
cancers

Brief Report

Breast Cancer Prognosis Using a Machine
Learning Approach

Patrizia Ferroni 1,2,* , Fabio M. Zanzotto 3 , Silvia Riondino 1,4 , Noemi Scarpato 2 ,
Fiorella Guadagni 1,2 and Mario Roselli 4

1 BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247,
00166 Rome, Italy; silvia.riondino@sanraffaele.it (S.R.); fiorella.guadagni@sanraffaele.it (F.G.)

2 Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University,
Via di Val Cannuta 247, 00166 Rome, Italy; noemi.scarpato@unisanraffaele.gov.it

3 Department of Enterprise Engineering, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome,
Italy; fabio.massimo.zanzotto@uniroma2.it

4 Department of Systems Medicine, Medical Oncology, Tor Vergata Clinical Center, University of Rome
“Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; mario.roselli@uniroma2.it

* Correspondence: patrizia.ferroni@sanraffaele.it or ferronipatrizia@gmail.com; Tel.: +39-06-52253733;
Fax: +39-(06)-52255668

Received: 18 December 2018; Accepted: 4 March 2019; Published: 7 March 2019
����������
�������

Abstract: Machine learning (ML) has been recently introduced to develop prognostic classification
models that can be used to predict outcomes in individual cancer patients. Here, we report the
significance of an ML-based decision support system (DSS), combined with random optimization
(RO), to extract prognostic information from routinely collected demographic, clinical and biochemical
data of breast cancer (BC) patients. A DSS model was developed in a training set (n = 318),
whose performance analysis in the testing set (n = 136) resulted in a C-index for progression-free
survival of 0.84, with an accuracy of 86%. Furthermore, the model was capable of stratifying the
testing set into two groups of patients with low- or high-risk of progression with a hazard ratio
(HR) of 10.9 (p < 0.0001). Validation in multicenter prospective studies and appropriate management
of privacy issues in relation to digital electronic health records (EHR) data are presently needed.
Nonetheless, we may conclude that the implementation of ML algorithms and RO models into EHR
data might help to achieve prognostic information, and has the potential to revolutionize the practice
of personalized medicine.
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1. Introduction

The breast cancer (BC) death rate has declined steadily over the past two decades, progress that can
be attributed to the deployment of innovative management pathways, from early detection to treatment.
Nevertheless, BC still represents the leading cause of cancer death among females worldwide [1].
Accordingly, BC survivability prediction represents a challenging task that could strongly benefit
from the development of personalized predictive models. In this context, contemporary oncology has
witnessed a growing interest in digital technologies, whose integration with big healthcare data has
raised new hopes for personalized medicine.

Artificial intelligence (AI) and machine learning (ML) have been used to diagnose and classify
cancer for nearly 20 years, but only a few studies have investigated their relevance in cancer
prognosis [2]. In particular, ML or semi-supervised learning techniques have been recently applied to
develop models for BC progression and survivability. Most of them, however, were built on datasets
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from the SEER (Surveillance Program, Epidemiology, and End Results), not including important
prognostic parameters such as the St. Gallen criteria (hormones receptor status, HER2/Neu expression
or Ki67 proliferation index) [3–5], while other studies were performed on hybrid models containing
microarray data [6] or on mammographic images [7,8]. Lately, an unsupervised ML approach that can
admit any number of prognostic factors, was used to build prognostic systems for cancer patients [9].
Also, in this case, the SEER dataset used did not include information on HER2/Neu expression,
whose prognostic significance has been emphasized in the 8th edition TNM staging system for
BC [10]. Thus, the unmet need to develop prognostic classification models that embody the newest
AI technologies and can be used to predict outcomes in individual cancer patients for personalized
patient care has been highlighted [11].

In this context, we have recently demonstrated the potential of a semi-explainable decision
support system (DSS), based on multiple kernel learning (MKL) [12], that can be adapted to different
medical problems [13,14] and gives the possibility to inspect the learned model. The model combines
a support vector machine (SVM) [15] algorithm and random optimization (RO) [16]. Hence, it can
offer an explanation on how routinely collected demographic, clinical and biochemical data are
important in predictions. This MKL model, originally developed for cancer-associated thrombosis
risk assessment [13], has been here adapted to estimate the risk of disease progression in an oncology
setting of BC patients. To achieve this objective, a proof-of-concept study was specifically designed
to assess whether a customized MKL-based DSS could be a useful prognostic tool in the clinical
management of BC patients.

2. Results

A set of predictors (named ML-RO) was identified using a 3-fold cross-validation technique on
a training set (n = 318). A testing set (n = 136) was used to compute the final performance of risk
predictors. To devise the DSS, we selected ML-RO-4 as the best performing out of a range of ten runs,
in terms of the area under the curve (AUC), on the training set (Table 1).

Table 1. Analytical performance of machine learning with random optimization in the training set.

ML Predictor AUC (SE) 95% CI Sensitivity (95% CI) Specificity (95% CI) +LR −LR

ML-RO-4 0.778 (0.0290) 0.728–0.822 67.1 (55.4–77.5) 88.4 (83.7–92.2) 5.80 0.37
ML-RO-1 0.769 (0.0293) 0.719–0.814 65.8 (54.0–76.3) 88.0 (83.2–91.8) 5.49 0.39
ML-RO-7 0.767 (0.0293) 0.717–0.813 67.1 (55.4–77.5) 86.4 (81.4–90.4) 4.92 0.38
ML-RO-3 0.759 (0.0296) 0.708–0.805 65.8 (54.0–76.3) 86.0 (80.9–90.1) 4.68 0.40
ML-RO-6 0.759 (0.0296) 0.708–0.805 65.8 (54.0–76.3) 86.0 (80.9–90.1) 4.68 0.40
ML-RO-8 0.755 (0.0297) 0.703–0.801 65.8 (54.0–76.3) 85.1 (80.0–89.4) 4.42 0.40
ML-RO-0 0.753 (0.0297) 0.701–0.799 65.8 (54.0–76.3) 84.7 (79.5–89.0) 4.30 0.40
ML-RO-2 0.748 (0.0299) 0.697–0.795 64.5 (52.7–75.1) 85.1 (80.0–89.4) 4.33 0.42
ML-RO-9 0.739 (0.0302) 0.687–0.786 61.8 (50.0–72.8) 86.0 (80.9–90.1) 4.40 0.44
ML-RO-5 0.722 (0.0306) 0.669–0.770 59.2 (47.3–70.4) 85.1 (80.0–89.4) 3.98 0.48

AUC: Area under the curve; CI: Confidence interval; LR: Likelihood ratio; ML: Machine learning; RO:
Random optimization.

As shown in Table 1, most predictors had a receiver operating characteristic (ROC) curve with
an AUC ≥0.75 (the threshold generally accepted as clinically useful) [17]. Among these, ML-RO-0
was further selected as it provided a major relative importance to the group of features linked to
glucose metabolism (Group 5) (Table 2), which is currently considered an important contributor to
BC progression [18,19], at the point that metformin—an anti-diabetic drug with insulin-lowering
effects—has been proposed in combination with chemotherapy [20,21] and is currently being
considered vs. placebo in a phase-III randomized trial in early stage BC (ClinicalTrials.gov Identifier:
NCT01101438).

ClinicalTrials.gov
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Table 2. Weights of attribute groups in the training set.

Method
Group Sum of the

Weights
Normalized Group Weights

1 2 3 4 5 1 2 3 4 5

ML+RO-4 0.41890 1.04551 0.60311 0.33909 0.58969 2.996321 0.13980 0.34893 0.20128 0.11316 0.19680
ML+RO-0 0.77299 1.86062 1.39445 0.90456 1.00740 5.940053 0.13013 0.31323 0.23475 0.15228 0.16959
ML+RO-6 0.42756 0.91373 1.16514 0.39297 0.58755 3.486968 0.12261 0.26204 0.33414 0.11269 0.16849
ML+RO-8 0.44878 1.28224 0.63075 0.44350 0.53398 3.339267 0.13439 0.38399 0.18888 0.13281 0.15991
ML+RO-1 0.46149 1.17742 0.55782 0.34141 0.47660 3.014770 0.15307 0.39055 0.18503 0.11324 0.15809
ML+RO-7 0.54682 1.40025 0.79264 0.59119 0.61023 3.941154 0.13874 0.35529 0.20112 0.15000 0.15483
ML+RO-3 0.64274 1.13249 0.36078 0.39482 0.45241 2.983255 0.21545 0.37961 0.12093 0.13234 0.15165

Data are absolute numbers for group weights. ML: Machine Learning; RO: Random Optimization.

When both predictors were incorporated into a DSS model for BC progression, their combined use
(both positive, either positive, both negative) in the testing set translated in a c-statistic = 0.84 (95% CI:
0.76–0.90). The level with the best Youden index at ROC analysis (>1, i.e., risk estimate achieved by
both predictors, according to voting on the positive class) was then selected as the cutoff value for
further evaluation of the combined DSS. A comparison of the analytical performance of the trained
models and derived DSS on the testing set is reported in Table 3.

Table 3. Analytical performance of machine learning with random optimization in the testing set.

Performance Parameter ML-RO-0 ML-RO-4 DSS Model a

F-measure b 0.696 0.677 0.698
Accuracy 0.853 0.838 0.860

Area under the curve (AUC) 0.822 0.813 0.815
(+)LR (95% CI) 9.1 (4.3–20.8) 8.5 (3.9–19.6) 8.6 (4.2–18.0)
(−)LR (95% CI) 0.4 (0.3–0.6) 0.4 (0.3–0.6) 0.4 (0.2–0.5)

HR (95% CI) 10.7 (4.6–24.8) 10.3 (4.5–23.7) 10.9 (4.5–26.6)

LR: Likelihood ratio; C.I.: Confidence interval; HR: Hazard ratio; a Analytical performance was evaluated after
categorization 0/1 based on risk estimate achieved by both predictors; b F-measure represents a harmonic mean of
precision [(P) positive predictive value in machine learning] and recall [(R) sensitivity in machine learning] and is
calculated as: 2PR/(P+R).

At a criterion >1, the DSS model was capable of stratifying primary BC patients into two groups
with a low- or high-risk of progression, either in the training (n = 279; log-rank = 3.23, p = 0.001) or
in the testing set (n = 118; log-rank = 3.42, p < 0.001). Figure 1 reports the Kaplan–Meier curves of
progression-free survival (PFS) in the 136 BC women included in the testing set and followed-up for a
mean time of 3.5 years (ranging from 0.3–9.7 years). As shown, patients estimated at high risk (>1) of
progression by the combined DSS model had a 5-year progression-free survival probability significantly
lower than that observed in BC patients estimated at low-risk (≤1) (26% vs. 85%, respectively;
log-rank = 6.82, p < 0.0001).
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Figure 1. Kaplan–Meier curves of progression-free survival (PFS) of the 136 BC women included in 
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3. Discussion 

Treatment decisions are particularly challenging in early-stage BC patients with conflicting 
prognostic features, especially node-negative ones, in which the question of whether to pursue an 
adjuvant treatment with chemotherapy or endocrine therapies is still unclear. Putative biomarkers, 
so far, have not demonstrated sufficient predictive ability to be clinically useful. Ki67 itself lacks 
reproducibility and its use, if not part of an AI model, has been largely re-dimensioned [22]. 
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ML has started to take hold across the oncology community to develop prognostic classifications 
models of BC progression and survivability [9]. In this regard, the possibility to perform an 
automated survival prediction in metastatic cancer patients using high-dimensional electronic health 
records (EHR) data has been recently highlighted [23]. By using an ML approach on EHR-derived 
predictor variables (clustered into categories), Gensheimer et al., in fact, devised an AI system, with 
a better c-statistic than previously reported prognostic models, which could be deployed in a DSS to 
help improve quality of care in the metastatic setting [23]. More recently, four major nonlinear ML 
methods (integrating multiple clinicopathological features and genomic data) were used to compare 
survival predictions in a large cohort of BC patients [24]. Although no model significantly 
outperformed others, the Nottingham Prognostic Index, age, tumor stage and size, ER/PR/HER2 and 
breast surgery status strongly influenced survival across repeated runs and models, while the gene 
expression cluster was a moderately influential factor [24]. 

The results here reported confirm and extend the findings by Zhao et al., as the use of an SVM 
has proven effective in devising an AI-based DSS for the prognostic assessment of non-metastatic BC 
patients. In particular, the combined use of ML and RO techniques, allowed the construction of a set 
of prognostic discriminators from routinely collected clinicopathological features and biochemical 
data of BC patients, which showed a better performance than the predictors developed by Zhao et al. 
(c-statistic 0.82 vs. 0.66 and an accuracy of 86% vs. 73%, respectively) [24]. In our opinion, this 
combined approach might hold potential for improving model precision through weighting the 
relative importance of attributes. Moreover, with respect to models based on neural networks [7], the 
combination of ML and RO techniques offers a model that can be learned with small datasets and 
that is more interpretable, as were Bayesian networks applied to BC [25]. Furthermore, the devised 

Figure 1. Kaplan–Meier curves of progression-free survival (PFS) of the 136 BC women included in the
testing set. Comparison between patients at high (>1) or low-risk (≤1) of progression by the combined
decision support system (DSS) model.

3. Discussion

Treatment decisions are particularly challenging in early-stage BC patients with conflicting
prognostic features, especially node-negative ones, in which the question of whether to pursue an
adjuvant treatment with chemotherapy or endocrine therapies is still unclear. Putative biomarkers,
so far, have not demonstrated sufficient predictive ability to be clinically useful. Ki67 itself lacks
reproducibility and its use, if not part of an AI model, has been largely re-dimensioned [22].

Identification of predictive tools of tumor responsiveness, risk of recurrence, and mortality,
providing the possibility to avoid unnecessary toxicities are thus very appealing. As reported above,
ML has started to take hold across the oncology community to develop prognostic classifications
models of BC progression and survivability [9]. In this regard, the possibility to perform an automated
survival prediction in metastatic cancer patients using high-dimensional electronic health records
(EHR) data has been recently highlighted [23]. By using an ML approach on EHR-derived predictor
variables (clustered into categories), Gensheimer et al., in fact, devised an AI system, with a better
c-statistic than previously reported prognostic models, which could be deployed in a DSS to help
improve quality of care in the metastatic setting [23]. More recently, four major nonlinear ML methods
(integrating multiple clinicopathological features and genomic data) were used to compare survival
predictions in a large cohort of BC patients [24]. Although no model significantly outperformed others,
the Nottingham Prognostic Index, age, tumor stage and size, ER/PR/HER2 and breast surgery status
strongly influenced survival across repeated runs and models, while the gene expression cluster was a
moderately influential factor [24].

The results here reported confirm and extend the findings by Zhao et al., as the use of an SVM
has proven effective in devising an AI-based DSS for the prognostic assessment of non-metastatic BC
patients. In particular, the combined use of ML and RO techniques, allowed the construction of a set
of prognostic discriminators from routinely collected clinicopathological features and biochemical
data of BC patients, which showed a better performance than the predictors developed by Zhao
et al. (c-statistic 0.82 vs. 0.66 and an accuracy of 86% vs. 73%, respectively) [24]. In our opinion,
this combined approach might hold potential for improving model precision through weighting the
relative importance of attributes. Moreover, with respect to models based on neural networks [7],
the combination of ML and RO techniques offers a model that can be learned with small datasets and
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that is more interpretable, as were Bayesian networks applied to BC [25]. Furthermore, the devised DSS
included a number of prognostic and metabolic parameters, not previously analyzed, that could be
easily extracted by EHR, meaning that ML may add significant and sustained benefits to personalized
medicine at no additional cost to the health system.

Of course, there are limitations to acknowledge. First, the study was mono-institutional. Second,
the sample size was relatively small, which may have lowered the power of ML. Nonetheless,
we believe that implementation of ML algorithms and RO models into high-dimensional EHR data
might help to achieve prognostic information, and has the potential to revolutionize the practice of
personalized medicine.

4. Patients and Methods

Starting from January 2007, the PTV Bio.Ca.Re. (Policlinico Tor Vergata Biospecimen Cancer
Repository) and the SR-BioBIM (Interinstitutional Multidisciplinary Biobank, IRCCS San Raffaele
Pisana, Rome, Italy) are actively involved in the recruitment of ambulatory patients with primary or
metastatic cancer, who are prospectively followed under the appropriate institutional ethics approval,
as part of a Clinical Database and Biobank project. Among these, a cohort of 454 consecutive BC
patients in whom prognostic and pre-treatment biochemical factors were available, were selected
for the present analysis. The study was performed in accordance with the principles embodied in
the Declaration of Helsinki. All patients gave written informed consent, previously approved by
our Institutional Ethics Committee (ISR/DMLBA/405, 15 November 2006). BC was pathologically
staged according to the latest prognostic TNM staging system [8]. Three hundred and ninety-seven
women (87%) had primary BC and underwent radical surgery followed by radiation and/or
adjuvant treatment as per current guidelines. The remaining 57 (13%) patients presented with
metastatic disease. Prognostic routinely-collected factors such as BC stage, menopausal status,
pathological grading as well as the St. Gallen criteria (e.g., estrogen and progesterone receptors,
HER2/neu expression and the proliferation index Ki67) were available for each patient. In particular,
grading was assessed according to the Nottingham grading system (Elston–Ellis modification of
the Scarff–Bloom–Richardson grading system) for BC [8]. The immunohistochemical analyses were
performed on formalin-fixed, paraffin-embedded tumor sections for hormone receptor presence [26],
HER2/neu expression [27] and proliferation index (Ki67) [28]. HER2/neu positivity was defined
according to the American Society of Clinical Oncology-College of American Pathologists (ASCO-CAP)
guidelines as an immunohistochemical staining of 3+ or 2+ with evidence of gene amplification by
fluorescence in situ hybridization (FISH) [27]. The Ki67 proliferative index in surgical specimens
was assigned by the pathologist based on the percentage of positivity on at least 500 neoplastic cells
counted in the peripheral area of the nodule. A cut–off value of ≥20% was used in all association
analyses, according to the recommendations of the St. Gallen International Expert Consensus on the
primary therapy of early BC 2013 [28].

Furthermore, given the increasing awareness that metabolic features might represent an important
contributor to BC progression, Type 2 diabetes, glycemic parameters and the body mass index (BMI)
were introduced in the model [18,19]. Routine biochemical analyses were performed on fresh blood
samples taken in the morning after an overnight fast at the time of enrolment and prior to any treatment
(surgery, adjuvant, either chemotherapy or endocrine, or metastatic). The demographic and clinical
characteristics of the recruited population are summarized in Table 4.
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Table 4. Clinical-pathological characteristics of breast cancer (BC) patients. Comparison between
training and testing set.

Clinical-Pathological Characteristics Training Set (n = 318) Testing Set (n = 136)

Age (years), Mean ± SD 56 ± 13 57 ± 12
Menopausal status, N (%)

Pre 141 (44) 51 (38)
Post 177 (56) 85 (63)

Body Mass Index, Mean ± SD 25.2 ± 4.5 25.7 ± 5.2
Histological diagnosis, N (%)

Ductal 263 (83) 121 (89)
Lobular 37 (12) 9 (7)
Others 18 (5) 6 (4)

Molecular Type a, N (%)
Triple-negative 39 (12) 17 (12)
Luminal-like A 97 (31) 37 (27)
Luminal-like B 172 (54) 77 (57)

HER2 pos 10 (3) 5 (4)
Grading, N (%) b

1 20 (7) 15 (13)
2 108 (39) 45 (38)
3 151 (54) 58 (49)

Tumor, N (%) b

T1 141 (50) 59 (50)
T2 91 (33) 42 (36)
T3 28 (10) 5 (4)
T4 19 (7) 12 (10)

Node, N (%) b

N0 134 (48) 54 (46)
N+ 145 (52) 64 (54)

Prognostic stage, N (%)
I 177 (56) 70 (50)
II 53 (17) 20 (15)
III 45 (14) 26 (19)
IV 4 (1) 2 (1)

Metastatic 39 (12) 18 (13)
Receptor status, N (%) c

ER+/PR+ 235 (74) 94 (69)
ER+/PR− 29 (9) 19 (14)
ER-/PR+ 5 (2) 1 (1)
ER-/PR− 49 (15) 22 (16)

HER2/neu+, N (%) c 66 (21) 34 (25)
Ki67 proliferation index ≥20%, N (%) c 204 (67) 93 (71)

Type 2 Diabetes, N (%) 39 (12) 11 (8%)
Glucose metabolic asset d

Fasting blood glucose (mg/dl), Mean ± SD 105 ± 31 102 ± 32
Fasting insulin (µIU/ml), Median (IQR) 11.9 (6.4–27.0) 10.6 (5.6–19.6)

HbA1c (%), Mean ± SD 5.8 ± 0.8 5.8 ± 0.7
HOMA Index, Mean ± SD 3.0 (1.4–8.3) 2.9 (1.2–6.3)

Follow-up (years)
Mean (range) 3.4 (0.29–10.5) 3.5 (0.26–9.65)

a According to St. Gallen Consensus Conference. b Evaluated at time of diagnosis. c Evaluated in a population
of 397 primary breast cancer patients. d Evaluated at time of enrollment and prior to any treatment. ER/PR:
estrogen/progesterone receptors; HER2: Human epidermal growth factor receptor 2; IQR: Interquartile range;
HbA1c: Glycosylated hemoglobin; HOMA Index: Homeostasis model assessment index.

The machine learning used for the primary analysis was run using the kernel-based learning
platform (KeLP) [29], as previously reported [13]. Multiple kernel learning (MKL), based on support
vector machines (SVM) and random optimization (RO) models, were used to produce prognostic
discriminators (referred as machine-learning (ML)-RO) yielding the best classification performance
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over a training (3-fold cross-validation) and testing set. The training set consisted of 318 BC patients
(70% of the dataset); the remaining 136 patients were allocated to the testing set (30% of the cases).
No significant difference was observed for demographic, clinical and biochemical characteristics
between the training and testing set (Table 4). The numerical attributes were analyzed as continuous
values. Missing clinical attribute values were treated according to the predictive value imputation
(PVI) method by replacing missing values with the average of the attribute observed in the training
set. The variables were clustered into five groups according to clinical significance. A detailed list
of all the features applied to construct the predictor is reported in Table 5. RO was used to devise
their relative weights in the final prediction. In RO, relative weights are initialized with a random
number and estimated by maximizing performance in the 3-fold cross-validation. These weights can
be used to interpret the importance of the groups of features within the model. Thus, the final DSS
is interpretable.

Table 5. Features included in the model.

Patient-Related Tumor-Related Biochemical

Group 1:
Age Menopausal status

Body Mass Index

Group 2: Molecular type
Histological diagnosis

Grading
TNM stage

Group 4: Total BilirubinCreatinine

Group 5: Fasting glycemia
Fasting insulinemia

Glycosylated hemoglobin
HOMA index (insulin resistance)

Type 2 diabetes

Group 3: Estrogen receptors
Progesterone receptors

HER2/NEU
Ki67 proliferation index

Statistical analysis

The receiver operating characteristic (ROC) curve and univariate Cox proportional hazards
analyses were performed by MedCalc Statistical Software version 13.1.2 (MedCalc Software bvba,
Ostend, Belgium). The area under the curve (AUC) was calculated on a three-level risk: 2 (if both
predictors estimated the risk), 1 (if only one predictor estimated the risk) or 0 (if both predictors did not
estimate the risk) to investigate whether the combined DSS could distinguish between recurrent and
non-recurrent patients. The level with the best Youden index (>1, i.e., risk estimate achieved by both
predictors) was selected as the cutoff value for the combined DSS. Bayesian analysis was performed,
and positive (+LR) and negative (−LR) likelihood ratios were used to estimate the probability of
BC progression. The survival curves were calculated by the Kaplan–Meier and log-rank methods
using computer software packages (MedCalc Software bvba, Ostend, Belgium and Statistica 8.0,
StatSoft Inc., Tulsa, OK, USA). The PFS represented the study endpoint and was calculated from
the date of enrollment until disease progression. The patients who had no disease progression were
censored at the time of the last follow-up. For administrative censoring, the follow-up ended on
31 December, 2017. All tests were two-tailed and only p-values lower than 0.05 were regarded as
statistically significant.

5. Conclusions

ML has recently started to take hold across the oncology community to develop prognostic
classifications models of cancer progression and survivability. In our opinion, a combined approach of
ML algorithms and RO models might hold potential for improving model precision through weighting
the relative importance of attributes. In line with the actual trend, in fact, the proposed model seeks not
only decision, but also interpretability of the model itself, which, together with the use of a real-world
BC dataset, represents the novel aspect of our research. Validation in multicenter prospective studies
and appropriate management of privacy issues in relation to digital EHR data are required before
making any ML approach into the clinical practice available.



Cancers 2019, 11, 328 8 of 9

Author Contributions: P.F. and M.R. designed the study, analyzed and interpreted the clinical data, and wrote
the manuscript; F.M.Z. and N.S. designed the algorithm, performed the machine learning experiments, and wrote
the manuscript; S.R. collected clinical and laboratory data, interpreted the data and wrote the manuscript;
F.G. designed the study, analyzed and interpreted the data, and critically revised the manuscript. All authors
revised and approved the final version of the manuscript.

Funding: This work was partially supported by the European Social Fund, under the Italian Ministries of
Education, University and Research (PNR 2015-2020 ARS01_01163 PerMedNet—CUP B66G18000220005) and
Economic Development (“HORIZON 2020” PON I&C 2014-2020—F/050383/01-03/X32).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer
J. Clin. 2015, 65, 87–108. [CrossRef] [PubMed]

2. Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in
cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2014, 13, 8–17. [CrossRef] [PubMed]

3. Delen, D.; Walker, G.; Kadam, A. Predicting breast cancer survivability: A comparison of three data mining
methods. Artif. Intell. Med. 2005, 34, 113–127. [CrossRef] [PubMed]

4. Kim, J.; Shin, H. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient
data. J. Am. Med. Inform. Assoc. 2013, 20, 613–618. [CrossRef] [PubMed]

5. Park, K.; Ali, A.; Kim, D.; An, Y.; Kim, M.; Shin, H. Robust predictive model for evaluating breast cancer
survivability. Eng. Appl. Artif. Intell. 2013, 26, 2194–2205. [CrossRef]

6. Sun, Y.; Goodison, S.; Li, J.; Liu, L.; Farmerie, W. Improved breast cancer prognosis through the combination
of clinical and genetic markers. Bioinformatics 2007, 23, 30–37. [CrossRef] [PubMed]

7. Burt, J.R.; Torosdagli, N.; Khosravan, N.; RaviPrakash, H.; Mortazi, A.; Tissavirasingham, F.; Hussein, S.;
Bagci, U. Deep learning beyond cats and dogs: Recent advances in diagnosing breast cancer with deep
neural networks. Br. J. Radiol. 2018, 91, 20170545. [CrossRef] [PubMed]

8. Yousefi, B.; Ting, H.N.; Mirhassani, S.M.; Hosseini, M. Development of computer-aided detection of breast
lesion using gabor-wavelet BASED features in mammographic images. In Proceedings of the 2013 IEEE
International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia,
29 November–1 December 2013; pp. 127–131.

9. Hueman, M.T.; Wang, H.; Yang, C.Q.; Sheng, L.; Henson, D.E.; Schwartz, A.M.; Chen, D. Creating prognostic
systems for cancer patients: A demonstration using breast cancer. Cancer Med. 2018, 7, 3611–3621. [CrossRef]
[PubMed]

10. Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.;
Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.;
Springer: New York, NY, USA, 2017.

11. O’Sullivan, B.; Brierley, J.; Byrd, D.; Bosman, F.; Kehoe, S.; Kossary, C.; Piñeros, M.; Van Eycken, E.; Weir, H.K.;
Gospodarowicz, M. The TNM classification of malignant tumours-towards common understanding and
reasonable expectations. Lancet Oncol. 2017, 18, 849–851. [CrossRef]

12. Gönen, M.; Alpaydın, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268.
13. Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Nanni, U.; Roselli, M.; Guadagni, F. Risk assessment

for venous thromboembolism in chemotherapy treated ambulatory cancer patients: A precision medicine
approach. Med. Dec. Mak. 2017, 37, 234–242. [CrossRef] [PubMed]

14. Ferroni, P.; Roselli, M.; Zanzotto, F.M.; Guadagni, F. Artificial Intelligence for cancer-associated thrombosis
risk assessment. Lancet Haematol. 2018, 5, e391. [CrossRef]

15. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and other kernel based learning
methods. Ai Magazine 2000, 22, 190.

16. Matyas, J. Random optimization. Automat. Rem. Control 1965, 26, 246–253.
17. Fan, J.; Upadhye, S.; Worster, A. Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg.

Med. 2006, 8, 19–20. [CrossRef]
18. Zhu, Q.L.; Xu, W.H.; Tao, M.H. Biomarkers of the Metabolic Syndrome and Breast Cancer Prognosis.

Cancers 2010, 2, 721–739. [CrossRef] [PubMed]

http://dx.doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/25651787
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25750696
http://dx.doi.org/10.1016/j.artmed.2004.07.002
http://www.ncbi.nlm.nih.gov/pubmed/15894176
http://dx.doi.org/10.1136/amiajnl-2012-001570
http://www.ncbi.nlm.nih.gov/pubmed/23467471
http://dx.doi.org/10.1016/j.engappai.2013.06.013
http://dx.doi.org/10.1093/bioinformatics/btl543
http://www.ncbi.nlm.nih.gov/pubmed/17130137
http://dx.doi.org/10.1259/bjr.20170545
http://www.ncbi.nlm.nih.gov/pubmed/29565644
http://dx.doi.org/10.1002/cam4.1629
http://www.ncbi.nlm.nih.gov/pubmed/29968970
http://dx.doi.org/10.1016/S1470-2045(17)30438-2
http://dx.doi.org/10.1177/0272989X16662654
http://www.ncbi.nlm.nih.gov/pubmed/27491558
http://dx.doi.org/10.1016/S2352-3026(18)30111-X
http://dx.doi.org/10.1017/S1481803500013336
http://dx.doi.org/10.3390/cancers2020721
http://www.ncbi.nlm.nih.gov/pubmed/24281091


Cancers 2019, 11, 328 9 of 9

19. Ferroni, P.; Riondino, S.; Laudisi, A.; Portarena, I.; Formica, V.; Alessandroni, J.; D’Alessandro, R.; Orlandi, A.;
Costarelli, L.; Cavaliere, F.; et al. Pre-treatment insulin levels as a prognostic factor for breast cancer
progression. Oncologist 2016, 21, 1041–1049. [CrossRef] [PubMed]

20. Yam, C.; Esteva, F.J.; Patel, M.M.; Raghavendra, A.S.; Ueno, N.T.; Moulder, S.L.; Hess, K.R.; Shroff, G.S.;
Hodge, S.; Koenig, K.H.; et al. Efficacy and safety of the combination of metformin, everolimus and
exemestane in overweight and obese postmenopausal patients with metastatic, hormone receptor-positive,
HER2-negative breast cancer: A phase II study. Investig. New Drugs 2019. [CrossRef] [PubMed]

21. Martin-Castillo, B.; Pernas, S.; Dorca, J.; Álvarez, I.; Martínez, S.; Pérez-Garcia, J.M.; Batista-López, N.;
Rodríguez-Sánchez, C.A.; Amillano, K.; Domínguez, S.; et al. A phase 2 trial of neoadjuvant metformin
in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer:
The METTEN study. Oncotarget 2018, 9, 35687–35704. [CrossRef] [PubMed]

22. Thakur, S.S.; Li, H.; Chan, A.M.Y.; Tudor, R.; Bigras, G.; Morris, D.; Enwere, E.K.; Yang, H. The use of
automated Ki67 analysis to predict Oncotype DX risk-of-recurrence categories in early-stage breast cancer.
PLoS ONE 2018, 13, e0188983. [CrossRef] [PubMed]

23. Gensheimer, M.F.; Henry, A.S.; Wood, D.J.; Hastie, T.J.; Aggarwal, S.; Dudley, S.A.; Pradhan, P.; Banerjee, I.;
Cho, E.; Ramchandran, K.; et al. Automated survival prediction in metastatic cancer patients using
high-dimensional electronic medical record data. J. Natl. Cancer Inst. 2019, 111, djy178. [CrossRef] [PubMed]

24. Zhao, M.; Tang, Y.; Kim, H.; Hasegawa, K. Machine learning with k-means dimensional reduction for
predicting survival outcomes in patients with breast cancer. Cancer Inf. 2018, 17, 1–7. [CrossRef] [PubMed]

25. Cruz-Ramírez, N.; Acosta-Mesa, H.G.; Carrillo-Calvet, H.; Nava-Fernández, L.A.; Barrientos-Martínez, R.E.
Diagnosis of breast cancer using Bayesian networks: A case study. Comput. Biol. Med. 2007, 37, 1553–1564.
[CrossRef] [PubMed]

26. Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.;
Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American
Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone
receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [CrossRef] [PubMed]

27. Wolff, A.C.; Hammond, M.E.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; Dowsett, M.;
Fitzgibbons, P.L.; Hanna, W.M.; Langer, A.; et al. American Society of Clinical Oncology/College of
American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline
recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab.
Med. 2007, 131, 18–43. [PubMed]

28. Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.;
Panel Members. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen
International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24,
2206–2223. [CrossRef] [PubMed]

29. Filice, S.; Castellucci, G.; Croce, D.; Basili, R. KeLP: A Kernel-based Learning Platform for Natural Language
Processing. In Proceedings of the ACL-IJCNLP 2015 System Demonstrations, Beijing, China, 26–31 July 2015;
pp. 19–24.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1634/theoncologist.2015-0462
http://www.ncbi.nlm.nih.gov/pubmed/27388232
http://dx.doi.org/10.1007/s10637-018-0700-z
http://www.ncbi.nlm.nih.gov/pubmed/30610588
http://dx.doi.org/10.18632/oncotarget.26286
http://www.ncbi.nlm.nih.gov/pubmed/30479698
http://dx.doi.org/10.1371/journal.pone.0188983
http://www.ncbi.nlm.nih.gov/pubmed/29304138
http://dx.doi.org/10.1093/jnci/djy178
http://www.ncbi.nlm.nih.gov/pubmed/30346554
http://dx.doi.org/10.1177/1176935118810215
http://www.ncbi.nlm.nih.gov/pubmed/30455569
http://dx.doi.org/10.1016/j.compbiomed.2007.02.003
http://www.ncbi.nlm.nih.gov/pubmed/17434159
http://dx.doi.org/10.1200/JCO.2009.25.6529
http://www.ncbi.nlm.nih.gov/pubmed/20404251
http://www.ncbi.nlm.nih.gov/pubmed/19548375
http://dx.doi.org/10.1093/annonc/mdt303
http://www.ncbi.nlm.nih.gov/pubmed/23917950
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Patients and Methods 
	Conclusions 
	References

