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We present the QCD simulation of the first gauge ensemble of two degenerate light quarks, a strange and
a charm quark with all quark masses tuned to their physical values within the twisted mass fermion
formulation. Results for the pseudoscalar masses and decay constants confirm that the produced ensemble
is indeed at the physical parameters of the theory. This conclusion is corroborated by a complementary
analysis in the baryon sector. We examine cutoff and isospin breaking effects and demonstrate that they are
suppressed through the presence of a clover term in the action.
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I. INTRODUCTION

Simulations of Quantum Chromodynamics directly with
physical quark masses, large enough volume and small
enough lattice spacing have become feasible due to
significant algorithmic improvements and availability of
substantial computational resources. In fact, state-of-the-
art simulations using different discretization schemes are
currently being carried out worldwide.
Within the twisted mass formulation [1–3], the European

Twisted Mass Collaboration (ETMC) has carried out sim-
ulations directly at the physical value of the pion mass [4,5]
with Nf ¼ 2 mass-degenerate up and down quarks at a
lattice spacing of a ¼ 0.0913ð2Þ fm. This is a remarkable
result, since explicit isospin breaking effects associated with
twisted mass fermions can make physical point simulations

at too coarse values of the lattice spacing very difficult.
Being able to reach the physical pion mass for the case of
Nf ¼ 2 flavors was therefore of great importance, and many
physical quantities have already been computed on the so
generated gluon field configurations. Examples are meson
properties [4–9], the structure of hadrons [4,10–14] and the
anomalous magnetic moment of the muon [5].
The success of these Nf ¼ 2 flavor simulations strongly

suggests to extend the calculation by adding the strange and
charm quarks as dynamical degrees of freedom, a situation
we will refer to as Nf ¼ 2þ 1þ 1 simulation. Adding a
quark doublet is a natural step for twisted mass fermions.
However, it is known that the presence of a heavy quark
doublet in the sea gives rise to larger discretization effects
than having only the light up and down quarks.
This paper reports on our successful, but demanding tuning

effort to reach a physical situation with the first two quark
generations tuned to their physical values in the twisted mass
representation. We will present first results for low-lying
meson masses and decay constants as well as baryon masses.
In addition,wedescribe a comprehensive determinationof the
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lattice spacing from the meson and baryon sectors as well as
from gradient flow observables. Furthermore, we discuss
isospin breaking effects of twisted mass fermions in the
neutral and charged pion and in the Δ sector. Demonstrating
the successful generation of anNf ¼ 2þ 1þ 1 ensemble of
maximally twisted mass fermions at physical quark masses is
the essential result of this paper that lays the ground for a
future very rich research program within the twisted mass
formulation with an eventually large impact for ongoing and
planned experiments.
The outline of the paper is as follows: in Sec. II we

introduce the employed twisted mass action and discuss
details of the parameters used in the Hybrid Monte Carlo
simulation. In Sec. III we discuss our tuning procedure to
reach physical light, strange, and charm quark masses,
which includes tuning for OðaÞ improvement and a
discussion on the isospin splitting. In Sec. IV we present
mesonic quantities for our ensemble, including a determi-
nation of the lattice spacing via the pion decay constant and
heavy quark observables. In Sec. V we discuss nucleon
properties including the determination of the lattice spacing
via the nucleon mass. In addition, we discuss possible
isospin splitting in the Δ-baryon sector. In Sec. VI we
summarize the different determination of lattice spacing via
gluonic, mesonic and baryonic observables and conclude.

II. ACTION

We employ the twisted mass fermion formulation, within
which observables are automatically OðaÞ improved when
working at maximal twist [2,15]. This formulation has
proven to be very advantageous: It allows one to perform
safe, infrared regulated simulations and simplified renorm-
alization in some cases. There is no need for improvement
on the operator level due to automatic OðaÞ-improvement
and cutoff effects turn out to be relatively small except for
the special case of the neutral (unitary) pion mass.
The action of twisted mass fermions is given by

S ¼ Sg þ Sltm þ Shtm; ð1Þ
where we choose the Iwasaki improved gauge action for Sg
[16] which reads

Sg ¼
β

3

X
x

 
b0
X4
μ;ν¼1
1≤μ<ν

f1 − ReTrðU1×1
x;μ;νÞg

þ b1
X4
μ;ν¼1
μ≠ν

f1 − ReTrðU1×2
x;μ;νÞg

!
; ð2Þ

with the bare inverse gauge coupling β ¼ 6=g20, b1 ¼
−0.331 and b0 ¼ 1–8b1. In the case of the light up and
down quark doublet, the action takes the form

Sltm ¼
X
x

χ̄lðxÞ
�
DWðUÞ þ i

4
cSWσμνF μνðUÞ

þml þ iμlτ3γ5
�
χlðxÞ: ð3Þ

Here, χl ¼ ðu; dÞt represents the light quark doublet,
μl is the twisted and ml the (untwisted) Wilson quark
mass. The Pauli matrix τ3 acts in flavor space, and DW is
the massless Wilson-Dirac operator. Note that the Wilson
quark mass ml and the clover term i

4
cSWσμνF μνðUÞ—with

the Sheikoleslami-Wohlert improvement coefficient cSW
[17]—are trivial in flavor space.
For the heavy quark action, with mass nondegenerate

strange (s) and charm (c) quarks, we construct a quark
doublet χh ¼ ðs; cÞt for which the action reads [15]

Shtm ¼
X
x

χ̄hðxÞ
�
DWðUÞ þ i

4
cSWσμνF μνðUÞ

þmh − μδτ1 þ iμστ3γ5
�
χhðxÞ: ð4Þ

The important addition compared to Eq. (3) is the term μδτ1
with τ1 again acting in flavor space. The Wilson quark
masses in Eqs. (3) and (4) are related to the hopping
parameter κ as m ¼ 1=2κ − 4. By tuning the light Wilson
bare quark mass ml to its critical value mcrit the maximally
twisted fermion action is obtained for which all physical
observables are automatically OðaÞ-improved [2,15].
Setting mh ¼ ml ¼ mcrit this property takes over to the
heavy quark mass action such that only one bare mass
parameter has to be tuned to its critical value which is a
great simplification for practical simulations.
However quadratic lattice artifacts can be sizable but by

introducing a clover term they can be suppressed, e.g., in
case of the neutral pion mass as shown in [5,18–20].
Here, the clover parameter is set by using an estimate from
1–loop [21] tadpole boosted perturbation theory given by

cSW ≅ 1þ 0.113ð3Þ g
2
0

P
; ð5Þ

with P the plaquette expectation value. For our target
parameter set, shown in Table I, the plaquette expectation

TABLE I. The table shows the parameters which are used in the simulations of the target ensemble labeled by
cB211.072.64 with pion masses close to the physical point.

V β μl μσ μδ κ cSW

128 × 643 1.778 0.00072 0.1246864 0.1315052 0.1394265 1.69
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value is given by P ¼ 0.554301ð6Þ, which is consistent
with setting cSW ¼ 1.69.

A. Algorithm

For the generation of the gauge field configurations we
use as a basis the Hybrid Monte Carlo (HMC) algorithm
[22,23] as described in Refs. [24,25]. For the light quark
sector Hasenbusch mass preconditioning [26,27] is applied.
In particular, we employ four determinant ratios with
mass shifts ρ¼f0.0; 0.0003; 0.0012; 0.01; 0.1g. The heavy
quark determinant is treated by a rational approximation
[28,29] with ten terms tuned such that the (eigenvalue)
interval [0.000065, 4.7] is covered. For the molecular
dynamics integration we use a nested second order minimal
norm integrator. This results in 12 integration steps for the
smallest mass term in the light and heavy quark sector and
192 steps for the gluonic sector [20]. We use the software
package tmLQCD [25] which incorporates the multigrid
algorithm DDalphaAMG for the inversion of the Dirac
matrix [30]. The force calculation in the light quark sector
is accelerated by a 3-level multigrid approach optimized for
twisted mass fermions [31]. Moreover, we extended the
DDalphaAMG method for the mass nondegenerate twisted
mass operator. The multigrid solver used in the rational
approximation [32,33] is particularly helpful for the lowest
terms of the rational approximation, as well as for the
rational approximation corrections in the acceptance steps,
where it yields a speed up of 2 over the standard multimass
shifted conjugate gradient(MMS-CG) solver. We checked
the size of reversibility violation of this setup yielding a
standard deviation < 0.01 for δΔH and j1 − hΔHij < 0.02
fulfilling the criteria discussed in [34]. Here, δΔH is the
difference of the Hamiltonian at integration time t ¼ 0, and
the Hamiltonian of the reversed integrated field variables
after one trajectory is performed.

III. QUARK MASS TUNING

A. Tuning of the light quark sector

As shown in Refs. [35,36] a most suitable and theoreti-
cally sound condition for the desired automatic OðaÞ
improvement for twisted mass fermions is achieved by
demanding a vanishing of the partially conserved axial
current (PCAC) quark mass

mPCAC ¼
P

xh∂0Aa
0ðx; tÞPað0Þi

2
P

xhPaðx; tÞPað0Þi ; a ¼ 1; 2; ð6Þ

with Aa
μ the axial vector current and Pa the pseudoscalar

current. In the twisted basis and for light, mass degenerate
quarks, the axial and pseudoscalar currents can be calcu-
lated via

Aþ
μ ðxÞ¼ χ̄lðxÞγμγ5

τþ

2
χlðxÞ; PþðxÞ¼ χ̄lðxÞγ5

τþ

2
χlðxÞ;

using τþ ¼ ðτ1 þ iτ2Þ=2 where τi are the Pauli matrices.
The tuning procedure to maximal twist requires a value of
the hopping parameter κ ¼ κcrit where mPCACðκcritÞ ¼ 0.
Note that the corresponding definition of the critical mass
amcrit ¼ 1=ð2κcritÞ − 4 is a function of aμl, aμσ , aμδ. Thus,
even if the 1=a divergence in mcrit is independent from μl,
μσ and μδ, determining amcrit at the μσ and μδ values of
interest is important in order to keep lattice artifacts small
which are introduced by the heavy quark doublet [37,38].
Instead the dependence of amcrit on μl reflects much milder
discretization errors. In practice, we allow for some
tolerance to this strict condition and following Ref. [39]
we impose that

ZAmPCAC

μl
< 0.1 ð7Þ

within errors. In Eq. (7) ZA is the renormalization constant
of the axial current. Fulfilling the condition Eq. (7) is
numerically consistent withOðaÞ-improvement of physical
observables, where it entails only an error of order
OððZA ·mPCAC=μlÞ2Þ. Hence for < 0.1 follows for the
targeted lattice spacing the error is comparable to other
Oð½aΛQCD�2Þ discretization errors. This allows an Oða2Þ
scaling of physical observables towards the continuum
limit.
In order to tune to κcrit, we have generated several

ensembles with fixed volumes of size 243 · 48 and 323 · 64,
as listed in Table II. For a fixed twisted mass parameter of
the up and down doublet, we scan over several values of the
hopping parameter κ, see Table II. After fixing κcrit in
this manner we proceed by tuning the light and heavy
twisted mass parameters to realize physical pion, kaon and
D-meson masses and decay constants. This procedure,
which is described in more detail below will provide the
input parameters for the target large volume simulations,
denoted as the ensembles cB211.072.64.r1 and
cB211.072.64.r2 in Table II.
Initially, we had attempted to start our Nf ¼ 2þ 1þ 1

simulations at a smaller value of β ¼ 1.726 that would
correspond to the lattice spacing of our Nf ¼ 2 ensemble
with a ∼ 0.095 fm [5]. However, it turned out that tuning to
maximal twist for a physical value of the pion mass for this
β-value was not feasible. Nevertheless, our simulations at
β ¼ 1.726 for pion masses in the range between 170 MeV
and 350 MeV allowed us to develop a tuning strategy to
realize the situation of maximal twist and also to reach the
physical kaon and D-meson masses. This tuning strategy
was then used at the finer lattice spacing as discussed in
the present paper. The occurrence of instabilities of the
simulations at β ¼ 1.726 when approaching the physical
pion mass is, in fact, not unexpected. With twisted mass
fermions, going to sufficiently small values of the light
twisted mass parameter at a fixed lattice spacing one either
enters the Aoki [40] or the Sharpe-Singleton [41] regime,

SIMULATING TWISTED MASS FERMIONS AT PHYSICAL … PHYS. REV. D 98, 054518 (2018)

054518-3



see for an recent overview [42]. For the Sharpe-Singleton
case, which is realized in our unquenched simulations, a
sizableOða2Þ negative shift of the neutral pion mass occurs.
Let us consider the region close to maximal twist, where

jω − π=2j ≪ 1 or, equivalently, ml ¼ m0 −mcrit ≪ μl.
Here the pion mass splitting can be related the PCAC
quark mass by [40,43]

amPCAC ∼ Zaml
m2

π

m2
πð0Þ

þ � � � ; ð8Þ

where Z ¼ ZmZP=ZA is a combination of the untwisted
quark mass (Zm), the pseudoscalar (ZP) and the axial (ZA)
renormalization factors and am0 denotes the bare quark
mass. The charged pion mass is denoted throughout this
paper by mπ, while the neutral pion is given by mπð0Þ. The
twisted mass angle ω can be defined via the gap equation,
see [40,43]. From Eq. (8) it is clear that the tuning
necessary to satisfy Eq. (7) becomes very hard for a large
pion mass difference m2

π −mπð0Þ
2 ≫ 0.

In the Sharpe-Singleton scenario a first order phase
transition is predicted from chiral perturbation theory. In
simulations on finite lattices this leads to large fluctuations
and jumps of physical observables [44–49], driving the
simulations to become unstable. This makes it very hard to
tune successfully to maximal twist. In our simulations at
β ¼ 1.726 we observed a strong dependence of the PCAC
quark mass on the bare mass parameter m0, which made it
difficult to tune to the critical hopping parameter for a pion
mass below 170 MeV. Although at β ¼ 1.726 we did not
investigate in detail which of the lattice χPT scenario is
realized, the fact that at β ¼ 1.778 we find (see Sec. III C) a
neutral pion mass ∼20% smaller than the charged one
suggests that a Singleton-Sharpe lattice scenario occurs in
the scaling region with our chosen action (see Sec. II).

In order to avoid the aforementioned difficulties, we
therefore decided to choose a finer value of the lattice
spacing that would facilitate tuning to critical mass at the
physical point. We found that a value of β ¼ 1.778,
corresponding to a ≈ 0.08 fm, allows us to tune to maximal
twist successfully. In the following, we consider therefore a
lattice volume of size 643 · 128, which is sufficiently large
to suppress finite size effects but at the same time can be
simulated with reasonable computational resources, given
the algorithmic improvements that were discussed in
Sec. II A.
For the tuning process of κ, which is a function of the

light, strange, and charm quark mass parameters, we use
the 243 · 48 and 323 · 64 lattices, see Sec. III. b. for more
details. The dependence of the PCAC quark mass on κ at
fixed light twisted mass parameter is shown in Fig. 1. Note
that it can be assumed that Eq. (8) is valid here for the range
−0.4141≲ aml ≲ −0.4135 i.e., jaðml −mcritÞj < 0.0003.
Using simple linear fits for the L ¼ 32 ensembles, we
determine a critical value of κ, κcrit ¼ 0.1394265. We then
employ this κ-value for our large volume ensembles.
For the simulations on the 643 · 128 lattices we first

thermalize one configuration using 500 trajectories. We
then use this configuration as a starting point for two
replicas, each having a final statistics of about 1500 MDUs.
In Fig. 1 we depict the Monte Carlo history of the PCAC
quark mass for these two replicas, where we show, for
better visibility, one history plotted by reversed history.
The PCAC quark mass fluctuates around zero and does not
show particularly large autocorrelation times nor any
indication of a first order Sharpe-Singleton transition.
Performing the average over the two replica runs, we find
mPCAC=μ ¼ 0.03ð2Þ. Thus, the condition of Eq. (7) is
nicely fulfilled. Note that here we do not include the
renormalization factor ZA. However, our first estimate is

TABLE II. Summary of the parameters of the ensembles used for the tuning and final runs: L is the lattice spatial
size with the time direction taken to be 2L, aμl is the twisted mass parameter of the mass degenerate light quarks, κ
is the hopping parameter (common to all flavors), Nth are the number of thermalized trajectories in molecular
dynamics units (MDU), aμσ and aμδ are the bare twisted mass parameter of the mass nondegenerate fermion action
used for the heavy quark sector. The ensembles cB211.072.64.r1 and cB211.072.64.r2 represent the targeted large
volume runs at the physical point.

Ensemble L aμl κ Nth aμσ aμδ

Th1.350.24.k1 24 0.0035 0.1394 755 0.1162 0.1223
Th1.350.24.k2 24 0.0035 0.13942 350 0.1162 0.1223
Th1.350.24.k3 24 0.0035 0.13945 351 0.1162 0.1223
Th1.350.24.k4 24 0.0035 0.13950 267 0.1162 0.1223
Th1.350.32.k1 32 0.0035 0.13940 88 0.1162 0.1223
Th1.200.32.k2 32 0.002 0.13942 430 0.1162 0.1223
Th2.200.32.k1 32 0.002 0.13940 178 0.1246864 0.1315052
Th2.200.32.k2 32 0.002 0.13942 439 0.1246864 0.1315052
Th2.200.32.k3 32 0.002 0.13944 392 0.1246864 0.1315052
Th2.125.32.k1 32 0.00125 0.139424 815 0.1246864 0.1315052
cB211.072.64.r1 64 0.00072 0.1394265 1647 0.1246864 0.1315052
cB211.072.64.r2 64 0.00072 0.1394265 1520 0.1246864 0.1315052
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that ZA ≈ 0.8 and anyhow smaller than one, making the
condition even better fulfilled. We therefore conclude
that the tuning to maximal twist is achieved for the
Nf ¼ 2þ 1þ 1 setup. And, as we will demonstrate below,
the parameters of the cB211.072.64 runs are chosen such
that we indeed simulate at, or very close to the physical
values of the pion, the kaon and the D-meson masses.

B. Tuning of the heavy quark sector

In tuning the mass parameters of the heavy quark sector
we exploit the fact that the value of the critical hopping
parameter, as determined in the light quark sector, can be
employed also for the heavy quark action while preserving
automatic OðaÞ-improvement of all physical observables
[3,50]. Nevertheless, tuning the heavy twisted mass param-
eters to reproduce the physical values of the strange and
charm quark masses is a nontrivial task, owing to the Oða2Þ
flavor violation [15] inherent to the heavy sector fermion
action in Eq. (4). In order to tackle the problem, it is
convenient to employ in an intermediate step the so-called
Osterwalder Seiler (OS) fermions [51] in the valence which
avoids these mixing effects. The OS-fermions can be used in
a well-defined mixed action setup as valence fermions at
maximal twist with the same critical mass, mcrit, as deter-
mined in the unitary setup [3]. The flavor diagonal action,
denoted as Osterwalder Seiler fermion action, is given by

SfOS ¼
X
f¼s;c

�X
x

χ̄fðxÞ
�
DW ½U� þ i

4
cSWσμνF μνðUÞ

þmcrit þ iμOSf γ5

�
χfðxÞ

�
; ð9Þ

with χf a single-flavor fermion field. The renormalized
valence masses μOS;renc;s ¼ μOSc;s=ZP can be matched to the
corresponding renormalized quark masses via

μOS;renc;s ¼ 1

ZP

�
μσ �

ZP

ZS
μδ

�
; ð10Þ

with ZP and ZS denoting the nonsinglet pseudoscalar and
scalar Wilson fermion quark bilinear renormalization con-
stants. Then correlation functions using OS or unitary
valence quarks are equivalent in the continuum. Moreover
they still yield OðaÞ improved physical observables.
The general idea to tune the heavy quark twisted mass

parameters is to start with an educated guess in the unitary
setup and to tune the OS charm and strange valence masses
by imposing two suitably chosen physical renormalization
conditions. The so determined parameters of the OS action,
i.e., aμOSs for the strange quark and aμOSc for the charm
quark, can then be translated to new heavy quark twisted
mass parameters [aμσ and aμδ of Eq. (4)] via Eq. (10), in the
unitary setup and, together with a slight retuning of κcrit, a
new unitary simulation can be performed. With a convenient
choice of the physical renormalization conditions, here C1

and C2 (see below), this parameter tuning procedure can be
carried out on a nonlarge lattice (in the present case, 323 · 64)
and at a larger than a physical up/down quark mass.
In this work, we follow the above described strategy.

As physical conditions we choose

C1 ≡ μOSc
μOSs

¼ 11.8 and C2 ≡mDs

fDs

¼ 7.9; ð11Þ

FIG. 1. Left: The PCACmass versus the bare light quark mass am ¼ 1=2κ − 4 for various values of the twisted mass parameter for the
tuning of the critical mass. The linear interpolations are done on the Th1.350.24 ensembles (blue, triangle points) illustrated with the
black solid line and on the Th2.200.32 ensembles (red square points) illustrated with the black dotted line. The value of the PCAC mass
for the Th2.125.32.k1 ensemble is shown by the cyan star point and of the cB211.072.64 by black right pointing triangle. Right: The MC
history of the PCAC quark mass on the large volume physical point ensembles is shown at twisted mass value aμl ¼ 0.00072 and
hopping parameter κ ¼ 0.1394265.
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where mDs
is the Ds-meson mass and fDs

the Ds-meson
decay constant. The condition C2 has a strong sensitivity to
the charm quark mass while C1 fixes the strange-to-charm
mass ratio. They show only small residual light quark mass
dependence arising from sea quark effects. We expect these
conditions to be essentially free from finite-size effects due
to the heavy Ds-meson mass. This setup leads indeed to an
only small error for the final parameter choices. Details on
our measurements of meson masses and decay constants
for twisted mass fermions are given in the Appendix A.
As a first step, we work on gauge ensembles produced

with μl around 3 times larger than the physical up-down
average quark mass and with educated guess values of μσ,
μδ and m0. We choose the OS quark masses μOSc and μOSs
such that condition C1 is fulfilled. We then vary the OS
quark masses, while maintaining condition C1, over a
broad enough range such that also condition C2 is satisfied
within errors.
In a second step, we match the heavy charm and strange

twisted mass of the unitary action (4) to the OS fermion
quark mass parameters via Eq. (10). The value of aμσ is
directly determined from aμOSs and aμOSc , while aμδ is fixed
by the ratio ZP=ZS. The latter can be estimated by adjusting
aμδ such that the kaon mass evaluated in the unitary
formulation (mtm

K ) and its counterpart computed with
valence OS fermions (mOS

K ) are equal. Although the kaon
mass value can be unphysical due to having a too large
value of μl and possible finite size effects, the matching
condition actually relates only heavy quark action param-
eters. It fixes the relation of aμδ to aμOSs and aμOSc , or
equivalently the ratio ZP=ZS. In that way it is insensitive to
both the finite lattice size and the actual value of μl up to
Oða2Þ artifacts. Since the matching steps described so far
were implemented only on the valence quark mass param-
eters of the unitary and OS actions using gauge ensembles
with so far different values of the sea quark mass param-
eters, one still needs to generate new gauge configurations
at the so-determined values of aμσ and aμδ. Now on these
new ensembles it can be rechecked whether the condition
C2 and the matching condition mtm

K ¼ mOS
K , as well as the

maximal twist condition Eq. (7) in the light quark sectors,
are fulfilled with sufficient accuracy. If this happens not to
be the case, the procedure has to be iterated.
More concretely, we start with an initial guess for the

heavy quark mass parameters given by aμδ ¼ 0.1162 and
aμσ ¼ 0.1223, which we deduce from a number of tuning
runs on a lattice of size 243 × 48 and 323 × 64 along the
lines of Ref. [52]. These parameters are realized for the
ensemble Th1.200.32.k2, which is moreover very close to
maximal twist. We then employ OS fermions in the valence
sector and vary the values of μOSs and μOSc —while main-
taining condition C1—such that condition C2 is fulfilled.
This is illustrated in Fig. 2 for the Th1.200.32.k2 ensemble.
By requiring that condition C2 is exactly fulfilled, we then
fix the values of aμOSs and aμOSc , finding

aμOSs ¼ 0.01948 and aμOSc ¼ 0.2299: ð12Þ

As explained above, the values in Eq. (12) already
determine aμσ . To determine aμδ, we first compute the
kaon mass in the OS setup at aμl used in the unitary setup
and aμOSs from Eq. (12). Having found the OS kaon mass,
we go back to the ensemble Th1.200.32.k2 and tune in the
unitary heavy quark valence sector μδ such that we match
the OS kaon mass. We then take the so found value of μσ
and μδ for our simulations on the target large volume lattice.
In this process a useful guidance is provided by assuming
ZP=ZS ¼ 0.8 known to be a typical value from our previous
simulations. As we will discuss later, this assumption for
ZP=ZS turns out to be rather close to the values we
determine on the cB211.072.64 ensembles. Our final result
for the action parameters in the heavy sector of maximally
twisted mass fermions then read

aμσ ¼ 0.12469 and aμδ ¼ 0.13151: ð13Þ

Due to the retuning of the heavy quark masses κcrit has
to be retuned as well. To this end, several ensembles
with volumes of 323 × 64 at light twisted mass values of
aμl ¼ 0.002 and aμl ¼ 0.00125 were generated to deter-
mine the critical hopping parameter for the simulation at
aμl ¼ 0.00072 resulting in κcrit ¼ 0.1394265.
In this work, it turned out that we only needed one

iteration of the above procedure using the Th1.200.32.k2
ensemble. After this first step, the tuning conditions for
the heavy quark masses were checked again on the
Th2.200.32.k2 ensemble (see Table II) and found to hold
to a good accuracy within statistical errors. A similar

FIG. 2. Tuning of the charm quark twisted mass parameter μc
using the C2 condition on the Th1.200.32.k2 ensemble. The
figure is showing a subset out of the 25 measuredmDs

=fDs
ratios,

shown as the blue square points, using all combinations of five
different values of μOSc and μOSs . The horizontal line illustrate the
physical value of C2. The 25 points are interpolated and here
showed as the black straight line where C1 is fixed.
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finding holds also on our target ensemble cB211.072.64
ensembles. If we impose again an exact matching between
mOS

K and the unitary mtm
K on the two cB211.072.64

ensembles we find the ratio of the pseudoscalar to the
scalar renormalization constants to be

ZP

ZS
¼ 0.813ð1Þ: ð14Þ

Using this value of ZP=ZS the values of μσ;δ of Eq. (13) are
close to the corresponding parameters at the physical point
(the cB211.072.64 ensembles) that match our tuning
conditions. Indeed the actually employed sea quark mass
parameters correspond to a sea strange (charm) quark mass
6% lighter (4% heavier) than those derived a posteriori
from imposing the same tuning and matching conditions on
the physical point ensembles. It is also very nice to observe
that by enforcing these conditions with very high precision
one would obtain at the physical point with a ∼ 0.08 fm a
kaon mass in isosymmetric QCD less than 1% smaller than
its experimental value.

C. Oða2Þ isospin-breaking lattice artifacts
in the pion sector

An important aspect when working with twisted mass
fermions at maximal twist is to keep the size of isospin
violations small. This isospin breaking manifests itself
by the fact that the neutral pion mass becomes lighter than
the one of the charged pion. In leading order (LO) of chiral
perturbation theory this effect is described by

a2ðm2
π −m2

π0
Þ ¼ −4c2a2 sin2ðωÞ; ð15Þ

with the twisted mass angle given by ω ¼
atanðμl=ZAmPCACÞ and c2 a low energy constant character-
izing the strength of Oða2Þ-effects of twisted mass fer-
mions. As shown in Refs. [5,18], using a clover term the
value of the low energy constant c2 decreases. Indeed,
employing a clover term, simulations at physical quark
masses become possible as demonstrated in Ref. [5]. It
turns out that c2 < 0 for twisted mass fermions [53] leading
to the Sharpe-Singleton scenario [41].
In order to calculate the neutral pion mass one needs to

compute disconnected two-point functions that are notori-
ously noisy. To suppress the noise in the computation of the
two-point functions we use a combination of exact defla-
tion, projecting out the 200 lowest lying eigenvalues, and
6144 stochastic volume sources corresponding to an eight-
distance hierarchical probing [54,55]. The disconnected
correlator needed is given by

Cdiscðt0Þ ¼ hÔð0ÞÔðt0Þi with

Ôðt0Þ ¼ D−1ðt0; t0Þ − hD−1ðt; tÞi; ð16Þ

where the ensemble and time average of the vacuum
contribution is subtracted from the disconnected operator.
Note that we used global volume noise sources to extract
the disconnected contribution; however, methods which do
not subtract the vacuum expectation value explicitly could
be more effective as pointed out in [5,6,56]. We have found
that the disconnected contribution dominates the correlator
for time distances t=a > 10, as can be seen in Fig. 3.
However we include the connected contribution in the
plateau average, leading to a neutral pion mass given by

amπð0Þ ¼ 0.044ð9Þ: ð17Þ

Note, that for the connected contribution small statistics of
around 250 measurements are used, which results in a
relatively large statistical error. The charged pion mass is
straight forward to compute, and we find for the charged
pion mass amπ ¼ 0.05658ð6Þ. This gives an isospin split-
ting in the pion mass of 22(16)% and the low energy
constant c2 of Eq. (15) reads

4c2a2 ¼ −0.0013ð8Þ; ð18Þ

assuming ω ¼ π=2. Thus, introducing a clover term for
Nf ¼ 2þ 1þ 1 twisted mass fermions suppresses isospin
breaking effects effectively, i.e., by a factor of 6 compared
to an Nf ¼ 2þ 1þ 1 ensembles with twisted mass fer-
mions without a clover term and a pion mass of 260 MeV
at a similar lattice spacing of a ¼ 0.078ð1Þ fm [53,57],
where it was found that the mass splitting is given by
ðamπð0Þ Þ2 − ðamπÞ2 ¼ −0.0077ð4Þ. The suppression of the
pion isospin breaking effects, thanks to the use of the clover
term, is the underlying reason why we can perform our
simulations at the physical point with Nf ¼ 2þ 1þ 1

flavors of quarks.

IV. PSEUDOSCALAR MESON SECTOR

In order to check, whether we are indeed at (or close to)
the targeted physical situation, we studied the charged pion,
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FIG. 3. Left: The correlator of the neutral pion versus t=a.
Right: The effective mass of the neutral pion. The shaded band
shows the constant fit in the plateau range. The red triangle shows
the data of the full correlator, while the blue squares the
disconnected and the black stars the connected contribution.
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the kaon and the D-meson masses and decay constants.
These observables are rather straightforward to compute
with good accuracy. A detailed description of the calcu-
lation of these quantities with twisted mass fermions can be
found in Appendix A.

A. Light meson sector

The first goal of this section is to determine the value of
the lattice spacing within the pion sector. The extracted
value will then be compared to the one from a similar
investigation in the nucleon sector in Sec. V. In principle,
the lattice spacing could be determined already from our
cB211.072.64 target ensembles given in Table II, having a
twisted mass parameter of μl ¼ 0.00072 and yielding a
pion mass to decay constant ratio of mπ=fπ ¼ 1.073ð3Þ,
which is rather close to the physical one. However, it is
helpful to also use other ensembles, listed in Table II, which
are all tuned to maximal twist, namely Th1.350.24.k2,
Th2.200.32.k2, Th2.150.32.k2 in addition to the
cB211.072.64 ensembles. By employing chiral perturba-
tion theory (χPT) to describe the quark mass dependence of
the pion decay constant and pion mass, we obtain a robust
result for the value of the lattice spacing. Since the
ensembles that are not at the physical point have partly
only a small volume, we include finite volume corrections
from chiral perturbation theory to the χPT formulas used
[58]. We depict in Fig. 4 the ratiom2

π=f2π and the pion decay
constant itself as function of the light bare twisted
quark mass.
In Fig. 4 we also show the fits to NLO χPT [60–62],

which for the ratio m2
π=f2π read

m2
π

f2π
¼ 16π2ξlð1þ Pξl þ 5ξl logðξlÞÞ

FFVE
fπ

2

FFVE
mπ

2
ð19Þ

and for the pion decay constant

afπ ¼ af0ð1þ Rξl − 2ξl logðξlÞÞ1=FFVE
fπ

; ð20Þ

with the finite volume correction terms FFVE
fπ

; FFVE
mπ

[58].

Here ξl ¼ 2B0μl=ZP½ð4πf0Þ2� where B0 and f0 are low
energy constants. From the fits, we determine the values
of 2B0=ZP ¼ 4.52ð6Þ and af0 ¼ 0.0502ð3Þ. The fitting
constants P, R are related to the NLO low energy
constants by

P ¼ −l̄3 − 4l̄4 − 5 log

�
mphys

π

4πf0

�2

and

R ¼ 2l̄4 þ 2 log

�
mphys

π

4πf0

�2

: ð21Þ

We determine the finite volume correction terms by
fixing the low energy constants using the results of
Ref. [38]. For our target ensemble cB211.072.64 with
mπL ¼ 3.62 we find that the finite volume effects yield
corrections of less than 0.5% for the pion mass and less
than 0.5% for the pion decay constant. By using the fit
functions from χPT and fixing the ratio m2

π;phys=f
2
π;phys ≡

1.034 we find for the light twisted mass parameter
aμl;phys ¼ 0.00067ð1Þ. We then use this value in
Eq. (20) to determine the lattice spacing by using the
phenomenological value of the pion decay constant,
fπ;phen ¼ 130.41ð20Þ MeV [63]. We get

afπ ¼ 0.07986ð15Þð35Þ fm; ð22Þ

where the first error is the statistical and the second
the systematic. We follow the procedure adopted in
Ref. [39] for determining a systematic error by perform-
ing several different fits, adding or neglecting finite
volume terms. Such fits employ e.g., the finite volume
corrections of Ref. [59] using the calculated low energy
constant c2 of Eq. (18) different orders in chiral
perturbation theory and including or excluding the
ensemble Th2.150.32.k2 due to larger finite size effects.
The systematic error is then given by the deviations of
these different fits from the central value given in
Eq. (22). Although we include ensembles like
Th2.150.32.k2 or Th1.350.24.k2 which have large finite
size effects of up to 8% in the pion decay constant, the
systematic uncertainties are suppressed due to the fact
that we are using ensembles close to physical quark
masses which stabilize the fits. Thus this demonstrates
the importance of working at physical quark masses.
Moreover this is confirmed by an estimation of the
lattice spacing which takes only the pion mass and decay
constant from cB211.072.64 into account. Requiring a
vanishing pion mass in the chiral limit, the lattice
spacing and the physical twisted mass value can be
fixed by assuming a linear dependence of μ on a2m2

π and
m2

π=f2π. The so determined lattice spacing agrees with
Eq. (22) and reads a ¼ 0.0801ð2Þ fm.

FIG. 4. Left: The ratiom2
π=f2π is plotted against aμl. Right: The

pion decay constant afπ is plotted against the light twisted mass
parameter aμl. The solid lines are fits to NLO chiral perturbation
theory with the error as shaded band, see Eq. (19) and Eq. (20).
The dotted lines are fits for which the chiral logs are neglected.
The pion mass and decay constant are corrected for by finite
volume correction terms [58,59] respectively.
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B. Heavy meson sector

As discussed in Sec. III B, the heavy sea quark para-
meters used in the simulation are tuned by employing the
ensemble Th1.200.32.k2. With these parameters the kaon
mass on the cB211.072.64 ensembles is smaller as com-
pared to the OS kaon mass using the parameters of Eq. (12).
By employing the tuning condition of Eq. (11) we therefore
readjust the OS-parameters aμOSs and aμOSc following the
tuning procedure of Sec. III B, to take the values

aμOSs ¼ 0.01892ð13Þ and aμOSc ¼ 0.2233ð16Þ ð23Þ

for the cB211.072.64 lattices. The OS valence quark
parameters are lower by around 2.4% compared to the
values determined using the Th1.200.32.k2 ensemble [see
Eq. (12)]. By using aμl;phys ¼ 0.000674 the strange to light
quark mass ratio reads

μOSs
μl

¼ 0.01892ð13Þ
0.00067ð1Þ ¼ 28.1ð5Þ: ð24Þ

The kaon and D-meson masses and the respective decay
constants as well as the corresponding quantities for the
Ds-meson are all computed at three different values of μOSs
and μOSc . We use a linear interpolation of m2

K , mD and mDs

with respect to the heavy OS quark masses. Using the
values for μOSs and μOSc of Eq. (24) this allows us to
determine the masses and decay constants for these
mesons. In Fig. 5 we show the decay constants of the
kaon and the D-meson and compare them with the results
extracted from the Nf ¼ 2 clover ensembles [5]. We
employ 244 measurements for the cB211.072.64 and
100 for the Th2.200.32.k1 ensemble. The ratios of the
kaon and D-meson masses to decay constants for the
cB211.072.64 ensembles are found to be

mK

fK
¼ 3.188ð7Þ and

mD

fD
¼ 8.88ð11Þ; ð25Þ

where the former ratio has a central value slightly larger
than the physical ratio mphys

K =fphysK ¼ 3.162ð18Þ [64],
while the latter agrees well within errors with the value
mphys

D =fphysD ¼ 9.11ð22Þ [63]. These results indicate that
discretization effects for our setup are small in the heavy
quark sector. For a more rigorous check, a direct calculation
at different values of the lattice spacing will be carried out.

V. BARYON SECTOR

As another test, whether we are in the desired physical
condition, we analyzed the nucleon mass which can also
provide an independent determination of the lattice spac-
ing, which can be compared to the one found in the meson
sector. We measured the nucleon mass on the two
cB211.072.64 ensembles by using interpolating fields
containing the operator

Jp ¼ ϵabcðuTaCγ5dbÞuc; ð26Þ

with C ¼ γ4γ2 the charge conjugation matrix. We then
constructed the two point correlation function

CpðtÞ ¼
1

2
Trð1� γ4Þ

X
x

hJpðx; tÞJ̄pð0; 0Þi; ð27Þ

which provides the nucleon mass in the large time limit.
We used 50 APE smearing steps with αAPE ¼ 0.5 [65]
in combination with 125 Gaussian smearing steps with
αgauss ¼ 0.2 [66,67] to enhance the overlap of the used
point sources with the lowest state.
We extracted the nucleon mass for t ≫ 0 by a plateau

average over the effective mass aEeff ¼ logðCpðtþ aÞ=
CpðtÞÞ shown in Fig. 6. The plateau average of the nucleon
mass, given by amN ¼ 0.3864ð9Þ on the cB211.072.64
ensemble, is in agreement with a two-state fit with
amN;2st ¼ 0.3850ð12Þ as shown in the left panel of Fig. 6.

A. Determination of the lattice spacing

As an alternative way to determine the lattice spacing,
one can use the nucleon mass. A direct way would be to use

FIG. 5. The pseudoscalar decay constants in the heavy quark
sector. The left panel shows the kaon decay constant, while the
right panel shows the D-meson decay constant both versus the
squared pion mass. The dashed vertical line indicates the physical
value of the pion mass. The red squares are the measurements for
the Th2.200.32.k1 and cB211.072.64 ensembles, while the blue
triangles are for the Nf ¼ 2 clover twisted mass ensembles [5].
The scale is set via the pion decay constant.

TABLE III. The masses and the decay constants of the charged
pseudoscalar mesons as well as the plaquette P and mPCAC are
presented.

amπ ¼ 0.05658ð6Þ amK ¼ 0.2014ð4Þ amD ¼ 0.738ð3Þ
mπ=fπ ¼ 1.0731ð30Þ mK=fK ¼ 3.188ð7Þ mD=fD ¼ 8.88ð11Þ

amPCAC ¼ 0.189ð114Þ10−4
P ¼ 0.5543008ð60Þ
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the physical ratio from which, by using the (lattice) pion
mass determined above, the lattice spacing can be estimated
directly by the value of the lattice nucleon mass. Indeed,
with the pion mass amπ ¼ 0.05658ð6Þ the nucleon to pion
mass ratio 0.3864ð9Þ=0.05658ð6Þ ¼ 6.83ð2Þ is close to its
physical value of mphys

N =mphys
π ¼ 0.9389=0.1348 ¼ 6.965

where we take the average of neutron and proton mass [63]
and the pion mass in the isospin symmetric limit [64].
However, as in the case of the meson sector, using more
data points at heavier pion masses and χPT to describe
their quark mass dependence, a more robust result can be
obtained. More concretely, we have employed chiral
perturbation theory at Oðp3Þ [68,69] for the nucleon mass
dependence on the pion mass, i.e.,

mN ¼ mphys
N − 4b1m2

π −
3g2A

16πf2π
m3

π: ð28Þ

Similar to [70], where the authors observed that using
previous Nf ¼ 2þ 1þ 1 ensembles showed no detectable
lattice cutoff effects in the nucleon and pion mass, we use
the nucleon masses of the Nf ¼ 2þ 1þ 1 ETMC ensem-
bles without a clover term, determined in [71] to perform
the chiral fit of Eq. (28). In our analysis we neglect cutoff
effects, which appear to be small and not visible within our
statistical errors. The same holds true for finite volume
effects, see [70]. We fixed fπ ¼ 0.1304ð2Þ GeV and gA ¼
1.2723ð23Þ [63] in Eq. (28). The resulting fit to Eq. (28) is
shown in Fig. 6 (right) and allows to determine the lattice
spacing as

amN
ðβ ¼ 1.778Þ ¼ 0.08087ð20Þð37Þ fm: ð29Þ

The first error is statistical while the second error is the
deviation between the estimate obtained from Eq. (28) and
taken the mass from the two-state fit. Note that the statistics
of the nucleon correlator, thanks to the use of multiple

inversion sources per gauge configuration, is 2 orders of
magnitude larger than the one for the pion correlator. In this
way the lattice spacing determination from the nucleon
mass in Eq. (29) turns out to have a statistical error
comparable to the one from the pion sector, see Eq. (22).

1. Oða2Þ isospin splitting in the baryon sector

The finite twisted mass value can result into a mass
splitting of hadrons which are symmetric under the isospin
symmetry of the light flavor doublet. As pointed out in
Sec. III A this indeed leads to a sizable effect in the neutral-
charged pion mass splitting. Here, we want to discuss the
splitting in the baryon sector in the case of the Δ-baryon
employing the two cB211.072.64 ensembles. Note that for
the used lattice size the lowest decay channel of the Delta
baryon, which is a nucleonþ pion state with correct parity,
is heavier than the Delta baryon itself. Thus, for the
simulations performed here, the Delta can be treated as a
stable state.
We measured the Δ-baryon correlator by using the

following interpolating fields:

JμΔþ ¼ 1ffiffiffi
3

p ϵabc½2ðuTaCγμdbÞuc þ ðuTaCγμubÞdc�; ð30Þ

JμΔþþ ¼ ϵabcðuTaCγμubÞuc: ð31Þ

Note that JμΔþ and JμΔþþ is symmetric under u → d to JμΔ0

and JμΔ− respectively. We neglect the potential mixing of Δ
with the spin-1=2 component which is suppressed [72].
Thus the correlators for the Δþþ is given by CΔ ¼ Tr½C�=3
with Cij ¼ Tr½ð1þ γ4Þ=2hJiΔþþðtÞJ̄jΔþþð0Þi� and gives an
average value of amΔ ¼ 0.5251ð72Þ by using a plateau
average over the effective mass. Now we define the
splitting in the mass by

δmΔ;eff ¼ log

�
CRðtÞ

CRðtþ aÞ
�

with

CR ¼ CΔþðtÞ þ CΔ0ðtÞ
CΔþþðtÞ þ CΔ−ðtÞ ; ð32Þ

where we average over the symmetric parts. In Fig. 7
we show the effective relative mass splitting given by
δmΔ;eff=mΔþ . In addition we plot the relative effective mass
meffðtÞ of the Δþ particle subtracted from its plateau
average to illustrate where the plateau of the Δ-baryon
starts. We find that the relative splitting in the Δ mass is
δmΔ=mΔþ ¼ 0.0098ð65Þ and hence close to zero within
errors. This result is in agreement with [5] where it was
found that the isospin splitting of the twisted mass action in
the baryon section is suppressed.

FIG. 6. Left panel: The time dependence of the effective mass
extracted from the nucleon correlator is shown. The green shaded
band corresponds to the two state fit while the violet band
illustrates the used plateau average. Right panel: The squared
pion mass dependence of the nucleon mass is shown by comparing
the nucleon mass from our target lattice cB211.072.64 to the values
determined on the Nf ¼ 2þ 1þ 1 ETMC ensembles. The dotted
line shows the fit by employing chiral perturbation theory at
Oðp3Þ.

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 98, 054518 (2018)

054518-10



VI. LATTICE SPACING

The lattice spacing can be evaluated by matching lattice
observables to their physical counterparts. This has been
done, as described in Secs. IVA and VA, in the meson
sector by employing the pion decay constant and in the
baryonic sector using the nucleon mass, respectively.
Differences in the values obtained for the lattice spacing
as determined using different physical observables can
shed light on cutoff effects. We discuss in this section an
additional method to determine the lattice spacing, which is
provided by the gradient flow scale setting parameters t0
[73] and w0 [74]. Following the procedure described in
these articles and in particular as applied to the twisted
mass setup [5], we extrapolate the gradient flow observ-
ables to the chiral limit using a fit ansatz linear in aμl,
which corresponds to LO χpt [75]. The resulting curve is
shown as Fig. 8. We follow a similar procedure for the
extrapolation of w2

0=a
2. We employ the values computed

for the ensembles Th1.350.24.k2, Th2.200.32.k2,
Th2.125.32.k1, cB211.072.64 and find tch0 =a

2 ¼ 3.261ð6Þ
and wch

0
2=a2 ¼ 4.550ð20Þ. Using the phenomenological

values of
ffiffiffiffi
t0

p ¼ 0.1465ð25Þ and w0 ¼ 0.1755ð18Þ [74]
we deduce the following values for the lattice spacing:

at0 ¼ 0.0811ð14Þ fm and aw0
¼ 0.0823ð8Þ fm: ð33Þ

In Table IV we summarize the values of the lattice
spacing as determined from the pion mass and decay
constant, the nucleon mass and the gradient flow param-
eters t0 and w0. As it can be noticed, there are small
deviations of the lattice spacing between the meson and the
baryons sector, and in any case they are comparable to the
one we have observed in the simulations with Nf ¼ 2

flavors of quarks. That indicates that cutoff effects do not
increase for our Nf ¼ 2þ 1þ 1 flavor setup used here. We
would like to stress, that we plan to carry out further
simulations at different and, in particular, smaller values of
the lattice spacing in future works.

VII. CONCLUSIONS

The first successful simulation of maximally twisted
mass fermions with Nf ¼ 2þ 1þ 1 quark flavors at the
physical values of the pion, the kaon and the D-meson
masses has been presented. By having a lattice spacing of
a ¼ 0.08029ð41Þ fm, we find that the simulations are
stable when performed with physical values of the quark
mass parameters. In particular, we are able to carry out a
demanding but smooth tuning procedure to maximal twist
and to find the values of the light, strange, and charm bare
quark masses, which correspond to the physical ones for
the first two quark generations.
In our setup, which employs a clover term, the cutoff

effects appear to be small. Several observations corroborate
this conclusion: as alreadymentioned above, the simulations
themselves are very stable; when fixing the quark mass
parameters through the selected physical observables, other
physical quantities, as collected in Table III come out to be
consistentwith their physical counterparts; theOða2Þ effects

FIG. 8. Left: Linear extrapolation of the gradient flow observ-
able t0=a2. Right: Linear extrapolation of the gradient flow
observable w2

0=a
2. The solid line with the shaded violet band

shows the linear extrapolation.

TABLE IV. We give the values of the lattice spacing determined
by using different physical quantities as inputs, including in the
errors the input systematic uncertainties. The final value of the
lattice spacing is derived via a weighted average of afπ and amN

where for the final error a 100% correlated data is assumed [76].
The residual systematic uncertainty on the lattice spacing, which
stems from higher order cutoff effects, should be of relative size
Oða2Þ and looks numerically smaller than 2%.

Physical
quantity

Lattice spacing
[fm]

Lattice input from
cB211.072.64

at0 0.0811(14) t0=a2jaμl¼0.00072 ¼ 3.246ð7Þ
aw0

0.0823(8) w2
0=a

2jaμl¼0.00072 ¼ 4.512ð16Þ
afπ 0.07986(38) afπ jaμl¼0.00072 ¼ 0.05272ð10Þ
amN

0.08087(44) mN=mπjaμl¼0.00072 ¼ 6.829ð19Þ
average 0.08029(41)

FIG. 7. Relative differences of the effective Delta baryon
masses: The figure shows the relative difference given by
δmΔ;effðtÞ=mΔþ (blue squares). To illustrate the beginning of

the plateau we added the relative effective mass meffðtÞ −mplateau
eff

with mplateau
eff is the plateau value mΔþ (black triangles).
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originating from the isospin breaking of twisted mass
fermions are small and significantly reduced compared to
our earlier simulations with Nf ¼ 2þ 1þ 1 flavors at
nonphysical pion masses; deviations of the lattice spacing
from the meson sector, the baryon sector and gradient flow
observables, as listed in Table IV, are small and of the same
size as in our former Nf ¼ 2 flavor simulations.
This work focuses on the tuning procedure both to

maximal twist and to the physical values of the quark
masses. We include the pseudoscalar meson masses and
decay constants as well as the nucleon and Δ masses, in
order to demonstrate that we indeed reach the targeted
physical setup. We are planning to compute many more
quantities in the future connected to hadron structure,
scattering phenomena, electroweak observables and heavy
quark decay amplitudes. In addition, we have already
performed the tuning for a second, finer lattice spacing,
and we are in the process of generating configurations. The
combination of results for various physical quantities from
the present lattice spacing of a ≈ 0.08 fm, from the ongoing
finer lattice spacing and from an already existing lattice
spacing of a ≈ 0.1 fm, which is however not exactly at the
physical point, will allow us to explicitly check the size of
cutoff effects and eventually take the continuum limit.
We thus conclude that we have given a successful

demonstration that simulations of maximally twisted mass
fermions with Nf ¼ 2þ 1þ 1 quark flavors can be carried
out with all quarks of the first two generations tuned to their
physical values. This clearly opens the path for the ETM
collaboration to perform simulations towards the con-
tinuum limit with a rich research program being relevant
for phenomenology and ongoing and planned experiments.
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APPENDIX A: MESONIC CORRELATORS

In general, the charged 2-point pseudoscalar correlators
can be defined by

Cq;q0
PS ðtÞ ¼ hP�

q;q0 ðtÞP�
q;q0 ð0Þ†i ðA1Þ

using the interpolating field

P�
q;q0 ðtÞ ¼

X
x

χ̄qðx; tÞiγ5τ�χq0 ðx; tÞ;

τ� ¼ τ1 � iτ2

2
; ðA2Þ

with the quark flavors q; q0 ∈ fl; s; cg. For sufficiently
large times the charged pseudoscalar correlator is domi-
nated by the lowest energy, such that

CðtÞ
t ≫ a; ðT − tÞ ≫ a
												! G2

PS

2mPS
ðe−mPSt þ e−mPSðT−tÞÞ ðA3Þ

and the mass mPS and matrix element GPS ¼ jh1PSjP�
q;q0 j0ij

can be extracted in a standard way via plateau averages
for a large time extent. In the case of maximal twist the
matrix element GPS is directly connected to the pseudo-
scalar decay constant by [1,2]

fπ ¼
ðμq þ μq0 ÞGPS

sinhðmPSÞmPS
: ðA4Þ

Due to the flavor mixing in case of the mass nondegenerate
twisted mass operator we adopt a nonunitary setup [3] for
the heavy quark doublet, namely the Osterwalder-Seiler
fermion regularization [51]. As shown in [3], this mixed
action introduces effects which are only of orderOða2Þ and
are hence suppressed for small μ and fine lattice spacings.
The OS fermions correspond to the twisted mass discre-
tization in single flavor space, where μ ¼ �μq. The sign of
μ is always chosen such that the two valence quarks in the
interpolating fields Eq. (A2) have opposite signs.

APPENDIX B: AUTOCORRELATION

The autocorrelation of the Hybrid Monte Carlo algo-
rithm increases critically for very fine lattice spacings with
a < 0.05 fm. This can be seen in the freezing of the
topological charge [77]. For our lattice with a ∼ 0.08 fm
we found that the topological charge can fluctuate between
the different sectors leading to small autocorrelation times
of τintðQÞ ¼ 13ð5Þ½MDU�. As pointed out in [78] the
energy density at finite flow times develops larger auto-
correlation times in the regime with a ≳ 0.05 fm. Although
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we have relative small statistics we calculated the integrated
autocorrelation time for the plaquette and the gradient flow
observables t0=a2 as shown in Fig. 9 by using the Γ-method
[79]. We found a dependence on the (charged) pion mass
that can be described by

τintðmπÞ ¼ A
1

mb
π
; ðB1Þ

with b ¼ 2.2ð5Þ for the plaquette while b ¼ 2.0ð7Þ
for t0=a2. A possible explanation for the observed charged
pion mass dependence of the autocorrelation time τint is
that approaching the physical pion point at a fixed
lattice spacing leads us to work not far from a phase
transition point at a nonzero twisted quark mass where
the neutral pion mass vanishes [80–82]. Although the
isospin splitting is suppressed in our case, observables
like the gradient flow observables show an increase with the
inverse of the squared pion mass. This behavior is also
seen in the PCAC mass, where moderate integrated
autocorrelation times were found which can be clearly
seen in the Monte Carlo history (see right panel of Fig. 1).
However in other quantities like the pseudoscalar mass, the
pseudoscalar decay constant or nucleon observables τint is
very small and a quark mass dependence can be not
observed.
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