opaque.
The trend of the extinction coefficient results an increasing exponential, and can be described by the
following equation:

a(ρ) = b1·[exp(b2ρ)− 1] (8)

Equation (8) is obtained assuming a = 0 when ρ = 0, and a = ∞ when ρ = ∞. A NL-LSF gives the
best estimate of b1 (13250 ± 120 m−1) and b2 (1.67·10−3 ± 0.01·10−3 m3·kg−1).

Table 3. Results of extinction coefficient at different densities (* Uncoated, ** Coated).

ρ (kg·m−3) L (mm) α·107 (m2·s−1) * α·107 (m2·s−1) ** a (m−1)

103.1 2.36 419 355 3406
180.7 1.49 304 265 5607
248.1 0.88 187 163 8975
352.9 0.65 158 130 11,170
569.3 0.39 85.6 69.1 17,629
785 0.29 68.3 53.0 29,034
859 0.23 51.1 47.2 42,451

1 
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Figure 9. Extinction Coefficient at different density.

4.3. Reflectance

After a transient, all samples reach the same temperature (evaluable from the asymptote of the
signal and the signal/temperature conversion factor). This temperature increase is related to the
absorbed heat through the following usual equation:

Q = mcp∆T (9)

where cp is the specific heat, m the sample mass, and ∆T the asymptotic temperature increase. As all
measurements were carried out with the same flash power, all samples with equal mass and cp should
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reach the same asymptotic temperature. Table 4 and Figure 7 show instead a linearly decreasing
asymptotic temperature of uncoated samples, while the one of coated samples remains constant.
The coating makes the surface perfectly absorbing due to the high emissivity of the Aquadag®

(about 0.99). So, the value of the GNP coated samples can be assumed as reference, because their
reflectance is considered negligible. Reflectance can be calculated from the ratio of reflexed light over
the incident one. Indicating with T∞

coat the asymptotic temperature of the coated samples and T∞
unc

the one of the uncoated, the reflectance results:

β =
T∞

coat − T∞
unc

T∞coat
(10)

Evaluated reflectance values from the tests are reported in Table 4 and Figure 10. The high
reflectance (more than 40%) of the samples pressed with higher loads makes their surface smoother
and brighter.

Table 4. Results of reflectance β at different densities (* Uncoated, ** Coated).

ρ (kg·m−3) T (◦C) * T (◦C) ** β

103.1 26.7 19.4 0
180.7 20 19.1 0.02
248.1 20.7 24.2 0.05
352.9 17.6 18.7 0.09
569.3 15.8 19.8 0.21
785 12.7 26.1 0.29
859 15.8 23.2 0.35
950 15.15 24.5 0.41
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5. Extinction Coefficient Uncertainty Analysis

5.1. Uncertainty due to Thermal Diffusivity and Sample Thickness

The extinction coefficient has been evaluated with NL-LSF analysis using Equation (6) as regression
model. At each density, sample thickness and thermal diffusivity of coated samples were fixed.
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The uncertainty analysis for thickness and thermal diffusivity measurements was already carried
out in [6]. In the present section the type B uncertainties (according to ISO-GUM [18]) of extinction
coefficient due to the propagation of thermal diffusivity and thickness uncertainties are reported. Using
previously reported data, Figures 11 and 12 report the relative change of the extinction coefficient a of
uncoated samples as a function of the relative thickness and thermal diffusivity, at constant density.
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From these figures, it is apparent that the uncertainty propagates asymmetrically. Besides,
Figure 12 reports two trends at different densities: It is evident that the relative deviation of the
extinction coefficient at the same α increases with density.
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5.2. Uncertainty due to Convection/Radiation Effects

When samples are in air and the temperature of sample surface significantly increases,
the hypothesis of adiabaticity can be no more valid, due to start of free convection and radiation
from the sample surfaces to the ambient. In fact, the following Figure 13 show that after some tenths of
a second the sample temperature begins to decrease due to the convection/radiation start. This item
was already handled by other authors [10] and the same authors [19]. The algorithm used to correct
data for taking into account convection/radiation start is the following:

• data after the inflection point of the whole trend (including the temperature decrease) are
processed with a nonlinear least square regression using the lumped parameter solution as model:

T(τ) = T∞ + (T0 − T∞)e−χ·τ (11)

where T0 and T∞ are the initial and asymptotic temperatures of the considered time range, and χ

a constant function of the convection and radiation heat transfer coefficients, the thermal capacity
of the sample and the area exposed to the fluid (air);

• exponential decreasing data are extrapolated till to the start of the pulse heating;
• data used for thermal diffusivity calculation are corrected adding the difference between

Equation (6) and its extrapolated initial value. This procedure returns data not influenced by
convection/radiation, in fact their asymptote results horizontal.
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Figure 13. How raw acquired temperature data are corrected to take into account the convection heat
transfer; red line: Pure convection trend evaluated with the lumped parameter model.

This procedure was carried out on the data reported in the present paper and compared to the
original data, simply interrupted at the maximum value. The difference resulted about 3%, so the
experimental data were corrected in the way above described. The small value of this correction is due
to the short time of the pulse during the thermal diffusivity measurements (0.06 s), which is much less
than the heat transfer due to convection/radiation (2 ÷ 3 s).
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6. Conclusions

A homemade flash method for measuring thermal diffusivity of solid samples was applied to test
graphene nano-platelets (GNP) in the shape of thin plates. The usual hypotheses generally assumed in
the flash method (pulse heat source on the sample irradiated surface, approximated by a Dirac delta
function in time, and opaque samples, i.e., a Dirac delta function also in space) were removed due
to not negligible flash time length and partial penetration of light into the samples. When samples
had been previously blackened with a thin layer (~1 µm) of colloidal graphite, they result completely
opaque, and flash method appears to give consistent thermal diffusivity results. A data processing
algorithm which compares the results of opaque and partially transparent samples was developed to
evaluate the sample transmittance to the impinging flash light. The trend of the extinction coefficient
versus density results is exponentially increasing.
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Nomenclature

Latin
A proportional factor on light intensity in Equation (2) [V]
a extinction coefficient [m−1]
B proportional factor on light intensity in Equation (5) [V]
b nonlinear least square regression coefficient
c constant in Equation (7) [V]
cp specific heat capacity [J·kg−1·K−1]
d constant in Equation (7) [V·◦C−1]
I light intensity [W·m−2]
k thermal conductivity [W·m−1·K−1]
L sample thickness [m]
m mass [kg]
Q thermal energy [J]
.
q specific thermal flux [W·m−1]

R inverse of the time constant [s−1]
S signal [V]
s standard uncertainty (estimated)
T temperature [◦C or K]
t temperature [◦C]
x abscissa along the sample thickness [m]
Greek and composite symbols
α thermal diffusivity [m2·s−1]
β reflectance
δ Dirac delta function
ρ density [kg·m−3]
τ time [s]
χ constant function of Equation (11) [s−1]
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Subscript
0 start, initial value
∞ infinity, asymptotic value
coat coated
unc uncoated
Acronyms
D Dewar
F Flash
GNP Graphene Nano-Plates
MCT Mercury Cadmium Telluride detector
NL-LSF Nonlinear least square fitting
PTFE Polytetrafluoroethylene
SA Sensor Amplifier
SH Sample holder
SPS Sensor Power Supply
ZSL Zinc Selenide Lenses

Appendix A. Analytical Expression of the Propagation of a Double Exponential Pulse in a Solid
Slab by Conduction

According to the Green function method, Equation (1) is the solution when heat generated in the
slab has the shape of a Dirac delta function in time at the irradiated surface (x = 0).

When the effective heat is not described by this function, but by the following:

.
q(x, τ) = B·a· exp(−ax)(exp(−R1τ)− exp(−R2τ)) (A1)

the solution can be obtained considering the overlapping of an infinite number of Dirac delta solutions
with an amplitude corresponding to the intensity of the real input. I.e. the solution is the integral of
Equation (1) delayed in time and in space θ·(x − x′, τ − τ′) multiplied by the values of Equation (A1):

T(x, τ) =

τ∫
0

x∫
0

q
(

x′, τ′
)
ϑ
(
x− x′, τ − τ′

)
dτ′dx′ (A2)

That is the following integral must be solved:

T(x, τ) =
τ∫
0

x∫
0

Ba exp(−ax′)(exp(−R1τ′)− exp(−R2τ′))·

·
[

1 + 2
∞
∑

n=1
cos
(

nπ(x− x′)
L

)
exp

(
−n2π2α(τ − τ′)

L2

)]
dτ′dx′

(A3)

The integration variables can be separated. The time integration gives the Equation (3),
already obtained in [6]. The new integral to be solved is:

T(x, τ) =

x∫
0

B′a exp
(
−ax′

)[
F(τ) + 2

∞

∑
n=1

G(τ) cos
(

nπ(x− x′)
L

)]
dx′ (A4)

where:

F(τ) =
1− exp(−R1τ)

R1
− exp(−R2τ)− 1

R2

and:

G(τ) =

exp(−R1τ)− exp
(
−
(nπ

L

)2
ατ

)
(nπ

L

)2
α− R1

−
exp(−R2τ)− exp

(
−
(nπ

L

)2
ατ

)
(nπ

L

)2
α− R2
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The solution of Equation (A4) is:

T(x, τ) = B′
{

F(τ)(1− exp(−ax)) + 2
∞
∑

n=1

[
G(τ)

(
1 +

(nπ

aL

)2
)−1

(− exp(−aL)

· cos
(

nπ(x− L)
L

)
+ cos

(
nπ(x)

L

)
− nπ

aL
exp(−aL) sin

(
nπ(x− L)

L

)
+

nπ

aL
sin
(

nπ(x)
L

)]} (A5)

Thus the temperature response in x = L is given by:

T(L, τ) = B′
{

F(τ)(1− exp(−aL)) + 2
∞

∑
n=1

[
G(τ)

(
1 +

(nπ

aL

)2
)−1(

− exp(−aL) + (−1)n)]} (A6)
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