
Approximating Finite Resources: an approach based on
MVAI

Vittoria de Nitto Personé and Andrea Di Lonardo

University of Rome Tor Vergata, Via del Politecnico 1 00133, Rome, Italy

Abstract

Blocking is the phenomenon where a service request to a queue is momentarily stopped,
but not lost, until the service becomes available again. Blocking is a difficult phe-
nomenon to model analytically, because it creates strong interdependencies between
system components. Mean Value Analysis (MVA) is one of the most appealing evalu-
ation methodologies due to its low computational cost and ease of use. In this paper,
an approximate MVA for Bloking After Service is presented that greatly outperforms
previous results. The new algorithm is obtained by analyzing interdependencies due
to the blocking mechanism and by accordingly modifying the MVA equations. The
proposed algorithm is tested over about sixty cases and error and computational cost
analysis is presented. Finally, the method is applied to capacity planning for healthcare
systems, where its simplicity and ease of use is demonstrated, making the case that it
can be easily employed by non-experts.

Keywords: blocking, modeling techniques, performance, capacity planning,
healthcare systems

1. Introduction

Resources are not infinite. In daily life, the space to host patients or more generally
users, is limited. In computer systems and in networks, memory, bandwidth or even
virtual machines are finite. Even systems management policies may assume to limit
the arrival flow to guarantee QoS requirements, as admission control or concurrency
constraints. While finite capacity of resources is a reality, in modeling for prediction
or for decision planning the resource capacity is generally assumed as infinite.

In queueing models, finite resources are represented by the blocking mechanism,
where a service request is momentarily stopped, but not lost, until the service becomes
available again. Consequently, blocking can affect system performance significantly.
In the following, we use the terms node, queue or servers as synonyms.

IDeclaration of interest: none. This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

Email address: denitto@ing.uniroma2.it (Vittoria de Nitto Personé and Andrea Di Lonardo)

Preprint submitted to Elsevier December 4, 2018

In general, when a node is full any upstream server is blocked from sending jobs
to the full queue. The rules according which this happens correspond to different be-
haviors and define the so called blocking model. We point the interested reader to
[1, 2, 3, 4] for an extensive bibliography of different blocking mechanisms that model
distinct behaviors of blocking in real systems.

Blocking models are used in several fields, spanning from the most traditional as
computer systems, communication systems and networks, production systems, to the
less traditional ones including software architectures [5], multi-tier applications [6] and
also in the emerging area of healthcare systems [7].

Despite its importance, blocking is a difficult phenomenon to model analytically,
because it results in strong dependencies in the behavior of system components. As a
consequence, the separability property does not hold and an exact solution is complex
and computationally expensive. However ignoring the blocking phenomenon can lead
to completely erroneous conclusions.

In this paper, we consider blocking within the concept of general topology net-
works. To the best of our knowledge, there are few results in the literature for general
topology networks [1]. Among the analytical techniques for general topologies, Mean
Value Analysis [8] still plays an important role. Because of its simplicity and effi-
ciency, MVA is a popular solution technique for applications from disparate fields,
including manufacturing [9], military [10], polling systems [11], software engineering
[12], system migration [12], web [13, 14, 15, 16], multi-core systems [17], web traffic
modelling [18], and theory [19]. Some extensions of the Arrival Theorem [8], the core
of MVA, to blocking exist [1]. In particular, an extension of MVA holds for Repetitive
Service (RS) blocking [20], as well as for Blocking After Service (BAS) [21, 22]. The
interested reader can refer to [22] for other references limited to cyclic networks. In-
formally, according to RS mechanism, when a node is full an arriving job is rerouted to
its sending queue where it receives a new independent service. In this case, queues are
never effectively blocked. On the contrary, according to BAS mechanism, a node that
completes a job for a full queue is blocked until the destination completes a service.

In [20], a class of product form (PF) networks is considered. PF solutions hold
when in the steady state each queue works independently from each other queue, as
it was in isolation. According to RS definition, the node is not blocked at all, but the
service is repeated until the destination queue becomes ”available” again. This allows
for the separability property.

In [21, 22], non-PF networks with BAS blocking are considered. In [22], the pro-
posed extension, called EMVA, is obtained using load dependent servers and queue
length distributions. The standard MVA technique suffers of instability which is more
pronounced as population grows. In [21], the MVABLO algorithm tries to modify the
arrival theorem to include the blocking behavior without resorting to the queue length
distribution. In some cases, the results show that throughput is effectively modeled, but
other performance measures are not captured well. MVABLO shows the worst results
for cyclic networks, that is queues connected in a unidirectional ring topology.

On the basis of the above considerations, we present an approximate MVA for BAS
blocking that iteratively corrects node populations to consider the effects of blocking.
The method is called debeMVA (MVA for dependent behaviour) and is obtained by
an in-depth analysis of the interdependencies due to the blocking mechanism and by

2

consequently modifying the MVA equations. The crux of the proposed approximation
is a) the identification of nodes mainly influenced by blocking and b) a modification of
their population that is computed iteratively. Note that blocking leads to a not negli-
gible transient behaviour immediately before/immediately after saturation. We define
several functions that capture the dependency between pair of nodes and we propose
an iterative approach to capture transient behaviour in the long term. We propose a
conjecture to approximate the Arrival Theorem for dependent behaviour. debeMVA
shows good results for general topology networks and improves significantly the ap-
proximation regarding of MVABLO [21]. In all cases, convergence speed is fast.

As a case study we select a real problem where the ease of use and low computa-
tional complexity are demonstrated. We consider healthcare systems that represent a
critical and important sector of social life. In this case, capacity planning studies are
very important both for care efficiency and economical perspective. Moreover, often
decisions must be taken by non-expert people and the ease of use and intuitive appeal
of MVA is crucial for its usability. We apply the proposed method to the capacity plan-
ning for healthcare systems presented in [7]. We obtain the same results, but at a lower
computational cost and with a more flexible approach. We show that even a non-expert
can easily investigate all options and select the most convenient and efficient solution.

The paper is organized as follows. Section 2 presents the model and the charac-
teristics of blocking. Section 3 presents related works and introduces the core charac-
teristics of debeMVA. Section 4 presents the proposed approach, the Blocking Arrival
Theorem, debeMVA algorithm and the results of the approximation on three networks
with high correlation among nodes, so emphasizing the difficulty of approximating a
non-separability behaviour. Section 5 presents computational cost and error analysis
of experiments on 56 networks that differ in the number of nodes, their topologies, and
their parameters. We compare results obtained by the proposed algorithm with results
obtained by MVABAS [23], MVABLO [21] and the exact solution. Finally, Section 6
showcases the method using a case study. Section 7 concludes the paper.

2. The Model

We consider a single-class closed queueing network with routing matrix P such that
jobs departing from queue i are directed to queue j with probability pij . The network
include abstract scheduling single-server nodes and IS nodes. The service time si is
assumed exponentially distributed for single-server nodes and generally distributed for
IS nodes. By denoting the capacity of queue j and its current population with Bj and
nj respectively, when nj = Bj , then queue j is full and does not accept in its waiting
buffer any new job before a departure occurs. In this case, queue i essentially becomes
blocked. Note that deadlock can occur in the presence of blocking. In the following, we
assume that the network population value is such that deadlock prevention is guaran-
teed [1]. The time of blocking, the unblocking rule and the behavior of the job possibly
in execution in i at the blocking time are defined by the blocking mechanism.

Blocking After Service (BAS) is one of the most used blocking mechanisms and
is defined as follows: a queue i, if not empty, processes a job regardless of the job
population at its destination j. When node i completes service and node j is full, node
i suspends any activity (i.e., it is blocked) and the completed job waits until a departure

3

occurs from node j. At that moment two simultaneous transitions take place: the
completed/blocked job moves from i to j (since j can now accept a job, i ”unblocks”)
and the job that leaves j (which effectively ”unblocks” server i). In a general network
topology where more than one queue compete for sending a job towards a full queue
j, a policy regulating the order in which queues unblock has to be defined. Usually,
the First Blocked First Unblocked (FBFU) policy is considered fair: first unblock the
queue that was blocked first. BAS is used to model production systems and disk I/O
subsystems [24].

The blocking mechanism and the simultaneous transitions yields a complexity in
the state space transitions as can be seen by the simple example of a three nodes net-
work, see Fig.1. Node 1 has finite capacity with B1 = 1. Its state space is shown in
Fig.2, where we denote with µi the node i service rate. In this case, the simultaneous
transitions can occur only between pairs of nodes (1,2 or 1,3). For example, state (1
[3,2] 1 1) denotes the case where 1 job is in each node, node 1 is full and both nodes 3
and 2 have been blocked according to this order. As soon as node 1 completes the job,
e.g. for node 3, two simultaneous transitions take place from 1 to 3 and from 3 to 1. As
a consequence, the arrival state is (1 [2] 1 1), where just node 2 is still blocked.

Although the state space is small, it lacks the necessary lattice structure on its
boundary part that is a condition for Product Form solutions [25]. Note that in a small
case the boundary part is the most of the whole state space and this means that small
cases can be more critical than big ones in capturing nodes behaviour.

In Section 4, we derive an approximate iterative MVA-based method that effec-
tively captures the complexity of the behaviour of the queues due to their dependencies
and simultaneous transitions.

Figure 1: A small queueing network

1 0 2 1 1 1 1 2 0

0 0 3 0 1 2 0 2 1 0 3 0

µ1 13p

µ3 µ1 13p

µ2µ2µ2

µ2
µ3

µ1 13p

µ1 13p µ1 13p
µ1 13p

µ3

µ3 µ3
µ1 13p µ3

µ1 13pµ1 13p

(1 [3,2]) 1 1 (1 [2,3]) 1 1

(1 [3]) 0 2 (1 [2]) 1 1 (1 [2]) 2 0

µ p1 12

µ1p12

µ p1 12µ p1 12µ p1 12

µ p1 12

µ p1 12

µ2

(1 [3]) 1 1

µ p1 12 µ2

µ p1 12

Figure 2: The state space transitions

4

3. Related work

As introduces in Section 1, [21] presents a solution for BAS blocking based on
MVA. The algorithm is called MVABLO and tries to modify the arrival theorem to
include the blocking behavior. In some cases, the results show that throughput is effec-
tively modeled, but other performance measures are not captured well. As soon as the
congestion grows the results exacerbate, especially for residence times and mean queue
lengths. The results fluctuate between over- and under-estimating the performance met-
rics, so making difficult error prediction. Cyclic networks further exacerbate this effect
because of the nature of the flow.

A possibility for the error source is identified by the author himself and resides
in the ”method” to recognize a saturation condition. Indeed, using the mean queue
lengths is too late to capture the blocking condition: a blocking condition can appear
even when the mean queue length is less than the node capacity. In fact, it is enough
that the total network population N is greater thanBj to produce blocking conditions in
sending nodes of node j. To overcome this problem, our method catches the saturation
before the mean population exceeds the node capacity.

However, this is not the main error cause, but we envisage the following most im-
portant one: the ”effective intensity” of the blocking is not captured and the correction
is operated always in the same measure by simply canceling the arriving job to the full
node. On the contrary, it is worth noting that the blocked job cannot disappear from
the network, but it has to wait in the sending node, accordingly to BAS blocking. To
this aim, we introduce the Arrival Job (AJ) function. This function captures the de-
pendence between different nodes and is iteratively computed. So our method is able
to model the non-separability characteristic. On the other hand, blocking frequency
depends on workload. Indeed, as N grows, blocking will occur more frequently. In
the following, we introduce the blocking intensity function to capture the effective in-
cidence of the blocking phenomenon at each iteration step. As the results show, this
offers a correction on the limitation of MVA that deals exclusively with mean values.

Moreover, in [21] just nodes directly involved in blocking are considered. As we
show in next section, blocking affects also different nodes not directly involved in
blocking and the AJ function is evaluated for all such nodes.

We defer to the end of next section for a complete comparison of our method with
MVABLO.

4. MVA for dependent behaviour

The Mean Value Analysis algorithm [8] first derives the node mean response time
and then computes node throughput and mean population by using Little’s equation.
The mean response time can be iteratively derived based on the Arrival Theorem [26],
[27].

In this paper, we propose an approximate MVA by modifying the two fundamental
steps of the algorithm: the Arrival Theorem and the related response time equation.
Due to blocking we conjecture that the mean population at arrival time is not identical
to the mean population at any time as for the separable network. Specifically, the mean

5

population at arrival time is iteratively computed and depends on the role of the node
within the blocking phenomenon.

As a first step, we define the role a node can play with respect to the blocking
occurrence. This is the key to capture the dependent behaviour among nodes. This is
presented in Section 4.1.

As a second step, we present the proposed new Arrival Theorem, see Section 4.2.
We show that the response time equation in MVA needs to be modified as follows: 1)
for nodes affected by the blocking mechanism, the arrival job can not be taken into
account as a constant 1, but its value needs to be iteratively computed (Section 4.2); 2)
the response time must include the blocking time when the node may be blocked. We
present in Section 4.3 this second important step of the algorithm.

In the following subsections, we show how the proposed approximation works on
three networks [23] characterized by high correlation among nodes, so emphasizing the
difficulty of approximating a non-separability behaviour. As we observed in Section
2, it is worth noting that small networks represent the most difficult cases. Indeed,
interdependences among nodes is stronger than in large networks. This is also evident
from the boundary part of the state space that is the most of whole state space (see
Fig.2). In [28] we show detailed experimentation that confirm the results obtained for
these three cases.

4.1. The non-separability condition

The arrival theorem states that the average node population at arrival instants is the
same as the average node population at any time, considering the network with one
job less. This is true for a separable network. When the separability condition does
not hold, a complex dependence affects the behaviour of connected nodes: the average
node population at arrival instants cannot grow over the node capacity and, on the other
hand, the average population of sending nodes of a full queue can grow more than in
the corresponding infinite case. Moreover, this dependence can propagate to more
than two nodes and even to nodes not directly involved in the blocking. We propose
a Blocking Arrival Theorem that includes an Arrival Job (AJ) function for taking into
account this complex dependency among the nodes. AJ function determine the value of
the arrival job, taking into account the blocking intensity and the dependence between
two connected nodes. This function is iteratively computed.

First we define when a node can be involved in a blocking occurrence:

Definition 1. Blocking Involved Node (BIN node) A node is involved in blocking if it
is in at least one of the following conditions:

• f BIN: the node has finite capacity;

• s BIN: the node can be blocked, i.e., the node is a sending node to a finite capac-
ity node;

• d BIN: the node is a destination of a node that can be blocked.

With ”involved” we mean that node performance are influenced by a blocking oc-
currence. While the first two definition cases are quite obvious, the third case is perhaps

6

less intuitive. Let us consider a closed queueing network and focus on three nodes in-
volved in the blocking occurrence: the finite capacity node f BIN, its sending node
s BIN, and a destination node d BIN of s BIN different from f BIN. If all node capaci-
ties were infinite (IC), in the long term the node mean population would be uncorrelated
according to the separability characteristic. In case of finite capacity, the population
flows in these three nodes are correlated: during the time f BIN is full its population is
fixed while the s BIN population can grow more than in the IC case. In the long term,
this also affects the mean population in d BIN. Note that the individuation of d BIN
node is crucial for the approximation, indeed it captures the propagation of blocking
effects in the network. In next section, we show this particular behaviour of d BIN
nodes for the following two networks with parameters chosen to emphasize this effect.

(a) Network 46 (b) Network 0

Figure 3: Two example networks

Example 1
In Fig.3 we show two topologies that represent especially difficult cases since all

nodes can be BIN nodes. In Fig.3a, network 46 is a central server topology and if
only node 2 has finite capacity it is a f BIN, node 0 is a s BIN and node 1 is a d BIN.
If all nodes have finite capacity, then they all are f BIN and according to network
population each node can play several roles at the same time. We exacerbate this
condition by adding a further sending node to node 1, see Network 0 in Fig.3b. This
case is particularly useful to show the robustness of the proposed solution, as we show
in next section.

Example 2
Let us consider the two networks in Fig.3. Network 46 is a central server topology

with parameters Bj and E[sj] shown in Table 1. It is easy to be convinced that this
is a highly unbalanced case: node 2 is both the bottleneck and the smallest capacity
node while its sending node 0 is the fastest node. This is confirmed by the blocking
probabilities computed by exact solution and shown in Fig.4a: node 0 shows a sudden
grow of this probability even for small population values while the other nodes are
never blocked. In the last column of Table 1, we show the blocking probabilities for
the maximum admissible population (N = 39) for deadlock free operation [1]. We

7

Table 1: Network 46: a central server with 3 queues

node Bj E[sj] pbj

0 35 0.1 0.966667
1 20 2.5 0.000000
2 5 6.0 0.000003

Table 2: Network 18: a cyclic network with 5 queues

node Bj E[sj] pbj

0 4 20.1 0.073476
1 3 2.0 0.907808
2 5 10.0 0.539043
3 4 2.1 0.903199
4 2 5 0.769521

observe that the networks with such unbalanced conditions are the most difficult to
approximate. To further stress the proposed approximation, we modify the topology
by adding node 3 as a sending of node 1 (see Fig.3b) with the same parameters B3 =
B1 = 20 and service time E[s3] = E[s1] = 2.5, so to have a balanced behaviour
between these two nodes. Fig.4b shows the blocking probabilities where there is still a
big difference among the blocking behaviour of node 0 and the other nodes blocking,
but there is one other node (queue 3) with not zero blocking probability.

Example 3
The last example is network 18, a five nodes cyclic network, which is quite unbal-

anced as can be seen by the node parameters Bj and E[sj] shown in Table 2. In order
to avoid deadlock, the maximum population is N = 17. For this value, each queue
reaches the maximum blocking probability that is shown in the last column of Table 2,
evaluated by exact solution. In Fig. 4c, the blocking probabilities confirm that this is a
particularly hard case: all nodes experience blocking and the simultaneous transitions
may involve all nodes.

Blocking occurrence is not a ”static” condition derived just by node characteristics
(e.g. routing and capacity), but it is also determined by the workload, i.e. the network
population k. As a consequence, we define a blocking intensity function βj(k) as
follows:

Definition 2. Blocking Intensity function (BI function)

βj(k) =

1−
Bj

k
if k > Bj

0 otherwise
(1)

8

The BI function of a node j is a good approximation of the node blocking probabil-
ity of its sending nodes. Indeed, the ratio between node capacity and network popula-
tion determines how frequently sending nodes to j will be blocked. For example, if Bj
approaches k sending nodes to j will be never blocked (βj(k) approaches 0), while if
Bj << k sending nodes will be very often blocked (βj(k) approaches 1). In general,
blocking probability can be computed just analytically with high computational cost
and complexity. BI function requires low-cost computation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

B
lo

c
k
 P

ro
b

.

N

Node 0 Node 1 Node 2

(a) Network 46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

B
lo

c
k
 P

ro
b

.

N

Node 0

Node 1

Node 2

Node 3

(b) Network 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

B
lo

c
k
 P

ro
b

.

N

Node 0

Node 1

Node 2

Node 3

Node 4

(c) Network 18

Figure 4: Blocking probabilities

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

B
lo

c
k
 P

ro
b

.

N

blocked 0 β2

(a) Node 0 blocking in Net 46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

B
lo

c
k
 P

ro
b

.

N

blocked 0 β2

(b) Node 0 blocking in Net 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18

B
lo

c
k
 P

ro
b

.

N

blocked 4 β0

(c) Node 4 blocking in Net 18

Figure 5: Blocking probabilities and BI function

Finally, we show how the BI function βj(.) can predict quite well the blocking
probability of a sending node. Fig. 5 compares βj(.) with the blocking probability
of its sending node first blocked. Specifically Figs. 5a and 5b show the blocking
probabilities for node 0 and β2(.) for network 46 and 0 respectively. Note that network
46 is more difficult than network 0, since blocking suddenly surges when the population
grows from N=5 (no-blocking) to N=6 with a blocking probability for node 0 of about
0.56 (see Fig. 4b). Nevertheless, for high values of population the estimation is still
good even in this challenging case: forN = 35, β2(k) is about 0.86 while the blocking
probability on its sending node is 0.96. Fig. 5c shows similar behaviour for Network
18 and its first blocked node, i.e. node 4 . For N = 17 the estimation is quite precise,
while for the lowest values of population the error is more pronounced.

The results for 56 networks in [28] confirm this characteristic of BI functions.

9

4.2. Arrival Theorem for dependent behaviour

The crux of the proposed approximation is the computation of the mean value of
an arrival job. To this end, we define a node function to evaluate the mean value of the
arrival job to a BIN node. The function is iteratively computed as soon as a capacity
violation is detected, i.e. the mean population exceeds the node capacity, and until the
violation is removed:

Definition 3. Arrival Job function (AJ function) The AJ function is initialized to zh(0) =
1, for each node h. In each iteration step k where a f BIN node j violates its capacity,
the AJ function zj(k) is updated as follows:

zj(k)← zj(k)− βj(k) · zj(k) (2)

and correspondingly, for each s BIN node i of j, zi(k) is:

zi(k)← zi(k) + βj(k) · pij · zj(k) (3)

where k is the network population.

Note that for the solution consistency, the AJ function zj(k) is initialized with 1
for all nodes, including the non-blocking ones, and then iteratively computed when a
capacity violation is detected. The update is repeated until the violation is removed.
It is worth noting that equation (3) captures the behaviour dependence between two
connected nodes i and j, which is expressed by AJ functions zi(k) and zj(k). This
represents the approximation of the non-separability condition of the blocking network.
Using AJ function, we conjecture the following Blocking Arrival Theorem:

Conjecture 1. For a closed queueing networks with BAS blocking and k jobs, the
mean population Aj(k) for a node j at arrival instants can be defined as follows:

Aj(k) = E[nj(k − 1)] + zj(k)− 1 (4)

In case of blocking, the AJ function zj(k) corrects opportunely the mean popula-
tion at arrival instants. Its initial value (i.e. 1) does not change for nodes not involved
in blocking. As a consequence, in this case equation (4) coincides with the exact Ar-
rival Theorem. Note that when zi(k) > 1 the mean population Ai(k) is greater than
the standard case (zi(k) = 1). This is consistent with the blocked condition (second
condition in Definition 1) and therefore the queue can grow. Moreover, the increment
value in (3) is a function of the full queue j and of the percentage of times node i sends
jobs towards the full queue (pij). On the other hand, when zj(k) < 1 the mean popu-
lation Aj(k) is less than the standard case (zj(k) = 1) and this is consistent with the
finite capacity.

As a final remark, it is important to reflect on the fact that MVA determines mean
values. The blocking condition can arise in a network much earlier than when the aver-
age node population approaches its node capacity. The ability of identifying the most
relevant conditions for blocking occurrence is the crucial step of the approximation.
This was one of the major problem of the previous methods [21], [23] that affected

10

negatively the approximation quality. We overcome this problem by computing the
AJ functions (2) and (3) as soon as the network population reaches a critical threshold
value. The extended experimentation [28] showed that node velocity is more impor-
tant than node capacity in determining a blocking occurrence. The following example
illustrates the threshold definition.

Example 4
Consider again network 18 in Example 3. While one could think that node 3 was

the first blocked node, since it is sending to the minimum capacity node 4 (B4 = 2),
from the exact results of the blocking probabilities (see Fig.4c) one can easily see that
node 4 is the first to experiment blocking since it is sending to the slowest node 0.

Extended experimentation in [28] confirms the suggestion of Example 4 and our
algorithm starts as soon as the network population reaches the threshold value Bj + 1
where j is the finite capacity node with the maximum service time, that is the slow-
est node. Eq. (2) is applied to node j and eq. (3) to all its sending nodes. During
algorithm iterations, as soon as a mean population exceeds node capacity the AJ func-
tions are opportunely applied until the capacity violation is removed. The number of
capacity violations θ is computed during iterations. It measures the extra computation
required with respect to traditional MVA, see Sect.5. In conclusion, the function zj(k)
is computed for each node j as follows:

1. for each node h, the starting value is zh(0) = 1
2. initialization phase: as soon as network population reaches the threshold value
Bj + 1, where j is the finite capacity node (f BIN) with the maximum service
time (i.e. the slowest node) zj(k) is updated by equation (2) and all its sending
nodes (s BIN) by equation (3); for all destination nodes l (d BIN) of node i such
that l 6= j, then i and l are updated with eq. (2) and eq. (3) respectively;

3. iterative phase: as soon as a capacity violation is detected for a node j, that is the
mean queue length E[nj(k)] violates the queue capacity Bj , both equations (2)
and (3) are applied to node j (f BIN) and all its sending i (s BIN) respectively,
until the violation is removed.

The complete algorithm is presented in Section 4.4. The improvement obtained
by the initialization phase is shown in the next section where we present the second
important step of the proposed Approximate MVA.

4.3. Blocking time and mean response time
The MVA algorithm starts from the mean response time computation and iteratively

computes throughput and mean queue length. However in a network with blocking,
the node mean response time can be longer than in the corresponding infinite capacity
network for two reasons:

• according to the BAS mechanism, the node i activity is stopped when it sends
a job to a full queue j; the activity will be resumed as soon as the full queue
completes a service and other nodes eventually blocked before i have resumed
their activities (FBFU policy);

11

• during the node blocking time, its queue length can grow, thus increasing the
mean residence time.

The first term is considered by defining a blocking timeBTi(k) for each node iwith
a full destination node, that is then added to the node response time. The second term
is simply derived by using longer response times in the Little’s equation for the mean
population of the blocked nodes. The blocking time BTi(k) is iteratively computed as
defined in the following:

Definition 4. Node Blocking Time (BT) For each node h, its blocking time is initially
set to BTh(0) = 0. In iteration step k where a f BIN node j violates its capacity, for
each of its s BIN node i the blocking time is updated as follows:

BTi(k)← BTi(k) + pij · νij · E[sj] (5)

where k is the network population and νij is a relative velocity factor defined as
follows:

νij =
E[sj]

E[sj] + E[si]
(6)

Note that for the solution consistency, the node BT is initialized with 0 for all
nodes, even not BIN node, and then iteratively computed until the capacity violation is
removed. Next section presents the complete algorithm.

For exponential service time, the node BT is a function of the service time of the
full node [21]. In addition, the service time of the full node j is weighted with the
workload percentage that from node i proceeds towards node j, that is the routing
probability pij . Moreover, it is easy to be convinced that the waiting in node i blocked
by j, depends on the relative node ”velocity”: a node h with a big service time in
respect of its destination j, it is probably less blocked than a sending node i with
shorter service time. It is also possible than during the time j is full, ”slow” node h
does not complete a job. This is also captured by the relative velocity factor. Note
that when node j is much slower than its sending node i (E[sj] � E[si]) the factor
νij approaches 1, thus allowing the increase of the node i blocking time by the node
j service time. On the other hand, when node j is much faster than its sending node
i (E[sj] � E[si]) the factor νij approaches 0, thus canceling the contribution of the
node j service time.

In conclusion, the node BT is used for the computation of the mean response time
E[tj(k)] as follows [23]:

E[tj(k)] =

E[sj] +
BTj(k)

k
delay center

E[sj](zj(k) + E[nj(k − 1)]) +BTj(k) single server center
(7)

Finally, it is worth noting that the blocking time (5) is again a function representing
a dependence between two nodes. Although the dependence does not allow for sepa-
rability, we can capture its effect by using the definitions in equations (3), (5) and (6)

12

Table 3: Symbols Table for node j and network population k

Aj(k) mean population at arrival instants
Bj node capacity
βj(k) node Blocking Intensity function
BTj(k) node Blocking Time
nj(k) node population
pij routing probability
νij relative velocity factor of blocked node i vs full node j
sj node service time
tj(k) mean node residence time
Xj(k) mean node throughput
zj(k) Arrival Job function

in the MVA algorithm, as experimentation shows. Note that Equation (5) is different
from the one proposed in [21] and in [23]. We summarize all differences comparing to
previous methods in the next section.

4.4. debeMVA
Algorithm 1 and Algorithm 2 present the debeMVA algorithm. It is worth noting

the last step of Algorithm 1. Since the iterative characteristic of the method, the BIN
node population can be updated several times as the node plays different roles. As a
consequence, mean population of node j at step k may be less than previous value at
step k − 1. In this case, we force E[nj(k)] ← E[nj(k − 1)] by reducing its upstream
nodes population proportionally with routing probabilities.

We apply debeMVA to networks 46, 0 and 18 in Examples 1 and 3, and compare
the results with those obtained by MVABAS[23], MVABLO [21] and the exact solu-
tion. In the following, we present the performance results while we defer the error and
cost analysis to Section 5. As already discussed in Example 2, Network 46 is quite un-
balanced, with node 2 that is both the bottleneck and the smallest capacity node, while
its sending node 0 is the fastest node. We show that the proposed method improves the
results over the previous algorithms and captures quite well the behaviour of all nodes,
see Fig.6.

To further stress the proposed algorithm, we consider Network 0 in Fig.3b. In this
case, the situation is even more complicated since node 1 can be full and several itera-
tions could fail, by moving ”blocked jobs” from node 2 to node 0, from node 0 to node
1, but also from node 1 to node 3. Nevertheless, as Fig.7 shows, our algorithm captures
population of nodes 0, 1 and 2 quite well and much better than previous algorithms. It
is worth noting that population and residence time of node 3 are not well estimated by
debeMVA, neither by past methods. This confirms our intuition regarding this case as
stressful for the proposed solution and open to further investigations.

As discussed in Section 4.2, the effects of blocking are not limited to the pairs
(s BIN, f BIN) nodes. In other words, the non-separability condition extends to desti-
nations of blocked nodes (d BIN). This is particularly evident on central server topolo-
gies where an increase of mean population is observed on destinations of blocked

13

ALGORITHM 1: debeMVA
Input: P (routing matrix), E[s], B, N (jobs in the network), M (number of stations)
Output: E[n(N)], E[t(N)], E[X(N)], θ (capacity violation)
z(1)← 1, BT (1)← 0, repeat← 0 a← false, θ ← 0;
for k ← 1 to N do

Algorithm2(P, E[s], B, k, a)
repeat

repeat← 0
// calculate E[t(k)]
for j ← 1 to M do

if j is delay center (IS) then

E[tj(k)]← E[sj] +
BTj(k)

k
else

E[tj(k)]← E[sj] · (zj(k) + E[nj(k − 1)]) +BTj(k)
end

end
// calculate E[X(k)]
for j ← 1 to M do

E[Xj(k)]←
k∑M

i=1E[ti(k)] · ei/ej
end
// calculate E[n(k)]
for j ← 1 to M do

E[nj(k)]← E[tj(k)] · E[Xj(k)]
// capacity violation
if E[nj(k)] > Bj then

repeat← 1
θ ← θ + 1
foreach upstream node i IS or not full do

zi(k)← zi(k) + pij · zj(k) · βj
BTi(k)← BTi(k) + pij · E[sj] · νij

end
zj(k)← zj(k)− zj(k) · βj

else
// if no capacity violations are detected
if E[nj(k)] < E[nj(k − 1)] then

E[nj(k)]← E[nj(k − 1)]
foreach upstream node i do

E[ni(k)]← E[ni(k)]−
pij · (E[nj(k − 1)]− E[nj(k)])∑M

l=1 plj
end

end
end

end
until repeat=1;

end

14

ALGORITHM 2: debeMVA: Initialization phase function

Input: P (routing matrix), E[s], B, k (jobs in the network), a (true if first correction on
upstream node is already done)

Output: BT (n), z(n), a
foreach station j with the maximum E[sj] do

// correct only the first time
if k > Bj + 1 and aj = false then

aj ← true
foreach upstream node i of node j do

zi(k)← zi(k) + pij · zj(k) · βj(k)
BTi(k)← BTi(k) + pij · E[sj] · νij

end
zj(k)← zj(k)− zj(k) · βj(k);

end
end
foreach station j with the maximum E[sj] do

if k > Bj + 1 then
foreach upstream node i of node j do

nd← number of downstream node of i
// no cyclic network
if nd > 1 then

foreach downstream node l of node i (l 6= j) do
zl(k)← zl(k) + zi(k) · βj(k) · pil

end
zi(k)← zi(k)− zi(k) · βj(k)

end
end

end
end

nodes. For both networks 46 and 0, as soon as the population grows to 6, the pop-
ulation of node 1 suddenly grows until it is full (see second rows in Fig.6 and 7), even
if the node is practically never blocked (see Fig.4a and 4b). Note that previous meth-
ods are not able at all to predict mean population and residence time of node 1 for both
networks. Our algorithm captures well this challenging behaviour.

Finally, we consider Network 18. As described in Example 3, this is a particularly
hard case since all nodes experience blocking and simultaneous transitions may involve
all nodes. Even in this case, our algorithm is able to catch the behaviour of each
node. In Fig.8-12 we show the results for all nodes. Even for this particularly difficult
case, our algorithm dramatically improves on the approximate performance metrics
comparing to past methods.

All three cases above show that the method shares some uncertainty in prediction as
soon as blocking occurs. This is intrinsic to an approximate iterative method. Indeed,
when the population exceeds a given threshold, the results stabilize and the approxima-
tion is good. Specifically for throughput prediction, this happens in Fig. 6 for network
46 when N > 10 and in Fig. 7 for network 0 when N > 17. Network 18 is a quite

15

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

N

EXACT

MVABAS

debeMVA

MVABLO

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

N

EXACT

MVABAS

debeMVA

MVABLO

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0 5 10 15 20 25 30 35 40

N

EXACT

MVABAS

debeMVA

MVABLO

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40

N

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40

N

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0 5 10 15 20 25 30 35 40

N

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 40

N

(a) Mean Population

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

N

(b) Mean Residence

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0 5 10 15 20 25 30 35 40

N

(c) Throughput

Figure 6: Network 46: node 0 in first row, node 1 in second row, node 2 in third row.

difficult case with 5 nodes and up to 4 possibly simultaneous transitions. In this case
there are more critical points when several nodes become full. Note in Fig. 8 the first
threshold when two nodes can be simultaneously full (N = 6). The second threshold
is when three nodes can be simultaneously full (N = 11). After the thresholds the
prediction is quite good.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18

N

(a) Mean Population

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18

N

(b) Mean Residence

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18

N

(c) Throughput

Figure 8: Network 18 node 0

16

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

N

EXACT

MVABAS

debeMVA

MVABLO

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

N

EXACT

MVABAS

debeMVA

MVABLO

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40

N

EXACT

MVABAS

debeMVA

MVABLO

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40

N

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

N

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40

N

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 40

N

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

N

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20 25 30 35 40

N

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40

N

(a) Mean Population

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20 25 30 35 40

N

(b) Mean Residence

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20 25 30 35 40

N

(c) Throughput

Figure 7: Network 0: node 0 in first row, node 1 in second row, node 2 in third row, node 3 in forth row.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18

N

EXACT

MVABAS

debeMVA

MVABLO

(a) Mean Population

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18

N

EXACT

MVABAS

debeMVA

MVABLO

(b) Mean Residence

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18

N

EXACT

MVABAS

debeMVA

MVABLO

(c) Throughput

Figure 9: Network 18 node 1

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12 14 16 18

N

(a) Mean Population

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16 18

N

(b) Mean Residence

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18

N

(c) Throughput

Figure 10: Network 18 node 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18

N

(a) Mean Population

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18

N

(b) Mean Residence

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18

N

(c) Throughput

Figure 11: Network 18 node 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16 18

N

(a) Mean Population

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16 18

N

(b) Mean Residence

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18

N

(c) Throughput

Figure 12: Network 18 node 4

We conclude this section by comparing our method with [21]. Both algorithms
modify the MVA equations. First, note that MVABLO does not consider delay centers.
Moreover, it does not yield a good approximation and as soon as the congestion grows
the results worse, especially for residence times and mean queue lengths. The results
fluctuate between over- and under-estimating the performance metrics, so returning
difficult error prediction (see e.g. throughput estimation in Figs. 6c and 7c and mean
population estimation in Fig. 8a). Cyclic networks show the worst results.

As we introduced in Section 3, MVABLO recognizes saturation condition too late
and does not capture blocking effective intensity. Indeed, it corrects mean populations
always in the same measure: it simply cancels the arriving job (zj(k) = 0). In conclu-
sion, debeMVA differs from MVABLO in the following four points:

18

• the value for the arrival job: in [21], the arrival job function zi(k) is initialized to
1 and then simply set to 0 if a capacity violation is detected. In this paper, the AJ
function is defined according to equations (2) and (3). These definitions allow to
capture the dependence between nodes involved in a blocking occurrence. This
is one of the main contributions of our method;

• the number of nodes involved by a blocking occurrence: according to Def. (1),
a blocking can affect not only the two nodes directly involved, but also eventual
other destinations of the blocked node. The proposed algorithm acts on all BIN
nodes, while MVABLO acts just on the pair (s BIN, f BIN). As stated in previous
section, our algorithm acts on all pairs (s BIN, f BIN) and (s BIN, d BIN) for
any d BIN.

• the condition under which the modification starts: in [21], the modifications start
as soon as a mean population exceeds node capacity. As Akyildiz recognized,
this is not enough to capture a blocking occurrence that can arise much early
than the average node population approaches the node capacity. We propose an
initialization phase and successfully overcome this limitation, see Section 4.2;

• the definition of the blocking time: in [21], the blocking time is defined as
follows:

BTi(k)← BTi(k) + pij
ei

ej
E[sj] (8)

where ei is the mean number of visits to node i. Equation (5) is quite different
and the relative velocity factor νij is another original contribution of our method
for modeling the dependence between two nodes.

As we see in the next section, debeMVA greatly improves the approximation.

5. The results, error and cost analysis

The debeMVA algorithm has been tested on 56 networks that differ in number of
nodes, topologies and parameters [28]. We considered cyclic networks and central
server topologies. Cyclic topologies are particularly appropriate to stress the simulta-
neous transitions mechanism of BAS blocking. Note that in a cyclic network with M
node up to M − 1 nodes may be simultaneous blocked. As the results show, cyclic
topologies are the most difficult ones to approximate, with the biggest number of itera-
tions for convergence. On the other hand, central server topologies offer the possibility
to investigate the effect of blocking even on nodes that are not directly involved in
blocking (d BIN in Def. (1)). Note that in all considered networks, we do not consider
IS nodes. It is easy to be convinced that an IS node alleviates the negative impact of
blocking: by definition it is an infinite capacity node. However, the case study model
in Section 6.1 includes an IS node. Finally, we used different parameter values on the
same topology to investigate their effect on the blocking phenomenon. As one can ex-
pect, the more difficult cases are when there is an unbalanced condition in the system,

19

e.g. some nodes are very fast while some other are very slow, or some nodes are never
blocked while some other are blocked the most of the time.

We compare the results obtained by debeMVA with the results by MVABAS [23],
MVABLO [21], and exact solution [1]. In [28], we show all results for each network,
in terms of both performance indices and errors while in this section we show overall
error and cost analysis.

First, we present statistics to evaluate the goodness of the proposed approximation
and its computational cost. For each network, we evaluate the approximation error for
each performance index and each node. In addition, given the iterative structure of the
algorithm, we define e as the average error over the population as follows

e =

N∑
k=1

errk

N
(9)

where errk is the relative error for population k. To the aim of an overall evalu-
ation of the method goodness, we define global average error, the minimum and the
maximum average errors and the worst case error as follows:

• e is the global mean error on all relative errors ei,j , for node i and performance
index j, where j may be mean population n, mean response time t and mean
throughput X

e =

M∑
i=1

∑
j∈{X,t,n}

ei,j

3 ·M
(10)

• em is the minimum relative error over all nodes and performance metrics

em = min
i∈[1,M], j∈{X,t,n}

ei,j (11)

• eM is the maximum relative error over all nodes and performance metrics

eM = max
i∈[1,M], j∈{X,t,n}

ei,j (12)

• errM denotes the worst case, that is the maximum relative error over all com-
puted errors

errM = max
i∈[1,M], j∈{X,t,n}, k∈[1,N]

erri,j,k (13)

Note that e, em, eM , are errors averaged over all possible population values, while
erri,j,k and errM are errors for just one population value k.

In Table 4, we see that debeMVA outperforms both previous methods for global
average error e and for both the minimum em and maximum eM average errors. In
the last row of the table, we show also the maximum error errM , that represents the
worst case. This is greater than in the previous MVABAS, but still remains significantly
lower than in MVABLO.

20

MVABAS debeMVA MVABLO
e 0.08 0.04 0.12
em 1.47 ·10−8 1.47 ·10−8 2.90 ·10−5

eM 0.65 0.46 2.67
errM 2.81 3.98 24.95

Table 4: Error statistics for 56 networks

It is worth noting that not only the average errors are improved, but most impor-
tantly the error trend is greatly improved by debeMVA as compared to previous algo-
rithms. In the following, we show relative errors for the three networks presented in
Section 4.4. To save space, we present errors for some performance measures, while
the complete error analysis is in [28].

In Figure 13, we show the relative errors for performance metrics of node 0 and
node 2 in Network 46, presented in Figure 6 first and third rows respectively. In Figure
14, we show the relative errors for mean population of node 1, node 2, and node 3 in
Network 0, presented in Figure 7, first column. These populations are very difficult to
approximate, as we have described in Section 4.4. Just the error for node 2 is slightly
higher with debeMVA, but its trend is less erratic. Finally, in Figure 15, we consider
Network 18 and show the relative errors for mean population of node 0 (Fig.8a), for
response time of node 1 (Fig.9b) and for throughput that is the same for all nodes
(Fig.8c-12c). Cyclic networks are the most difficult ones to approximate and debeMVA
dramatically improves the results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40

N

MVABAS debeMVA MVABLO

(a) Node 0 mean population

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

N

MVABAS debeMVA MVABLO

(b) Node 0 throughput

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

N

MVABAS debeMVA MVABLO

(c) Node 2 mean population

Figure 13: Relative errors for Network 46

It is easy to be convinced of the following characteristics: (i) generally all errors
are lower than for the other two algorithms; (ii) beyond an initial phase to assess the
approximation as soon as blocking occurs in one or more than one nodes, all trends
are more stable and tend towards zero compared with the previous solutions, this is an
important and promising characteristic of our solution.

For the computational cost definition we consider both the execution time and the
extra computation required with respect to traditional MVA. We measure the extra cost
by the number θ of capacity violations (see Section 4.2) generated by the approxima-
tion. Note that this is also the number of extra iterations required by our method to
converge. Note that all the considered cases converge to a solution. We define:

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40

N

MVABAS debeMVA MVABLO

(a) Node 1 mean population

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35 40

N

MVABAS debeMVA MVABLO

(b) Node 2 mean population

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40

N

MVABAS debeMVA MVABLO

(c) Node 3 mean population

Figure 14: Relative errors for Network 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16 18

N

(a) Node 0 mean population

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16 18

N

(b) Node 1 response time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18

N

(c) Node throughput

Figure 15: Relative errors for Network 18

• θ: number of capacity violation for a given network;

• θ: mean number of capacity violation (ncv) for a set of networks;

• σθ: standard deviation of ncv for a set of networks;

• ε: execution time for a single network;

• ε, σε, εm, εM : mean, standard deviation, minimum and maximum execution
time respectively for a set of networks.

22

EXACT MVABAS debeMVA MVABLO

θ – 58.12 323.03 61.25

σθ – 98.01 876.48 92.76

ε (ms) 173.35 13.8 13.39 13.25

σε (ms) 597.14 1.32 1.33 1.27

εm (ms) 22.0 11.0 11.0 11.0

εM (ms) 3376.0 16.0 17.0 16.0

Table 5: Execution time and convergence statistics for 56 networks

In Table 5, the reader can see that the number of violations θ is one order greater
than the number in both two previous methods, with greater standard deviation too.
This means that our method catches blocking occurrence more frequently than past
methods. Nevertheless, the execution time is comparable. In other words, our method
works better at the same cost. In [28], the interested reader can find errors and costs
for each network of the experimentation.

6. Case study

Healthcare is one of the most critical and important sector of the social life. The
aim of the World Health Organization is ambitious [29]: ”the attainment by all people
of the highest possible level of health”, where ”Health is a state of complete physical,
mental and social well-being and not merely the absence of disease or infirmity.” The
role of IT in healthcare is becoming more and more significant, as numerous specific
conferences and journals attest.

We consider planning decisions in healthcare [30]. The choice of this case study
is also due to the importance of ease of use tools for this field. Indeed, the proposed
method can be easily employed even by non-experts. Note that queueing networks with
BAS blocking can well represent a network of care structures in which the capacity to
admit patients is finite. Moreover, the ”after service” blocking exactly corresponds to
the conclusion of therapy in the current structure. In that case, when a patient hos-
pitalized cannot be admitted in the next appropriate structure, he/she blocks the cur-
rent hospital bed. The health system lose both in care efficiency (for the delay in the
appropriate therapy) and in financial perspective. As a consequence, controlling the
congestion and planning the appropriate size for the structures are important goals.

As a case study, we consider the Philadelphia mental health system that was the
forefront of the health system rearrangement [7]. In this case, the downsizing and the
rearrangement of mental health institutions is to provide mentally ill patients with a
”continuum care network of facilities with various levels of structure and support”. As
introduced above, BAS blocking conforms to model patients that find full the struc-
tures where they were referred and are forced to wait at their current facilities. These
patients ”block” beds in the current structures, preventing their utilization by potential
patients requiring care at these facilities. This behaviour is quite well captured by BAS

23

blocking and by the simultaneous transitions mechanism. Fig.16 describes the different
structures and the patients flows. Next section introduces the model for this system.

Figure 16: Structures and patients flows

6.1. System model and baseline performance

We model the considered healthcare system with the closed queueing network with
finite capacity and BAS blocking, see Fig.17. We consider a closed model to analyze
the behaviour in case of congestion and assume N = 1700 patients. Each center
represents a care structure with a finite number of beds. Note that, for the lack of
specific parameters for the acute hospital centerA in [7], we collapse the two structures
A and X in a unique IS center denoted by X .

Figure 17: Queueing network model

By assuming congestion, we can model a structure as a finite capacity single server,
but with an ”aggregate” service rate to take into account the ”service” of each bed.
In [28], we derive the model parameters starting from values measured from the real
system [7]. In particular, the routing matrix is derived from external or internal arrival
rates to the care structures. Tables 6 and 7 show the parameters values.

24

X E R S
X 0 0.223 0.664 0.113
E 0.748 0 0.252 0
R 0.943 0 0 0.057
S 1.0 0 0 0

(a) Routing matrix
di (days)

E R S
60 893 2500

(b) Mean service terapy time for each structure
Bi

E R S
64 1206 416

(c) Maximum capacity structure (number of beds)

Table 6: Parameters observed from the real system

E[si] (days)
X E R S

0.331 0.94 0.74 6.0

Table 7: Mean service time for queueing model

Without any predictive analysis, one could naively think that the structure R is the
most congested one since this is selected by the most patients. This is confirmed by the
routing probability value in Table 6a. This could be misunderstood by leading to the
R upgrade. In the following section, we show that a different direction is most bene-
ficial. Low computational cost of our method is appealing to study several alternative
solutions so to take planning decisions opportunely.

First, we present the results obtained for the baseline system under congestion with
N=1700 users/patients, that is a value greater than the effective capacities of the care
structures. Moreover, it is worth noting that we use the total demand (called referral
arrival rates in [7]) for care facilities to consider the system with no reneging from
queues. In this way, the results represent the “response” of the baseline system to the
original demand. The objective is to compute the mean residence time of the patients
in each structure.

Table 8 shows the mean residence time and the mean population in each structure.
Note that the most patients are in the R structure.

25

E[ti] (days)
X E R S

17.835431 265.940554 1546.287962 2495.999970

(a) Mean residence time for each care structure
E[ni]

X E R S
17.708694 63.679830 1202.611481 415.999995

(b) Mean population for each care structure

Table 8: Mean population and residence time computed using debeMVA

By assuming that the residence time E[ti] is not lesser than the mean treatment
time di, the mean blocking time in a structure i for each patient can be evaluated as
follows:

wi = E[ti]− di (14)

Table 9 shows the mean blocking time wi for each structure. Note that the structure
S is omitted since it cannot be blocked. R is the structure that experiment the most
blocking time. In the next section, we present a capacity planning study to select the
most convenient structure to be upgraded.

Estimated blocking time (days)
X E R

17.504431 205.940554 653.287962

Table 9: Mean blocking time for each care structure

Finally, as a sensitivity analysis we consider the effect of increasing admission rate
in the structure Extended Acute Hospital E, for the benefit of less intensive structures
R and S. Since the parameters are derived from the real system [7], we modify routing
probabilities as follows: 1) we decrease of 5% for four times the routing probabilities
to both less intensive care structures R and S; 2) we correspondently increase p XE,
so to have consistent routing probabilities. In this way, we keep the same proportion
of use between the two care structures R and S as suggested by the real case. Table 10
shows the first row of the routing matrix for the four steps. The other rows are the same
as in Table 6a.

X E R S
-5%: X 0 0.262 0.631 0.107

-10%: X 0 0.301 0.598 0.102
-15%: X 0 0.340 0.564 0.096
-20%: X 0 0.378 0.531 0.090

Table 10: Increasing admission rate: first row of routing matrix

26

Fig. 18 shows that blocking time decreases in each structure as the admission rate
increases for the Extended Acute Hospital. While this is not surprising for structure
E, having reduced the workload on its destination structure R (see point 1 above), it
seems unexpected for the other two structures X and R. We think that this behaviour
is due to the fact that the Extended Acute Hospital has the fastest mean service terapy,
while the structures Residential Facility and Supported Housing have the longest terapy
times (see Table 6b). In other words, as admission rate grows, workload is moved to
the fastest structure E, with the effect of alleviating blocking. This confirms also our
intuition that node velocity is most influential on blocking than saturation itself (see
initialization phase in Section 4.2, and the relative velocity factor νij defined in eq.
(6)). It is worth noting that several considerations should be taken into account to take
decisions: care efficiency should be measured also in terms of individual well-being. It
is well known that the place of care has its influence on health. The discussion of this
interesting topic is out of the scope of this paper. We include this sensitivity analisys
as a toy example to show the potentiality of an ease to use method. Starting from the
reality of the healthcare system under study, a lot of interesting studies can be easily
conducted.

 10

 11

 12

 13

 14

 15

 16

 17

 18

0 -5% -10% -15% -20%

w
X

(a) Blocking time for X

 60

 80

 100

 120

 140

 160

 180

 200

 220

0 -5% -10% -15% -20%

w
E

(b) Blocking time for E

 550

 560

 570

 580

 590

 600

 610

 620

 630

 640

 650

 660

0 -5% -10% -15% -20%

w
R

(c) Blocking time for R

Figure 18: Estimated mean blocking time by increasing admission rate

6.2. Capacity planning

In this section, we consider the possibility to upgrade a structure and we use our
efficient solution method to evaluate different alternatives. As an example, we consider
an upgrade of extra beds just for one care facility. By assuming budget availability for
other 20 beds, the aim of the study is the identification of the appropriate structure to
upgrade with the extra beds from both the perspectives of the human rights and the
finance [7].

Table 11, shows the parameter sets Bi and E[si] for the baseline and all the alter-
natives. We denote with Y+ the enhanced structure; it is worth noting that the upgrade
increases the structure capacity BY and as a consequence decreases the mean service
time E(sY).

27

Bi

Model E R S
Baseline 64 1206 416

E+ 84 1206 416
R+ 64 1226 416
S+ 64 1206 436

E[si]

Model E R S
Baseline 0.94 0.74 6.0

E+ 0.71 0.74 6.0
R+ 0.94 0.72 6.0
S+ 0.94 0.74 5.73

Table 11: Parameter sets for baseline model and all alternatives

Table 12 shows the results obtained for all the alternatives in terms of the mean
residence time and the mean blocking time in each structure. The most improvement
is obtained by upgrading the structure S: indeed the congestion in this structure can
involve a cascade blocking in the structures X , E and R. By upgrading S, both the
residence times and the blocking times of all the other structures are improved. On the
contrary, if the upgrade was on the structure R, both the structures X and E improve
their performance, while the blocking time in the structure R itself grows: indeed the
greater beds availability produces more blocked patients waiting for care in S. Note
that this is a counterintuitive result. Finally, if upgrade was on the structure E, just
the blocking time for new patients in structure X improves, but the blocking time in
structure E grows significantly, while in the structure R it is not improved. Note also
that in these last two cases the improvements are less pronounced than in the upgrade
of S. We remark again the importance of an easy and low cost method as debeMVA to
conduct analysis of several alternatives for capacity planning.

In Table 13, we show the number of capacity violation detected for each alternatives
(first row) and the relative execution time (second row). It is worth noting that number
of violations collapses of 2 order of magnitude (first row) by just increasing of 20 a total
capacity of 1686 beds. On the other hand, with so many more violations (baseline) the
computational time is just one order of magnitude bigger (second row). In any case, it is
easy to be convinced that the cost of evaluating several alternatives is quite negligible.

28

E[ti] (days)
Model X E R S

Baseline 17,835431 265,940554 1546,287962 2495,99997
E+ 1,815789 316,079355 1548,473325 2495,999755
R+ 1,632431 234,159152 1574,300692 2495,999793
S+ 1,47779 224,08174 1478,979632 2498,279585

Estimated blocking time (days)
Model X E R S

Baseline 17,504431 205,940554 653,287962 –
E+ 1,484789 256,079355 655,473325 –
R+ 1,301431 174,159152 681,300692 –
S+ 1,14679 164,08174 585,979632 –

Table 12: Mean residence time and estimated blocking time for each care structure

Baseline E+ R+ S+

θ 177316 5221 4563 4104

ε (ms) 128 67 65 63

Table 13: Execution time and convergence statistics for alternatives

We conclude this section by highlighting the main differences between our model-
ing approach and the approach in [7]. First we consider a closed model instead of an
open one. This means that with real parameters for A, we could explicitly model the
relapse represented by the backflows from the structures R and S towards the acute
hospital A. Moreover, the authors consider ”the waiting space to enter a particular
station as infinite” (see Section 4.2 in [7]) so that in the steady state the number of
patients waiting to enter a station can be bigger than the number of beds at the previous
station. On the contrary, in our model each station may have finite capacity, so we can
represent all the finite resources of the healthcare system. Moreover, since they applied
the decomposition method, the effect of cascade blocking for more than two stations is
not represented by their model.

An important difference between the two approaches regards the considered arrival
rates. The authors consider the effective admission rates that not include the patients
referred to the facilities but reneged from the waiting lists. Indeed, with the referral
rates, the open model does not reach stability condition. So they cannot include the
”true demand” in their analysis.

In this paper, we consider the referral rates to derive the routing probabilities [28],
but by using a closed model we can investigate about congestion without incurring
in the stability problem. Finally, it is worth noting that the proposed method is quite
appropriate for several investigations since its easy and low-cost use (see Table 13).

29

7. Conclusions

In this paper, we have proposed an approximate MVA for queueing networks with
BAS blocking. The method is based on the definition of functions to capture the inter-
dependency among nodes involved in the blocking occurrence. So the non-separability
condition of general blocking networks is captured and approximated in the mean per-
formance metrics. We think this approach could be applied to different forms of de-
pendence, so other non-separable networks could benefit of a similar approach. By
investigating the nature of dependence, functions of node i should be opportunely de-
fined including elements of node j representing the behaviour dependence of node i on
node j. This is the essence of our approach, e.g. by means of AJ functions and BTi
function. The method is tested on 57 networks, different in topologies and character-
istics so to include balanced and unbalanced cases. The experimentation shows good
results and a significant improvement with respect to previous algorithms. We evaluate
mean global errors, minimum and maximum errors and the worst case. Moreover we
consider the computational cost and specifically the overhead due to extra iterations to
approximate the mean node population for a node involved in blocking.

To showcase the method at work, we consider healthcare systems which are a crit-
ical and important sector of social life. In this case, capacity planning studies are very
important both for care efficiency and economical perspective. In particular, we con-
sider the Philadelphia mental health system that was the forefront of the health system
rearrangement. The proposed method is particularly suitable for non-experts that have
to take decisions in order to rearrange structures. We consider the case study in [7]
and obtain the same results, but at a lower computational cost and with a more flexible
approach that open to further investigations. We show that one can easily investigate
all cases of upgrading different structures and select the most convenient and efficient
solution.

Several future directions can be investigated. Some results are not still good and
show that the method needs to be further improved. The use of non-exponential distri-
butions could be investigated, the inclusion of blocking on a subnetwork would be an
interesting feature to model admission control mechanisms. Different blocking mech-
anisms could be considered and a similar approach could be investigated for different
dependencies, e.g. load-dependent routing.

Acknowledgments

The authors would like to thank the reviewers for their suggestions that really im-
proved the quality of paper.

REFERENCES

[1] S. Balsamo, V. de Nitto Personé, R. Onvural., Analysis of queueing networks with
blocking., Kluwer Academic.

[2] R. Onvural, Survey of closed queueing networks with blocking., ACM Comput-
ing Surveys 22 (2) (1990) 83–121.

30

[3] R. Onvural, Special issue on queueing networks with finite capacity., Perform.
Eval. 17 (3).

[4] H. Perros, Queueing networks with blocking., Oxford University Press.

[5] S. Balsamo, V. de Nitto Personé, P. Inverardi., A review on queueing network
models with finite capacity queues for software architectures performance pre-
diction., Perform. Eval. 51 (2-4) (2003) 269–288.

[6] L. Lu, L. Cherkasova, V. de Nitto Persone, N. Mi, E. Smirni, AWAIT: Efficient
overload management for busy multi-tier web services under bursty workloads, In
proc. of ICWE 2010, Web Engineering, 10th International Conference, Vienna,
Austria 46 (2010) 455–477.

[7] N. Koizumi, E. Kuno, T. Smith, Modeling patient flows using a queuing network
with blocking, Health Care Management Science 8 (2005) 49–60.

[8] M. Reiser, S. Lavenberg, Mean value analysis of closed multichain queueing net-
works, J. ACM (1980) 313–322.

[9] M. Jain, S. Maheshwari, K. Baghel, Queueing network modelling of flexible man-
ufacturing system using mean value analysis, Applied Mathematical Modelling
32 (5) (2008) 700–711.

[10] X. Guoqing, C. Hongzhao, W. Yuanhui, Analysis of aircraft sortie generation
process using a closed queuing network model, In Proc. of 2010 International
Conference on Intelligent Computation Technology and Automation (ICICTA)
(2010) 643–646.

[11] E. Winands, I. Adan, G. van Houtum, Mean value analysis for polling systems,
Queueing Systems 54 (1) (2006) 35–44.

[12] D. Petriu, C. Woodside, Approximate mean value analysis based on markov chain
aggregation by composition, Linear Algebra and its Applications 386 (2004) 335–
358.

[13] A. Bogardi-Meszoly, T. Levendovszky, A novel algorithm for performance pre-
diction of web-based software systems., Perform. Eval. 68 (2011) 45–57.

[14] A. Kattepur, M. Nambiar, Modeling of multi-tiered web applications with varying
service demands, In Proc. of IEEE International Parallel & Distributed Processing
Symposium IPDPS 2015 Workshops (2015) 415–424.

[15] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, An analytical
model for multi-tier internet services and its applications, An Analytical Model
for Multi-tier Internet Services and its Applications (2005) 291–302.

[16] Q. Zhang, L. Cherkasova, E. Smirni, A regression-based analytic model for dy-
namic resource provisioning of multi-tier applications, In Proc. of the 4th ICAC
Conference (2007) 27.

31

[17] L. Zhang, D. Down, Approximate mean value analysis for multi-core systems, In
Proc. of the International Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS) (2015) 643–646.

[18] G. Casale, E. Smirni, MAP-AMVA: Approximate mean value analysis of bursty
systems, In Proc. of IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (2009) 409–418.

[19] M. Tribastone, Approximate mean value analysis of process algebra models, In
Proc. of IEEE19th International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS) (2011) 369–
378.

[20] M. Sereno, Mean value analysis of product form solution queueing networks with
repetitive service blocking, Perform. Eval. 36-37 (1999) 19–33.

[21] I. F. Akyildiz, Mean value analysis of blocking queueing networks, IEEE Trans.
On Software Eng. 14 (4) (1988) 418–428.

[22] M. Yuzukirmizi, Performance evaluation of closed queueing networks with lim-
ited capacities, Turkish J. Eng. Env. Sci. (2006) 269–283.

[23] V. De Nitto Personé, A. Di Lonardo, An Approximate Mean Value Analysis
Approach for System Management and Overload Control, in: Computer Perfor-
mance Engineering, Vol. 8168 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2013, pp. 288–299.

[24] T. Yamadaa, N. Mizuharab, H. Yamamotoc, M. Matsuib, A performance eval-
uation of disassembly systems with reverse blocking, Computers & Industrial
Engineering Intelligent Manufacturing and Logistics (2009) 1113–1125.

[25] A. Lazar, G. Robertazzi, The geometry of lattices for markovian queueing net-
works, Perform. Eval. 6 (1986) 85–86.

[26] S. Lavenberg, M. Reiser, Stationary state probabilities of arrival instants for
closed queueing networks with multiple types of customers, J. of Applied Proba-
bility 17 (4) (Dec. 1980) 1048–1061.

[27] K. Sevcik, I. Mitrani, The distribution of queueing network states at input and
output instants, J. of ACM 28 (2) (Apr. 1981) 358–371.

[28] V. De Nitto Personé, A. Di Lonardo, MVABAS
v2: experimentation networks and results. url:
https://art.torvergata.it/retrieve/handle/2108/197911/391720/mvabastechreport.pdf,
Research Report, RR-18.14.

[29] WHO, Basic documents url: http://apps.who.int/gb/bd/pdf/bd48/basic-
documents-48th-edition-en.pdf, Forty-eighth edition.

[30] P. Hulshof, N. Kortbeek, R. Boucherie, E. Hans, P. Bakker, Taxonomic classifi-
cation of planning decisions in health care: a structured review of the state of the
art in or/ms, Health Systems 1 (2) (2012) 129–175.

32

