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Abstract

In this paper we provide rigorous statements and proofs for the asymp-
totic analysis of discrete energies defined on a two-dimensional triangular
lattice allowing for fracture in presence of a microscopic impenetrability
constraint. As the lattice parameter goes to 0, we prove that any limit
deformation with finite energy is piecewise rigid and we prove a general
lower bound with a suitable Griffith-fracture energy density which reflects
the anisotropies of the underlying triangular lattice. For such a continuum
energy we also provide a class of (piecewise rigid) deformations satisfying
“opening-crack” conditions on which the lower bound is sharp. Relying
on these results, some consequences have been already presented in the
companion paper [9] to validate models in Computational Mechanics in
the small-deformation regime.

1 Introduction

In this paper on one hand we analyze continuum models for fracture energies
arising from discrete systems of particles linked by interatomic interactions,
and on the other hand computational problems deriving from microscopic con-
straints. The consequences of such an analysis from the standpoint of Com-
putational Mechanics have been described in depth in the paper [9]. Here we
provide a rigorous treatment of the related analytical results.

In the simplest model of atomistic interactions, the behavior of a collection
of N particles is governed by an energy that can be written as a sum of pair
contributions; namely, it can be set in the form

EN ({ui}) =
∑

1≤i 6=j≤N

J(‖ui − uj‖), (1.1)

where ui is the position of the i-th atom, ‖ui − uj‖ the distance between the
corresponding pair of atoms, and J is an interatomic potential, which is strongly
repulsive at short distances and mildly attractive at long distances. The most
common choice for J is the Lennard-Jones potential

J(r) =
c1
r12
− c2
r6

(1.2)
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(c1, c2 > 0). Note that in principle the total energy of the system is bounded
from below by N2 min J ; however, a more refined estimate shows that it scales
exactly as the number N of atoms. This is in agreement with the intuition
that ground states for EN arrange approximately in a regular lattice as N
increases (crystallization), so that the energy contribution of each particle is
essentially described by the interaction only with its neighbours. At the same
time it suggests that models of crystalline solids can be derived directly from
such atomic interactions.

The crystallization for Lennard-Jones interactions in the general context
described above is still an open problem. An important contribution has been
recently given by Theil [24], who has studied a slightly weaker version of crystal-
lization, proving in two dimensions the optimality under compact perturbations
of the “minimal” triangular lattice; i.e., the one for whose lattice spacing r it is
minimal the average energy per particle

e(r) =
∑

k∈T\{0}

J(r‖k‖), (1.3)

which describes the energy of a single particle in the lattice rT due to the in-
teraction with the other particles, T being the unit triangular lattice. Once
crystallization is achieved, another important issue is whether it is maintained
on states other than ground states; i.e., whether to (small) macroscopic deforma-
tions there corresponds uniform displacements at the atomic level (Cauchy-Born
rule; see Friesecke and Theil [21]).

In order to examine the behavior of atomistic systems far from ground states,
under the hypothesis of crystallization we may consider the energy related to a
density ρ. Noting that ρ is proportional to r−n, where n is the space dimension
(usually, n = 2, 3), this can be expressed as

f(ρ) = ρ(C1ρ
12/n − C2ρ

6/n),

where C1, C2 are determined by computing the energy of a single particle in
a uniform lattice (in the case of a triangular lattice f(ρ) = ρ e(r), where e is
defined in (1.3) and r is the lattice spacing corresponding to the density ρ).
This function f is non-convex in an interval (0, ρ0), which highlights a phase
transition at low densities, and suggests that large deformations involve a change
in the crystalline structure which is instead achieved close to ground states.

From the standpoint of Continuum Mechanics, a description with an hyper-
elastic bulk energy is expected to hold close to ground states, while the same is
expected to fail for a class of large deformations. In the one-dimensional case
this can be achieved by introducing a fracture energy. Following Truskinovsky
[26], given N particle positions ui, these can be parameterized with i = 1, . . . N
in such a way that ui > ui−1, and we may write the energy as

EN ({ui}) =
∑
j>i

J(uj − ui).
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As N increases, ground states tend to arrange regularly on a lattice that we
may suppose to be Z; i.e., we may suppose that the one-dimensional energy per
particle

e(r) =
∑

k∈N, k>0

J(rk),

has its minimum at r = 1. In order to introduce a macroscopic deformation
gradient, we can now scale and re-parameterize the same particles on εZ, where
ε = 1

N ; i.e., ui = 1
εu(iε), so that they all can be seen as discretizations of

functions defined on a single interval [0, 1]. If we scale the energy as

EN ({ui}) =
∑
j>i

J
(u(jε)− u(iε)

ε

)
.

then the ground states are discretizations of the identity on [0, 1]. If we let N
increase (or ε→ 0), we may highlight two regimes:

(bulk scaling) under the hypothesis of small perturbations u(x) = x+ δv(x)
with small δ,we have

u((i+ k)ε)− u(iε)

ε
≈ k + kδv′(iε),

so that, Taylor expanding e at its minimizer 1,

EN ({ui}) = N min e+
N

2
e′′(1)δ2

∫ 1

0

|v′|2 dx + o(δ2).

(surface scaling) if the macroscopic u is discontinuous at a point parameter-
ized by i then we have an increase from the ground state energy of the order
J(+∞)−min e, which gives a Griffith fracture energy at each such point.

This argument can be made rigorous, and it gives:
• elastic behavior close to ground states, with a linearized description given

by the linearization of J at ground states;
• a brittle fracture energy depending on the depth of the well of J with

respect to the infinity;
• opening fracture: the possibility of a parameterization with increasing u

implies that fracture may only open up, providing a natural non-interpenetration
condition;
• surface relaxation: on external boundaries and on internal fracture sites

the asymmetry of the atomic arrangements gives an additional surface term,
highlighting a microscopic rearrangement close to those surfaces.

We note that all the features above can be included in a single analysis by choos-
ing δ = N−1/2 in the notation above, so that (up to additive constants) bulk
and surface terms have the same scaling. This has been done by Braides, Lew
and Ortiz [10]. We also remark that an analysis of local minima and of opening
cracks suggests a cohesive fracture energy density of Barenblatt type, which is
not directly given by the analyses above. However some cohesive theories can be
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shown to be “equivalent” to the ones obtained by the limit analysis (see Braides
and Truskinovsky [13] and [7]).

The same study for the two or three-dimensional case presents greater diffi-
culties, mainly because a natural parameterization with increasing functions is
no longer possible. Hence, some simplifications have been made for this model
with the scope of maintaining the features of the complete system of interac-
tions and at the same time allow for an analytical study. A first assumption
is to consider displacements as a perturbation from a ground state for which
crystallization holds; i.e., in dimension two a perturbation from a state parame-
terized on the triangular lattice T, or rather on a bounded portion Λ of T (this
corresponds to take N as the numbers of points in Λ in the previous notation).
For such a perturbation it makes sense to assume that only short-range interac-
tions be taken into account. The range of such interaction can be indexed with
a subset S of T \ {0}. The energies replacing EN can be written as

FΛ(u) =
∑
k∈S

∑
i,j∈Λ,i−j=k

Jk(‖ui − uj‖),

where Jk represents the energy between points whose parameters i, j differ by
k in the reference lattice. The simplest choice is considering only nearest-
neighbour interactions on T, with S as the unit vectors of the triangular lattice,
and Jk independent of k ∈ S a Lennard-Jones potential with minimum in r. In
this simplified model interactions are minimized when the corresponding ui−uj
are at distance r, thus recovering uniform deformations. Unfortunately, such a
simplified model admits many additional minimizers, as all deformations which
are piecewise homotheties with ratio ±r. In fact, if we compose a uniform de-
formation (e.g. a homothety) of ratio r with “folding” along a line of points in
T, the resulting nearest neighbours still are at the “minimal” distance r.

In order to prevent undesired foldings at a discrete level, Friesecke and Theil
[21] proposed to add a three-point condition on neighbouring nodes, correspond-
ing to the usual local non-interpenetration condition in Continuum Mechanics.
Indeed, in the case of a triangular lattice, this condition simply amounts to
requiring that

det ∇u > 0,

where u is the affine interpolation of the function defined on the vertices of each
triangle. In this way only discretizations of homotheties with positive ratio
equal to r are minimizers of the energy. In their paper, Friesecke and Theil
treat the seemingly “un-natural” case of energies parameterized on a square
lattice. Actually, when finite-range lattice energies are considered, the choice
of the underlying lattice is a matter of convenience, and the square lattice is
the simplest where to consider at the same time nearest neighbours and next-
to-nearest neighbours to highlight the possibility of non-uniform ground states
(failure of the Cauchy-Born rule).

In this paper we treat a two-dimensional system of nearest-neighbour Len-
nard-Jones interactions with the positive-determinant constraint focusing on the
surface scaling. We will use the terminology and techniques of Γ-convergence
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applied to a discrete-to-continuum analysis [6]. In this framework we examine
the overall behavior of the energies FΛ as the size of Λ diverges, by considering
Λ = 1

ε (Ω ∩T), with Ω a fixed bounded domain in R2, and using Ω ∩ εT as the
set of parameters. The scaled energies we are going to examine will be of the
form

Fε(u) =
∑

i,j∈Ω∩εT,|i−j|=ε

ε J
(∥∥∥ui − uj

ε

∥∥∥),
where ui is the value of the discrete function u at the node εi ∈ Ω∩ εT, and the
piecewise-affine interpolation of u on the triangulation related to εT is supposed
to satisfy the positive-determinant constraint. The scaling ε heuristically can
be explained by considering, as in the one-dimensional case, the contribution of
a set of indices I where ‖ui − uj‖ >> 1 and noting that under this scaling the
finiteness of the energy asymptotically implies that they have the dimension of
a line, so that they can be regarded as an interface. Under these assumption we
will address the two issues
• determine whether some condition of “opening crack” still hold in the

two-dimensional case;
• characterize a limit continuum surface energy defined on functions with

domain Ω.
The other two issues present in the one-dimensional analysis; i.e., the char-

acterization of the bulk energy close to ground states and surface relaxation
have been separately addressed in slightly different hypotheses by Braides, Solci
and Vitali [12] (for the bulk analysis) and Theil [25] (for the external surface
relaxation).

ν

Figure 1: A reference configuration with fracture site and its macroscopic nor-
mals, and its underlying triangulation

In order to make the analysis clearer we will scale the energies by an additive
constant as

Fε(u) =
∑

i,j∈Ω∩εT,|i−j|=ε

ε
(
J
(∥∥∥ui − uj

ε

∥∥∥)−min J
)
,

so that the energy density is always positive. As a first remark we will note
that, using a result by Chambolle, Giacomini and Ponsiglione [14], gradients of
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limits of sequences (uε) with equi-bounded energy are piecewise rotations with
an underlying partition of Ω into sets of finite perimeter. This allows us to
focus on the boundaries of such sets, where we have a normal ν on whose two
sides we have the values u±(x) of u and two rotations R± among those labeling
the sets of the partition. Note that from the standpoint of the microscopical
triangulations the interfaces are the limits of triangles of side-length ε which are
deformed by uε into triangles with one side (actually two) of diverging length
but with the same ordering of the vertices (this corresponds to the positive-
determinant constraint). If only one layer of triangles is deformed that gives

Figure 2: A deformed microscopical configuration satisfying the determinant
constraint, and its macroscopic limit with the corresponding rotations

a limit interface, then the determinant constraint gives a relation between ν,
u±(x) and R±. In the simplest case when ν is orthogonal to one of the unit
vectors of T (we call those vectors coordinate normals), this relation reads as

〈u+(x)− u−(x), R±ν〉 ≥ 0 .

This can be regarded as an opening-fracture condition. If ν is not a coordinate
normal then the opening-crack condition gets more complicated, due to micro-
scopic anisotropies of the lattice, which disfavor cracks not orthogonal to lattice
directions.

The analytical description contained in Section 4 provides a lower bound,
which is sharp for a class of “opening-crack” configurations (see Section 5). This
lower bound can be written as a surface energy∫

Su

ϕ(ν)dH1, (1.4)

where Su is the fracture set in the reference configuration, and ϕ is an energy
density with hexagonal symmetry explicitly computed from J . We note that,
even if it not explicit in (1.4), the fracture energy density depends not only
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on the crack orientation ν and the crack opening u+ − u−, but also on the
image of the crack in the deformed configuration, described by the tangential
derivatives of u± on both sides of the crack. Such types of energies seem to
be of interest in themselves, and the corresponding analytical techniques still
relatively undeveloped (see [3]).

The description in (1.4) is sharp, in the sense that various pathologies may
appear when the opening-crack condition is not satisfied. They are described in
detail in [9]. Indeed, in that case one must take into account that more than one
layer of triangles may be “strongly deformed”. This gives a higher energy on the
interface, but relaxes the constraints on ν, u±(x) and R±. Moreover, additional
energy contributions may be given by points where three or more interfaces
meet; in this case, even though the opening-fracture condition above may be
satisfied on each interface, the system of interfaces may be incompatible with
the positive-determinant condition in their common point. It must be observed
that introducing a high number of extra interfaces at the discrete level results
in a complex non-local form of the final energy.

We finally note that the description of the surface energies suggests the
possibility of studying this Lennard-Jones system under the scaling introduced
in [10]. Indeed, in the “infinitesimal case” when u is a small variation of a
ground state; i.e., u = id + δv with δ << 1, then the opening-crack condition
reduces to the usual infinitesimal opening-crack condition

〈v+(x)− v−(x), ν〉 ≥ 0

since R± = id+o(1). This in particular holds when δ =
√
ε, which is the scaling

that allows both bulk and surface limit energies at the same time, and suggests
that in this scaling we obtain a linear elastic energy with a brittle-fracture
surface energy subject to the infinitesimal opening-crack condition. The proof of
such a result seems of great technical difficulty due to the lack of approximation
theorems for functions subject to opening-crack conditions. Related results have
been obtained by Friedrich and Schmidt [17, 18, 19].

2 Some notation and preliminary results

In the sequel we denote by 〈·, ·〉 the scalar product in R2 and with | · | the
usual euclidean norm, both for vectors in R2 and matrices in M(2× 2;R), the
meaning being clarified by the context. Moreover, in some proofs we will also
use the symbol 〈A, y〉 to denote the duality pair for A ∈M(2×2;R) and y ∈ R2

(usually simply denoted by Ay). For every x, y ∈ R2, [x, y] denotes the line
segment joining x and y.

The functional space involved in our discrete-to-continuous analysis will con-
sist of measurable vector-valued functions whose components are special func-
tions with bounded variation. Such functions are commonly used in the varia-
tional theories of Fracture (see e.g. the seminal paper by Francfort and Marigo
[16], the book by Bourdin, Francfort and Marigo [5] and the review paper [2]).
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Definition 2.1. Given Ω ⊂ R2 a fixed bounded open set, a function u ∈
L1(Ω,R2) is a function with bounded variation in Ω, denoted by u ∈ BV (Ω,R2),
if its distributional derivative Du is a vector-valued Radon measure on Ω.

We say that u is a special function with bounded variation in Ω, and we
write u ∈ SBV (Ω,R2), if u ∈ BV (Ω,R2) and its distributional derivative Du
can be represented on any Borel set A ⊂ Ω as

Du(A) =

∫
A

∇u(x) dx +

∫
A∩Su

(u+(x)− u−(x))⊗ νu(x) dH1(x),

for a countably H1-rectifiable set Su in Ω that coincides H1-almost everywhere
with the complement in Ω of the Lebesgue points of u. Moreover, ∇u(x) is
the approximate gradient of u at x, νu(x) is a unit normal to Su, defined for
H1-almost every x, and u+(x), u−(x) are the traces of u on both sides of Su
(according to the choice of νu(x)). Here the symbol ⊗ stands for the tensorial
product of vectors; i.e., for any a, b ∈ R2 (a⊗ b)ij := aibj.

For fine properties of BV and SBV functions and a rigorous definition of
all the quantities introduced above we refer to [4], Ch. 4. SBV functions enjoy
a good compactness property that here is stated in its simplest form, suited for
our functionals.

Theorem 2.2. Let Ω ⊂ R2 be bounded open set and let (un) ⊂ SBV (Ω,R2) be
satisfying

sup
n

{∫
Ω

|∇un|p dx + ‖un‖L∞(Ω,R2) +H1(Sun)

}
< +∞, (2.1)

for some p > 1. Then there exist a subsequence un(k) and a function u ∈
SBV (Ω,R2) such that un(k) → u in measure. Moreover, ∇un(k) ⇀ ∇u weakly
in Lp(Ω,R2) and the restrictions of Dun(k) to Sun(k)

weakly∗ converge to the
restriction of Du to Su.

As a consequence we easily get that the limit function u in the previous the-
orem has the further property that

∫
Ω
|∇u|p dx +‖u‖L∞(Ω,R2) +H1(Su) < +∞.

Moreover estimate (2.1) allows to discuss separately the lower semicontinuity of
suitable bulk and surface integral involving, respectively, the absolutely contin-
uous and jump part of the generalized distributional derivative.

In order to treat lower-semicontinuous bulk integrals in the vectorial setting
it is necessary to recall the notion of quasiconvexity and quasiconvex envelopes.

Definition 2.3. We say that a lower-semicontinuous integrand ψ : R2×2 →
R∪ {±∞} is quasiconvex if for every open set E with positive measure it holds

ψ (A) ≤ −
∫
E

ψ (A+∇ϕ(x)) dx

for every A ∈ R2×2 and ϕ ∈ W 1,∞
0

(
E,R2

)
. In addition, for any f : R2×2 →

R ∪ {±∞}, the quasiconvex envelope fqc of f is defined as

fqc(A) := sup {g(A) : g quasiconvex, g ≤ f} .
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If f is real valued and continuous one can give a precise description of its
quasiconvex envelope.

Proposition 2.4. Let f : R2×2 → R be continuous. Then

fqc(A) = inf

{
−
∫
E

f (A+∇ϕ(x)) dx : ϕ ∈W 1,∞
0

(
E,R2

)}
(2.2)

for A ∈ M(2× 2;R) and the quantity above is independent of the choice of the
bounded open set E.

The following theorem deals with lower semicontinuity along sequences of
SBV functions weakly converging [4].

Theorem 2.5. Let Ω ⊂ R2 be bounded open set and let (un) ⊂ SBV (Ω,R2) be
satisfying

sup
n

{∫
Ω

|∇un|p dx +H1(Sun)

}
< +∞ (2.3)

for p > 1. If un → u in measure, then u ∈ SBV (Ω,R2). Moreover, for every
quasiconvex integrand ψ : R2×2 → [0,+∞) such that

|ψ (X)| ≤ C (1 + |X|p)

for every X ∈ R2×2 and C a positive constant, and for any norm ϕ in R2, there
holds ∫

Ω

ψ (∇u) dx ≤ lim inf
n

∫
Ω

ψ (∇un) dx, (2.4)

∫
Su

ϕ(νu) dH1 ≤ lim inf
n

∫
Sun

ϕ(νun) dH1.

The final tool we present is a ‘slicing result’ that allows to treat 2-dimensional
energies by reducing to 1-dimensional ones [4].

Before entering into details we introduce some notation. For ξ ∈ S1 let
Πξ := {y ∈ R2 : 〈y, ξ〉 = 0} be the line through the origin orthogonal to ξ. If
y ∈ Πξ and E ⊂ R2 we set

Eξ,y := {t ∈ R : y + tξ ∈ E}. (2.5)

Moreover, if u : E → R2 we define the function uξ,y : Eξ,y → R2 by

uξ,y(t) := u(y + tξ). (2.6)

Theorem 2.6. Let Ω ⊂ R2 be bounded open set and let u ∈ SBV (Ω,R2). Then,
for all ξ ∈ S1 the function uξ,y belongs to SBV (Ωξ,y,R2) for H1-almost every
y ∈ Πξ. Moreover for such y we have

u̇ξ,y(t) = 〈∇u(y + tξ), ξ〉 for almost every t ∈ Ωξ,y,
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S(uξ,y) = {t ∈ R : y + tξ ∈ Su},

uξ,y(t±) = u±(y + tξ) or uξ,y(t±) = u∓(y + tξ),

according to the cases 〈νu, ξ〉 > 0 or 〈νu, ξ〉 < 0 (the case 〈νu, ξ〉 = 0 being
negligible) and ∫

Πξ

∑
t∈S(uξ,y)

g(t) dH1(y) =

∫
Su

g(x)|〈νu, ξ〉| dH1

for all Borel functions g. Conversely, if u ∈ L∞(Ω,R2) and, for all ξ ∈
{e1, e2} and for H1-almost every y ∈ Πξ, uξ,y ∈ SBV (Ωξ,y,R2) with∫

Πξ

(∫
Ωξ,y
|u̇ξ,y|p + #(S(uξ,y))

)
dH1(y) < +∞,

then u ∈ SBV (Ω,R2).

We introduce now a generalization of a rigidity type result in the SBV setting
due to Chambolle et al. (see [14]). Before going through the statement we need
some preliminary definitions. First we recall the notion of Caccioppoli partition
of a domain (see e.g. [15]).

Definition 2.7. We say that a collection of pairwise disjoint measurable sets
{Eh}h∈N is a Caccioppoli partition of a bounded open set Ω if ∪h∈NEh = Ω
and ∑

h∈N
Per(Eh,Ω) < +∞.

Moreover, given any rectifiable set K ⊂ Ω we say that a Caccioppoli partition
of Ω is subordinated to K if H1(∪h∈N∂∗Eh \K) = 0.

The following result is the 2-dimensional version of the one contained in [14].

Theorem 2.8. Let Ω ⊂ R2 be bounded open set and let u ∈ SBV (Ω,R2) with
H1(Su) < +∞ and ∇u(x) ∈ SO(2) for almost every x ∈ Ω. Then there exists
a Caccioppoli partition {Eh}h∈N of Ω subordinated to Su such that for almost
every x ∈ Ω

u(x) = Rhx+ qh on Eh

where Rh ∈ SO(2) and qh ∈ R2.

3 Formulation of the problem

In the sequel Ω will be a bounded open set in R2 with Lipschitz boundary. This
regularity assumption is useful to simplify some of the proofs of Section 5 and
it can be dropped for the other sections. With fixed discretization step ε > 0
the reference lattice is given by Lε := εSpan(η1, η2;Z2) where η1 = (1, 0), η2 =

10



(1/2,
√

3/2) and Span(η1, η2;Z2) denotes the set of all linear combinations of
η1, η2 with coefficients in Z2. We introduce also the following notation

η3 = η1 − η2, S = {±η1,±η2,±η3}.

Note that S is the set of unitary vectors in the lattice L1 and for each i ∈ L1

i + S is the set of its nearest neighbours.
We define also the set D of coordinate directions as

D = {η⊥ : η ∈ S}.

Dropping the dependence on ε whenever no confusion may arise, we will use
the symbol T to denote any triangle with vertices in Lε and sides of length ε
and Tε will denote the sets of all such triangles. As already pointed out in the
Introduction the choice of the lattice relies on the fact that L1 is the simplest
Bravais lattice in dimension 2 compatible with a Cauchy-Born hypothesis. Be-
fore introducing the precise definition of the functionals object of our analysis
we list here some notation used in the following sections for the set of pairs of
“nearest-neighbouring” indices Nε and for the set of triangles well contained in
Ω:

Nε(Ω) = {(i, j) ∈ Lε × Lε : [i, j] ⊂ Ω, |i− j| = ε, i ≺ j},
T cε (Ω) = {T ∈ Tε : T ⊂ Ω},

where the symbol i ≺ j stands for the standard lexicographic order in R2.
Thanks to this choice any pair of nearest-neighbouring indices is counted only
once in the energy contribution.

With this notation given a discrete vector-valued displacement u : Lε ∩Ω→
R2 we consider its associated energy∑

(i,j)∈Nε(Ω)

εJ
(∣∣∣u(i)− u(j)

ε

∣∣∣)
where J : [0,+∞) → [0,+∞) is a continuous function satisfying the following
structure properties:

(i) min J = J(z0) = 0;

(ii) lim
z→+∞

J(z) = J∞ > 0;

(iii) lim
z→0+

J(z) = +∞;

(iv) for any δ > 0 there exits cδ > 0 such that J(z) ≥ cδ(z−z0)2 for |z−z0| ≤ δ.

In what follows, for the sake of computational simplicity we assume z0 = 1.
Clearly, up to a scaling argument, the analysis remains valid for the general
case.

As customary, in order to pass from discrete systems to a continuum for-
mulation, it is convenient to identify a function {u(i)}i∈Lε∩Ω ⊂ R2 with an
element of L1(Ω,R2).
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Definition 3.1 (interpolation). Given a discrete vector-valued function u : Lε∩
Ω → R2 we define its interpolation in the whole Ω as a function coinciding on
each triangle T ∈ T cε (Ω) with the linear interpolation of the values in its vertices.

Note that an interpolation is not uniquely defined on triangles close to ∂Ω.
This will not affect our arguments since convergences are always considered in
the interior of Ω. We will identify a discrete function with its interpolation and
maintain the same notation for both the discrete and continuous version, the
notation being clarified by the context.

Remark 3.2. In this setting another common procedure is to identify a discrete
function with a piecewise-constant element in L1(Ω,R2) by assigning constant
value u(i) on the cell {i + ε(λη1 + µη2) : λ, µ ∈ [0, 1]}, i ∈ Lε ∩ Ω. In fact,
none of the results stated in the following would be affected by this choice (see
the discussion contained in [1]). Considering discrete functions as continuous
piecewise-affine ones allows us to formulate the orientation-preserving constraint
in terms of the standard determinant of ∇u.

We are now able to introduce the class of admissible functions; i.e., a proper
class of vector-valued functions on the lattice Lε that are orientation preserving :

Adε(Ω) = {u : Lε ∩ Ω→ R2 : det(∇u) > 0 a.e. in T cε (Ω)}.

Finally, we define the functional Eε on L1(Ω,R2) as

Eε(u) =


∑

(i,j)∈Nε(Ω)

εJ
(∣∣∣u(i)− u(j)

ε

∣∣∣) if u ∈ Adε(Ω)

+∞ if u ∈ L1(Ω,R2) \ Adε(Ω).

(3.1)

Remark 3.3. Note that energies defined in (3.1) account only for interactions
well contained in Ω and the orientation-preserving constraint is not imposed a
priori on an affine extension of u on the triangles intersecting ∂Ω. Actually,
if one is interested in minimum problems endowed with boundary conditions
(together with some perturbation or fidelity terms), a standard procedure in the
framework of Γ-convergence is to focus on the ‘principal’ part of the total energy,
neglecting at first boundary data. Once this task is accomplished one can further
deal with the initial problems up to modifying the limit energy according to the
contribution arising from recovery sequences with correct boundary datum.

To proceed further with our analysis we need to fix a convergence on L1(Ω,R2).

Definition 3.4 (discrete-to-continuum convergence). According to our identi-
fication of discrete functions with interpolations, given uε, u ∈ L1(Ω,R2) we say
that uε → u, and we simply write uε → u, if we have supε ‖uε‖L∞(Ω,R2) < +∞
and limε→0+ ‖uε − u‖L1(Ω,R2) = 0.
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4 Compactness and a lower bound

In this section we first provide a description of the domain of any Γ-limit func-
tional of the discrete energies defined in (3.1). As already mentioned in the
Introduction, this space consists of piecewise rigid deformations u with finite
crack energy in the sense of Griffith’s theory; i.e., H1(Su) < +∞.

As a second result we exploit geometric measure theory techniques to es-
tablish a lower-bound estimate for the Γ-lim infεEε(u) without imposing any
a-priori hypothesis on the deformation u. Note that in the next section this
bound will be proved to be optimal for the class of piecewise rigid deforma-
tions ‘with opening fracture’ in the sense of the anisotropies of the reference
lattice. For such deformations the limit fracture energy is simply governed by
an anisotropic Griffith-type energy density which reflects the anisotropies of the
underlying triangular lattice.

Proposition 4.1. Let {uε} ⊂ Adε(Ω) be such that lim inf Eε(uε) < +∞ and

sup
ε
‖uε‖L∞(Ω,R2) < +∞. (4.1)

Then there exists a Borel function u such that, up to subsequences, uε → u in
L1(Ω,R2). Moreover,

(i) (finite Griffith fracture energy) u ∈ SBV (Ω,R2) with H1(Su) < +∞;

(ii) (piecewise rigidity) there exists a Caccioppoli partition {Eh}h∈N subordi-
nated to Su such that for almost every x ∈ Eh we have u(x) = Rhx + qh
for suitable Rh ∈ SO(2) and qh ∈ R2.

Proof. As a first step we observe that any pair (i, j) ∈ Nε(Ω) belongs to two
different triangles having the line segment [i, j] as a side. Hence if we take
into account a factor 1/2 we may estimate the energies Eε(u) from below with
the integral functionals obtained as a superposition of gradient energies indexed
by the triangles T varying in T cε (Ω). Actually, for any B open set compactly
supported in Ω and for any v ∈ Adε(Ω), for ε small enough we have

Eε(v) ≥ ε

2|T |
∑

T∈T cε (Ω)

3∑
k=1

∫
T

J(|〈∇v, ηk〉|) dx

≥ 2√
3ε

∫
B

3∑
k=1

J(|〈∇v, ηk〉|) dx. (4.2)

According to this standpoint, we are led to considering integral functionals with
energy density Ĵ(A) :=

∑3
k=1 J(|〈A, ηk〉|). Hence, with fixed any s ∈ (0, 1), we

distinguish ‘good’ or ‘bad’ triangles T depending whether the triangle energy
overcomes the threshold sJ∞ or not. Using a standard separation of scales (see
[8]) we set

Iε =
{
T ∈ T cε (Ω) :

3∑
k=1

J(|〈∇uε, ηk〉|) > sJ∞

}
,

13



and define vε ∈ SBV (Ω,R2) on any T ∈ Tε such that T ∩ Ω 6= ∅ as

vε =

{
uε if T ∈ Tε \ Iε
I if T ∈ Iε,

(4.3)

with I denoting the identity deformation. By construction the sequence (vε) lies
in SBV (Ω,R2) and for any ε > 0 its jump set Svε is contained in the boundary
of the union of the triangles in Iε.

Moreover, for any open set B compactly supported in Ω inequality (4.2) can
be rewritten in terms of vε as

Eε(uε) ≥
2√
3ε

∫
B

Ĵ(∇vε) dx + csJ∞ε#(Iε) (4.4)

for a positive constant c. This implies at once that the functions uε and vε differ
in a set of vanishing Lebesgue measure so that it is enough to prove that vε is
compact in SBV (Ω,R2).

Thanks to hypothesis (iii) on J , the set

K = {A ∈M(2× 2;R) : Ĵ(A) ≤ s J∞}

is a compact set in M(2× 2;R), and this easily provides the estimate

sup
ε
‖∇vε‖L2(B,R2) < +∞.

On the other hand, hypothesis (iv) ensures that there exists a constant c = c(s)
such that (4.4) can be further sharpened as

Eε(uε) ≥
1

ε

∫
B

3∑
k=1

c(s)(|〈∇vε, ηk〉| − 1)2 dx + csJ∞H1(Svε ∩B). (4.5)

By Lemma 4.3 we can find a positive c such that for any A ∈ K there exists
R = R(A) ∈ SO(2) with

∑3
k=1(|〈A, ηk〉| − 1)2 ≥ c|A−R|2 = cdist2(A,SO(2)),

thus

Eε(uε) ≥
c(s)

ε

∫
B

dist2(∇vε,SO(2)) dx + csJ∞H1(Svε ∩B). (4.6)

Taking into account hypothesis (4.1) a straightforward application of Theo-
rem 2.2, and the L1 convergence to 0 of vε − uε, yields that there exists
u ∈ SBV (Ω,R2) with H1(Su) < +∞ such that uε → u in L1(Ω,R2).

To prove (ii) we take advantage of a relaxation argument together with some
rigidity estimates. Indeed, as a first step we prove that ∇u(x) ∈ SO(2) for
almost every x ∈ Ω. To this end denote ψ(A) := dist2(A,SO(2)) and estimate
the right-hand side of (4.6) as

εEε(uε) ≥ c(s)
∫
B

ψqc(∇vε) dx + cεsJ∞H1(Svε ∩B). (4.7)
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Passing to the liminf and using (2.4) we get at once that∫
B

ψqc(∇u) dx = 0.

Hence ψqc(∇u(x)) = 0 almost everywhere in Ω and by applying Lemma 4.4
with A = ∇u(x) we also get that the approximate gradient ∇u is a rotation
for almost every x ∈ B. Once this fact is established, (ii) follows by applying
Theorem 2.8 recursively to u with Ω replaced by any open set B compactly
supported in Ω and then letting B invading Ω.

Remark 4.2. Hypothesis (4.1) is essential to deduce a compactness result for
sequences equibounded in energy and avoids the un-physical situation of parti-
cles escaping to infinity (modelled by arbitrarily large translations).

The following lemmas complete the proof of Proposition 4.1. The first one
provides an estimate from above on the function ψ(A) := dist2(A,SO(2)),
A ∈M(2× 2,R) (to be used in (4.6)), the second one computes the zero set of
its quasiconvex envelope. Note that the this kind of results are widely used in
variational problems involving crystal microstructures.

Lemma 4.3. There exists a positive constant c such that for any A ∈ M(2 ×
2;R) with detA > 0 we have that

3∑
k=1

(|〈A, ηk〉| − 1)2 ≥ cdist2(A,SO(2)), (4.8)

where η1 = (1, 0), η2 = (1/2,
√

3/2) and η3 = η1 − η2.

Proof. Let A ∈ M(2 × 2;R) with detA > 0 be fixed; then A admits a polar
decomposition as A = RU with R ∈ SO(2) and U a positive-definite matrix that
coincides with the square root of the symmetric matrix AtA (see for instance
[23]). Since (4.8) is invariant under left composition with rotations, it is enough
to prove that

3∑
k=1

(|〈U, ηk〉| − 1)2 ≥ c|U − I|2 (4.9)

for U ∈M(2× 2;R) strictly positive-definite matrix.
First for the sake of clarity we treat the case in which U is diagonal and we

denote its eigenvalues as 1 + x, 1 + y with x, y ∈ (−1,+∞). Let g be defined as

g(x, y) = x2 + 2
(√ (1 + x)2

4
+

3(1 + y)2

4
− 1
)2

then (4.9) rewrites as
g(x, y) ≥ c(x2 + y2)

for some positive c independent of x, y with (x, y) ∈ (−1,+∞) × (−1,+∞).
Arguing by continuity, the inequality above holds true if and only if it holds for
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x, y with (x, y) ∈ [−1,+∞) × [−1,+∞). Taking into account that g(x, y) and
x2 + y2 have the same order for |(x, y)| → +∞ and that g(x, y), x2 + y2 vanish
only at (0, 0), we may confine to prove the inequality above in a neighbourhood
of the origin (0, 0). To this end consider the following Taylor expansion of g:

g(x, y) = x2 + 2
(√

1 +
x+ 3y

2
+
x2 + 3y2

4
− 1
)2

= x2 + 2
(x+ 3y

4
+
x2 + 3y2

8
+ o(x+ 3y)

)2

= x2 +
x2 + 6yx+ 9y2

8
+ o(x2 + y2)

=
9

8
(x2 + y2) +

3

4
xy + o(x2 + y2)

and use the inequality 2xy ≥ −x2 − y2 to get

g(x, y) = (x2 + y2)
(3

4
+ o(1)

)
.

We finally deduce that for |(x, y)| small enough one has g(x, y) ≥ 1

3
(x2 + y2)

and conclude the proof for diagonal matrices.
For a general positive-definite matrix u, taking into account the classical

diagonalization results in the Jordan decomposition theory (see [23]), there ex-
ists R ∈ SO(2) such that RtUR is diagonal. Hence we are left to prove the
inequality above, that is,

3∑
k=1

(|〈D, η̃k〉| − 1)2 ≥ cdist2(D,SO(2))

for a diagonal matrix D and η̃k = Rηk. Note that if θ is the angle associated
to the rotation R than η̃1 = (cos(θ), sin(θ)), η̃2 = (cos(θ + π

3 ), sin(θ + π
3 )) and

η̃3 = (cos(θ + 2π
3 ), sin(θ + 2π

3 )).
We argue as above and introduce the function gθ defined as

gθ(x, y) =

3∑
k=1

(√
(1 + x)2 cos2(θk) + (1 + y)2 sin2(θk)− 1

)2

with θ1 = θ, θ2 = θ + π
3 and θ3 = θ + 2π

3 . We carry on the same computation
and Taylor expansion as above and find

gθ(x, y) =

3∑
k=1

(x cos2(θk) + y sin2(θk))2 + o(x2 + y2)

=

3∑
k=1

(x2 cos4(θk) + y2 sin4(θk) + 2xy sin2(θk) cos2(θk)) + o(x2 + y2).
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We rely on the identities

3∑
k=1

cos4(θk) =
9

8
=

3∑
k=1

sin4(θk),

3∑
k=1

sin2(θk) cos2(θk) =
3

8

and get

gθ(x, y) =
9

8
(x2 + y2) +

3

4
xy + o(x2 + y2).

As the estimate is independent of the choice of θ (and so also of R) the conclusion
follows.

Lemma 4.4. Let ψ(A) := dist2(A,SO(2)) and let A ∈ M(2 × 2,R) be such
that ψqc(A) = 0. Then A ∈ SO(2).

Proof. For A ∈M(2×2,R) fixed, taking Proposition 2.4 into account, let (ϕk)k
be contained in W 1,∞

0 (Q,R2) with Q a unitary cube and such that

lim
k
−
∫
Q

dist2
(
A+∇ϕk(x),SO(2)

)
dx = ψqc(A).

For almost every x ∈ Q we select Bk(x) ∈ argmin dist(A+∇ϕk(x),SO(2)); that
is,

|A+∇ϕk(x)−Bk(x)| = dist(A+∇ϕk(x),SO(2)).

For any k ∈ N, x → Bk(x) is bounded in L2(Q,SO(2)) uniformly on k and we
have∫
Q

|∇ϕk|2 dx ≤ 2

∫
Q

|A−Bk(x)|2 dx + 2

∫
Q

dist2
(
A+∇ϕk(x),SO(2)

)
dx ≤ c.

Hence, it is not restrictive to assume that ϕk ⇀ ϕ∞ and Bk ⇀ B∞ weakly in
W 1,2

0 (Q,R2) and L2(Q,R2), respectively. By lower semicontinuity, using that
ψqc(A) = 0, we also get

0 = ψqc(A) = lim
k
−
∫
Q

|A+∇ϕk(x)−Bk(x)|2 dx ≥ −
∫
Q

|A+∇ϕ∞(x)−B∞(x)|2 dx.

Thus, ψ (A+∇ϕ∞(x)) = 0 for almost every x ∈ Q; that is, 〈A, x〉 + ϕ∞(x) =
〈R(x), x〉 for some measurable choice of R(x) ∈ SO(2). The classical Liouville
rigidity theorem, extended to W 1,2(Q,R2) by Reshetnyak [22], yields in turn
that 〈A, x〉 + ϕ∞(x) = 〈R, x〉 for a fixed rotation R. As ϕ ∈ W 1,2

0 (Q,R2) and
∇ϕ is constant in Q, we infer by the boundary conditions that ϕ∞ = 0 and
A = R.

We note that in the proof of Proposition 4.1 any choice of the parameter
s ∈ (0, 1) ensures the validity of estimate (4.7). Moreover, assuming that uε
converges to a given u in L1(Ω;R2), any sequence vε = vε(s), defined in (4.3),
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still converges to u weakly in SBV (Ω,R2) and the energy contribution is pro-
portional to H1(Svε). Since Svε is a sequence of rectifiable sets with normal
coordinates, this suggests that in the passage to the liminf on ε on the surface
part of the right-hand side of (4.7) we may obtain a lower bound with a surface-
type energy maintaining the symmetries of the hexagonal lattice. In the sequel
we build the correct surface energy arguing by pairwise interactions along lattice
directions and exploiting more refined techniques in geometric measure theory.

Before entering into details we need to introduce some more tools. Let ψ :
R2 → [0,+∞) be the 1-homogeneous map such that {ψ ≤ 1} coincides with the
convex hull of the set S of the unitary vectors of the lattice L1. By construction
ψ is a norm on R2 and we may consider its dual norm ψ∗ : R2 → [0,+∞) given
by the polar function of ψ defined as

ψ∗(ν) = sup
|ξ|=1

〈ν, ξ〉
ψ(ξ)

= sup{〈ν, ξ〉 : ψ(ξ) = 1}.

An easy computation shows also that

ψ∗(ν) = sup
k=1,2,3

|〈ν, ηk〉|

and ψ∗ is the 1-homogeneous functions whose unitary ball is the convex hull of
the coordinate directions D scaled by a factor 2/

√
3. In addition the following

lemma holds true.

Lemma 4.5. If ψ∗ is as above then 2ψ∗(ν) =

3∑
k=1

|〈ν, ηk〉| for all ν ∈ R2.

Proof. A direct computation shows that the inequality holds true as an equality
for ν ∈ D. Hence one can argue locally in each sector of amplitude π/3 by using
the linearity of ψ∗ on such portions of R2 and the result for the coordinate
directions.

By means of Lemma 4.5 in the next proposition we will provide a lower
bound on Γ-lim inf of Eε by an anisotropic surface energy. Since by Proposition
4.1 the Γ-lim inf of Eε is finite only on SBV (Ω,R2) we prove the estimate in
that functional space.

Proposition 4.6. Let ϕ = J∞(4/
√

3)ψ∗, then for any u ∈ SBV (Ω,R2) it holds

Γ- lim inf
ε→0+

Eε(u) ≥
∫
Su

ϕ(νu) dH1. (4.10)

Proof. Let {uε}ε ⊂ L1(Ω;R2) be fixed with uε → u in L1(Ω,R2) and ‖uε‖L∞(Ω,R2)+
Eε(uε) ≤ c. It is not restrictive to assume that lim infε→0+ Eε(uε) = limε→0+ Eε(uε)
and uε → u almost everywhere in Ω as well. Note that by Proposition 4.1 u is
a piecewise rigid deformation with H1(Su) < +∞.
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We will proceed by a slicing technique, performed only in the lattice direc-
tions η1, η2, η3, in order to obtain the estimate

lim
ε→0+

Eε(uε) ≥
3∑
k=1

2√
3

∫
Su

|〈νu(x), ηk〉| dH1(x). (4.11)

To this end we observe that we can split the energies Eε by accounting
separately for the contribution of pairs (i, j) with j − i = ±ηkε and letting k
vary in {1, 2, 3}. More precisely, for k = 1, 2, 3 let

Lkε = {i ∈ Lε : [i, i + εηk] ⊂ Ω}

and define for v ∈ Adε(Ω)

Ekε (v) =
∑
i∈Lkε

εJ
(∣∣∣v(i)− v(i + εηk)

ε

∣∣∣);

An easy computation shows that

Eε(uε) = E1
ε (uε) + E2

ε (uε) + E3
ε (uε);

thus it is enough to prove that for any k

lim
ε→0+

E1
ε (uε) ≥

2√
3

∫
Su

|〈νu(x), ηk〉| dH1(x). (4.12)

Since the lattices Lε, and hence the energies appearing in both sides of (4.12),
are invariant under rotations of π/3 we confine our attention to prove (4.12) for
k = 1 and η1 = e1.

Note that the functionals E1
ε consist of a superposition of 1-dimensional

discrete energies related to the sublattices εZ × {mε
√

3/2} for m even varying
in Z and to the lattices ε(Z+(1/2))×{mε

√
3/2} for m odd. Hence, as a first step

we will use a usual separation of scale argument on these 1-dimensional discrete
energies in order to rewrite them in a 1-dimensional integral form and then we
glue the information back to the 2-dimensional setting by a slicing procedure.
More precisely, for any m ∈ Z set

Sm = R× [mε
√

3/2, (m+ 1)ε
√

3/2).

Note that the stripes Sm ∩ Ω give a partition of Ω. For any s ∈ (0, 1) we will
construct a sequence {wsε} ⊂ SBV (Ω,R2) with 1-dimensional profile along the
direction e1 and depending only in the first variable in each stripe. To that end,
let s ∈ (0, 1) be fixed and set

Iε = {i ∈ L1
ε : J(|u(i)− u(i + εe1)|/ε) ≥ sJ∞}

(for the sake of notation we drop the dependence on s in what follows). By
definition of Iε it holds

E1
ε (uε) ≥ sJ∞ε#(Iε). (4.13)
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For any m ∈ Z define wε on R × {mε
√

3/2} to be equal to the value uε(i) on
(i1, i1 + ε) × {mε

√
3/2} if i = (i1, i2) ∈ Iε and to be the affine interpolation

of the values uε(i), uε(i + εe1) on any other interval (i1, i1 + ε)× {mε
√

3/2}.
Eventually, extend wε on Sm ∩ Ω as wε(x1, x2) = wε(x1,mε

√
3/2).

We claim that wε → u in L1(Ω,R2) and, up to subsequences, also almost
everywhere in Ω. Indeed, as a consequence of Lemma 2.11 in [1], the convergence
of uε → u in L1(Ω,R2) implies the convergence to u in L1(Ω,R2) also of the
piecewise-constant interpolations of the values of the nodes {uε(i)}, and, in
turn, also the convergence of wε → u in L1(Ω,R2) (see also Remark 3.2).

Estimate (4.13) and the fact that ∇wε belongs pointwise to the compact set
{ξ ∈ R2 : J(ξ) < sJ∞}, yield that∫

Ω

|∇wε|2 dx + ε#(Iε) ≤ c. (4.14)

Taking into account that

#(Iε) =
∑
m∈Z

#(Iε ∩ Sm)

, and also that
#(Iε ∩ Sm) = #(S(we1,yε ))

for all y ∈ Sm ∩Πe1 , (4.13) can be rewritten as

E1
ε (uε) ≥ sJ∞

2√
3

∫
Πe1

#(S(we1,yε )) dH1(y). (4.15)

By passing to the liminf in both sides of (4.15) and by applying Fatou’s Lemma
we get

lim
ε→0+

E1
ε (uε) ≥ sJ∞

2√
3

∫
Πe1

lim inf
ε→0+

#(S(we1,yε )) dH1(y). (4.16)

On the other hand, estimate (4.14) ensures that for H1-almost every y ∈ Πe1

the sequence we1,yε is precompact in SBV (Ωe1,y,R2) and converges in measure
to ue1,y. Hence, by the 1-dimensional analogue of the lower-semicontinuity
Theorem 2.5 we infer that

lim
ε→0+

E1
ε (uε) ≥ sJ∞

2√
3

∫
Πe1

#(S(ue1,y)) dH1(y). (4.17)

Moreover, thanks to Theorem 2.6(a) with g = 1, we have∫
Πe1

#(S(ue1,y)) dH1(y) =

∫
Su

|〈νu(x), e1〉| dH1(x). (4.18)

Letting s→ 1 concludes the proof of claim (4.11). Eventually, Lemma 4.5 yields
(4.10).
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5 Upper estimates for a class of “opening cracks”

In this section we show the optimality of the bound (4.10) provided in Propo-
sition 4.6 for a class of functions with ‘opening cracks’ with respect to the
anisotropies inherited by the lattice.

In order to clarify the parameters playing a role in the asymptotic behaviour
of Eε, we prefer to deal with the case where only two rotations R+, R− are
involved in the target deformation u first. In this setting the crack Su splits
Ω into two regions Ω+,Ω−, in general not connected, each one underlying a
rigid motion. We will show that in this case the Γ-limsup of Eε is finite even
if the request of orientation-preserving recovery sequences affects substantially
the form of the limit energy.

In this process a relevant condition that translates the positive-determinant
constraint through the crack is the following:

〈u+(x)− u−(x), R±ν〉 ≥ 0. (5.1)

In fact, the inequality above ensures that any small triangle crossing the fracture
site maintains positive (non negative) area in the codomain. Actually, due to
the discrete environment, condition (5.1) has to be assumed for ν ∈ D, since the
only triangles entering in the construction have sides parallel to the directions
lying in S.

We start by proving the following characterization of the Γ-limsup whenever
Su is contained in a straight line and (5.1) holds.

Proposition 5.1. For R± ∈ SO(2) and x̄, ν, q± ∈ R2 with ν ∈ D, let u be
defined as

u(x) =

{
R+x+ q+ if 〈x− x̄, ν〉 > 0, x ∈ Ω

R−x+ q− if 〈x− x̄, ν〉 ≤ 0, x ∈ Ω,
(5.2)

so that νu = ν H1-almost everywhere. Assume that R+ 6= −R− and for H1-
almost every x ∈ Su R±, q±, ν satisfy

〈u+(x)− u−(x), R±ν〉 ≥ 0, (5.3)

where u+(x) = R+x+ q+, u−(x) = R−x+ q−, then

Γ- lim sup
ε→0+

Eε(u) ≤
∫
Su

ϕ(ν) dH1 = 2J∞H1(Su). (5.4)

Proof. We claim that, thanks to the hypothesis R+ 6= −R−, we may assume
the stronger separation hypothesis

〈u+(x)− u−(x), R±ν〉 ≥ δ > 0 (5.5)

for some fixed δ > 0 and for H1-almost every x ∈ Su. Indeed, if (5.5) does
not hold, it is enough to choose a vector v such that 〈v,R±ν〉 > 0 (set for
instance v = R+ν + R−ν) and consider the sequence uδ defined replacing q+

21



with q+ + δv in (5.2). Then Suδ = Su, uδ → u in L2(Ω,R2) and the left-hand
side term of (5.4) is continuous along such a sequence, while the right-hand side
is independent of δ.

Condition (5.5) plays a key role in showing that the sequence (uε) defined as
the pointwise interpolation of u in the nodes of the lattice Lε∩Ω is admissible and
accounts for the desired Γ-limsup estimate. We then simply define uε(i) = u(i)
for any i ∈ Lε ∩ Ω. Since uε → u in L1(Ω,R2), it remains to check that the
positive-determinant constraint is satisfied in any triangle contained in Ω.

Before proceeding with the computation we label the triangles ‘crossing the
fracture site’. By rotational and translational invariance we may assume ν =
(0, 1) so that Su = {x = (x1, x2) ∈ Ω : x2 = x̄2}. Let Nε := [2x̄2/

√
3ε] and set

Dε = {m ∈ Z : (mε,
√

3Nεε/2) ∈ Lε ∩ Ω}

and
im = (mε,

√
3Nεε/2) for m ∈ Dε.

Note that u coincides with a ‘positive’ rotation on the vertices of those triangles
not contained in the strip

S = {x :
√

3Nεε/2 ≤ x2 ≤
√

3(Nε + 1)ε/2}.

Hence, in order to ensure that uε ∈ Adε(Ω), it suffices to check condition (5.3)

Figure 3: Triangles deformed by the pointwise interpolation

for triangles T with vertices respectively im, im + εη1, im + εη2 and im, im +
εη2, im+ε(η2−η1) (see Fig. 3). This leads to proving the following inequalities:

〈(u−(im + εη1)− u−(im))⊥, u+(im + εη2)− u−(im)〉 ≥ 0,

〈(u+(im + εη2)− u+(im + ε(η2 − η1))⊥, u+(im + εη2)− u−(im)〉 ≥ 0

for m ∈ Dε. These can be compactly rewritten as

ε〈R±ν, u+(im + εη2)− u−(im)〉 ≥ 0. (5.6)
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After recalling that we are choosing the counter-clockwise orthogonal vector,
that u± are affine and that x̂ ∈ Su, we claim that these conditions are fulfilled
for ε small enough. Indeed, for any infinite collection of indices {mε} ⊂ Z with
mε ∈ Dε, up to subsequences, we may assume that imε → x̂ as ε → 0+. As
a consequence u±(imε + εη1) → u±(x̂) and u±(imε) → u±(x̂), with x̂2 = x̄2.
Thus, assuming that (5.6) are violated for such a sequence of indices mε will
lead to a contradiction to (5.5) when passing to the limit as ε→ 0+.

Eventually, we compute the asymptotic value of Eε(uε) to show that (uε) is a
recovery sequence for the surface energy

∫
Su
ϕ(νu) dH1. The energy contribution

in Eε(uε) reduces to those pairs of indices one of which of type im with m ∈ Dε;
i.e.,

Eε(uε) =
∑
m∈Dε

εJ
( |u+(im + εη2)− u−(im)|

ε

)
+
∑
m∈Dε

εJ
( |u+(im + ε(η2 − η1))− u−(im)|

ε

)
.

If R+ = R− and q+ = q− then

Eε(uε) =
∑
m∈Dε

εJ
(
|R+η2|

)
+
∑
m∈Dε

εJ
(
|R+(η2 − η1)|

)
= 0

and the thesis is proved as Su = ∅. If R+ 6= R− and q+ 6= q− then

Eε(uε) =
∑
m∈Dε

εJ
(
| (R

+ −R−)(im)

ε
+
q+ − q−

ε
+ (R+ −R−)η2|

)

+
∑
m∈Dε

εJ
(
| (R

+ −R−)(im)

ε
+
q+ − q−

ε
+ (R+ −R−)(η2 − η1)|

)
and, taking into account that im/ε = (m,

√
3Nε/2), the argument of J in all

the terms in the summation above tends to +∞. Hence,

Eε(uε) = 2ε#Dε(J∞ + o(1)) (5.7)

Passing to the limit as ε→ 0 and plugging the equality

lim
ε→0+

ε#Dε = H1(Su)

in (5.7) the conclusion is achieved.

The next proposition generalizes the result of Proposition 5.1 in the case
when only two rotations are involved in the deformation and Su consists of
finite line segments having normals in D and the stronger open crack condition
(5.5) is satisfied along the jump set Su.
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Proposition 5.2. Let R± ∈ SO(2) and q± ∈ R2 be given and let

u(x) = (R+x+ q+)χΩ+(x) + (R−x+ q−)χΩ−(x) (5.8)

where Ω+,Ω− is a partition of Ω with ∂∗Ω+ = ∂∗Ω− = S, with S ⊂ Ω a finite
connected union of line segments with normal belonging to D. Assume that for
H1-almost every x ∈ S

〈u+(x)− u−(x), R±ν(x)〉 ≥ δ (5.9)

for some δ > 0; then

Γ- lim sup
ε→0+

Eε(u) ≤
∫
S

ϕ(ν(x)) dH1 = 2J∞H1(S). (5.10)

Proof. Let S =
⋃
k∈I Sk with Sk = [zk, wk] for zk, wk ∈ R2, having constant

normal νk lying in D and satisfying wk = zk+1 for any k. Thanks to the strong
opening hypothesis (5.9), we may replace S with Sε = ∪k∈ISεk with Sεk = [ikε , j

k
ε ]

for ikε , j
k
ε ∈ Lε ∩ Ω, having constant normal νk lying in D and satisfying jkε =

ik+1
ε for any k. More in detail, Sεk can be selected inductively by applying a

finite number of small translations to the line segments Sk of S, together with
replacing their endpoints with points on the lattice Lε so that the normal to Sεk
coincides with the normal to Sk. Note that, thanls to the boundary regularity
of ω for any k ∈ I we have |H1(Sεk) − H1(Sk)| ≤ ε. We claim that a recovery
sequence is provided defining uε(i) = v+

ε (i) for i ∈ Lε∩Ω, where vε is defined as
in (5.8) replacing Ω+,Ω− with Ω+

ε ,Ω
−
ε such that ∂∗Ω+

ε = ∂∗Ω−ε = Sε. Indeed,
for any triangle T ∈ T cε intersecting Sε there exists a unique k ∈ I such that
either T ∩Sε is a single point in Sεk or T ∩Sε = [i, i±εν⊥k ] for some i ∈ Lε∩Ω.
In both cases one may perform the same computation as in Proposition 5.1,
and deduce that uε satisfies the positive-determinant constraint. Eventually a
direct computation shows that Eε(uε) = (J∞ + o(1))

∑
k∈I ϕ(νk)H1(Sεk) and

this tends to J∞
∑
k∈I ϕ(νk)H1(Sk) as ε→ 0.

The previous approach can be pushed further to obtain the optimality of the
bound (4.10) also for Su consisting of a line with normal ν 6∈ D. In this case we
need to impose the opening crack condition (5.3) in a stronger sense; i.e., (5.3)
must be satisfied also along the two directions ν1, ν2 ∈ D generating ν in one of
the simplexes of the Wulff shape {ϕ ≤ 1}.

Proposition 5.3. For R± ∈ SO(2) and x̄, ν, q± ∈ R2, let u be defined as

u(x) =

{
R+x+ q+ if 〈x− x̄, ν〉 > 0, x ∈ Ω

R−x+ q− if 〈x− x̄, ν〉 ≤ 0, x ∈ Ω.
(5.11)

Let ν1, ν2 ∈ D be such that ν/ϕ(ν) = λν1 + (1 − λ)ν2 for λ ∈ (0, 1). Assume
that Su is a line segment and that for H1-almost every x ∈ Su R±, q±, ν satisfy
the conditions

〈u+(x)− u−(x), R±νi〉 ≥ δ (5.12)
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for i = 1, 2 and for some δ > 0. Then

Γ- lim sup
ε→0+

Eε(u) ≤
∫
Su

ϕ(ν) dH1. (5.13)

Proof. The claim will be proved by an approximation argument, exploiting
Proposition 5.2 and the lower semicontinuity of the Γ-limsup. Note that hy-
pothesis (5.12) ensures that R+ 6= −R−.

For all positive integers h let Sh be a finite connected union of line segments
with normal equal to ν1 or to ν2 such that

lim
h→+∞

∫
Sh

ϕ(νh(x)) dH1 =

∫
Su

ϕ(ν) dH1 (5.14)

and such the Hausdorff distance betwenn Sh and Su tends to 0. The existence
of such polygonals follows from the equality ν⊥ = λϕ(ν)ν⊥1 + (1 − λ)/ϕ(ν)ν⊥2 ,
which implies that any vector orthogonal to ν of length L is the sum of vectors
orthogonal to ν1 and ν2 of length λϕ(ν)L and (1−λ)ϕ(ν)L, respectively. Hence,
for any h ∈ N fixed we subdivide the line segment Su into line segments of lenghts
H1(Su)/h and we perform the construction above with L = H1(Su)/h. Since
ϕ(ν1) = ϕ(ν2) = 1, then summing the integral of ϕ(ν1) on the first segment
and that of ϕ(ν2) on the second one gives ϕ(ν)L. Note that by the geometric
construction above we infer that dH(Sh, Su) ≤ c/h.

We may also assume that each Sh has endpoints on ∂Ω and splits Ω in two
components Ω+

h ,Ω
−
h such that

lim
h→+∞

|Ω+
h4{x ∈ Ω : 〈x− x̄, ν〉 > 0}| = 0.

For h ∈ N let uh be the piecewise-rigid function defined as

uh(x) = (R+x+ q+)χΩ+
h

+ (R−x+ q−)χΩ−h
.

Then uh → u in L1(Ω;R2) and, by continuity, uh satisfies hypothesis (5.12) with
a smaller positive δ and Su replaced by Suh = Sh. Applying Proposition 5.2 to
each uh we get

Γ- lim sup
ε→0+

Eε(uh) ≤
∫
Suh

ϕ(νh) dH1.

The conclusion follows taking property (5.14) into account.

In the following we consider the case in which the jump set Su is a triple
point with coordinate normals.

Proposition 5.4. Let x0 ∈ Ω be fixed and set

Ω1 := {x ∈ Ω : 〈x− x0, η
1⊥〉 ≥ 0, 〈x− x0, η

2⊥〉 ≥ 0},

Ω2 := {x ∈ Ω : 〈x− x0, η
2⊥〉 ≤ 0, 〈x− x0, η

3⊥〉 ≤ 0},
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Ω3 := {x ∈ Ω : 〈x− x0, η
1⊥〉 ≤ 0, 〈x− x0, η

3⊥〉 ≥ 0}.

Let u be defined as u(x) =
∑3
k=1 u

k(x)χΩk(x) with uk(x) = Rkx+qk for suitable
R1, R2, R3 ∈ SO(2) and q1, q2, q3 ∈ R2. Assume that u satisfies the ‘opening
crack’ conditions along Su =

⋃
k(∂Ωk ∩ Ω):

〈u1(x)− u3(x), R1η1⊥〉 ≥ δ, 〈u1(x)− u3(x), R3η1⊥〉 ≥ δ, on ∂Ω1 ∩ ∂Ω3

〈u1(x)− u2(x), R2η2⊥〉 ≥ δ, 〈u1(x)− u2(x), R1η2⊥〉 ≥ δ, on ∂Ω1 ∩ ∂Ω2

〈u3(x)− u2(x), R3η3⊥〉 ≥ δ, 〈u3(x)− u2(x), R2η3⊥〉 ≥ δ, on ∂Ω3 ∩ ∂Ω2

(5.15)

for some δ > 0, and that u satisfies the further compatibility condition

〈u1(x0)− u3(x0), (u2(x0)− u3(x0))⊥〉 > 0 (5.16)

on the triple point x0. Then

Γ- lim sup
ε→0+

Eε(u) ≤
∫
Su

ϕ(ν) dH1. (5.17)

Note that if the uniform strict-positivity conditions in (5.15) is relaxed to
strict positivity the perturbation argument in the proof of Proposition 5.1 may
fail on points of Su close ∂Ω. The claim of Proposition 5.4 could be then restated
as holding for u for which such an approximation argument works.

Proof. Up to composing u with infinitesimal translations and rotations we may
assume that, for any ε > 0 small enough, the points x0 − ε

3 (η1 + η2), x0 +
ε
3 (η3 + η1), x0 + ε

3 (η2 − η3) lie on the lattice Lε ∩ Ω and that Lε ∩ Su = ∅.
Set uε(i) = u(i) for any i ∈ Lε ∩ Ω. Clearly uε → u in L1(Ω,R2); it remains
to check that the positive-determinant constraint is satisfied in any triangle
intersecting Su. Thanks to hypothesis (5.16) we have that there exists δ > 0
such that all the scalar products in (5.15) are greater than δ. By performing
the same computation as in the proof of Proposition 5.1 we may deduce the
positive-determinant constraint to be satisfied on any triangle intersecting Su
and not containing x0. The only triangle left aside is then the one having vertices

x0 + ε
√

3
2 (η2 − η1), x0 + ε

√
3

2 (η3 − η1), x0 + ε
√

3
2 (η2 + η3). A direct computation

shows that 〈
u1
(
x0 +

ε

3
(η2 − η3)

)
− u3

(
x0 −

ε

3
(η1 + η2)

)
,(

u2
(
x0 +

ε

3
(η1 + η3)

)
− u3

(
x0 −

ε

3
(η1 + η2))

)⊥〉
= 〈u1(x0)− u3(x0), (u2(x0)− u3(x0))⊥〉+ o(1).

Hence the conclusion follows by hypothesis (5.16).
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As a conclusion of this section we note that we have proved that the Γ-limit
of Eε is described by the anisotropic fracture energy

F(u) =

∫
Su

ϕ(ν)dH1 (5.18)

on all u which are piecewise rigid deformations such that Su consists of a fi-
nite number of lines meeting at triple points and the opening-crack conditions
in Proposition 5.4 are satisfied. This description extends by continuity to all
piecewise-rigid deformations u that can be approximated in energy by sequences
of piecewise-rigid deformations uh satisfying such conditions.

We underline that when more complex geometries are taken into account (see
Section 3 in [9]) the occurrence of different phenomena is highlighted. Actually,
the representation of the limit energy seems to take into account several factors,
not all of local nature.

6 Necessary conditions for opening cracks

In Section 4 we have shown a lower bound with an anisotropic Griffith fracture
energy, which is optimal on a family of displacements with an opening-crack
condition on the fracture site (Section 5). We now show conversely that if
the limit energy at a point x0 ∈ Su is not greater than the lower bound then
necessarily the function u satisfies a opening-crack condition.

We now consider discontinuity points where the fracture energy density is
minimal; i.e., the inequality in (4.10) is sharp, and derive necessary conditions
on the crack opening. To this end we introduce the measures

µε =
∑

(i,j)∈Nε(Ω)

ε J
(∣∣∣uε(i)− uε(j)

ε

∣∣∣) δ i+j
2
. (6.1)

These measures are a way to measure locally the energy Fε(uε). If µε is a
bounded sequence of measures and supε ‖uε‖L∞(Ω,R2) < +∞, then, arguing as
in the proof of Proposition 4.1, we infer that uε is precompact in SBV (Ω,R2)
and that uε → u in L1. We also suppose that the weak∗ limit µ of µε exists.

Proposition 6.1 (necessity of an opening-crack condition). Let uε → u, and
let x0 ∈ Su be such that

dµ

dH1 Su
(x0) ≤ ϕ(νu(x0)). (6.2)

Then we have
〈u+(x0)− u−(x0), R±νu(x0)〉 ≥ 0, (6.3)

where R± ∈ SO(2) are the two constant matrices coinciding with ∇u on both
sides of Su at x0.
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ν

ρ

Figure 4: an illustration of the arguments of the proof

Note that, thanks to the lower estimates in the previous section, (6.2) can
be equivalently stated as an equality.

Proof. Since the proof is a little involved, we first give a short outline.
•We use a blow-up argument, examining the behaviour of energies on small

squares of side-length ρ centered at a point x0 and one side oriented as νu(x0).
For simplicity of illustration in Fig. 4 we picture such a square and the related
triangulation at a fixed ε when νu(x0) = e1;
• taking ρ and ε small enough the values on opposite side are close to u+(x0)

and u−(x0). This implies that there exists a path of triangles which are deformed
in triangles with (two or more) large sides and that joins the two opposite sides
parallel to e1, up to adding a small percentage of triangles. Otherwise a use
of the Poincarè inequality on paths joining the two sides parallel to e2 would
give a contradiction. The highly deformed triangles are pictured in dark grey
in Fig. 4, the additional triangles in light gray. We note that by (6.2) there is
only a small percentage of highly deformed triangles that do not belong to the
path described above;
• we now reason at ρ small but fixed. We note that the functions defined

on a unit cube by wρε(y) = 1
ρuε(x0 + ρy) except on highly-deformed triangles,

where they are set to 0, have gradients, determinants, lengths of discontinuity
sets and BV norms of the tangential derivatives that satisfy uniform bounds.
By the results in [3] this implies that their tangential traces weakly converge to
those of wρ(y) = 1

ρu(x0 + ρy);
• using this tangential convergence and, finally, the positive-determinant

constraint we describe the behaviour on the boundary of the path of highly-
deformed triangles. This set is pictured in Fig. 4 by two solid lines, denoted
by P ε± in the proof, which converge to the jump set of 1

ρu(x0 + ρy), up to sets
of very small perimeter negligible as ρ → 0. Using again a Poincarè-inequality
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argument, we note that wρε(y) is very close to 1
ρu
±(x0) on P ε±, respectively.

Integrating the positive-determinant constraint on P ε± and passing to the limit
in ε and then in ρ we then obtain (6.3).

For the sake of brevity we will denote ν0 = νu(x0). Let Qν0 be a square
centered in 0, with side length 1 and an edge orthogonal to ν0. With fixed ρ > 0
and y ∈ Qν0 , let

vε,ρ(y) = uε(x0 + ρy),

which, by definition of Su converges as ε → 0 and subsequently ρ → 0 (un-
less otherwise specified we will refer to convergence in this order of quantities
depending on ε and ρ) to the function

ũ(y) =

{
u+(x0) if 〈y, ν0〉 ≥ 0

u−(x0) if 〈y, ν0〉 < 0.

By the weak∗ convergence of µε and (6.2) we deduce that

Eε(uε, Q
ν0
ρ (x0)) ≤ ρ(ϕ(ν) + oρ(1)) + oε(1)

where Qν0ρ (x0) = x0 + ρQν0 , and oρ(1) and oε(1) are infinitesimal as ρ→ 0 and
ε→ 0, respectively.

We fix s > 0 and set

Ssε =
{
T ∈ T cε (Ω) :

∣∣∣uε(i)− uε(j)

ε

∣∣∣ > s for at least two sides (i, j) of T
}
.

We claim that we may connect the two opposite sides of Qν0ρ (x0) parallel to
ν0 with a path {Ti : i = 1, . . . ,M} (depending on ρ and ε, but we omit such
a dependence for the sake of notational simplicity) consisting of triangles such
that Ti and Ti+1 have a common side and Ti ∈ Ssε up to a number of indices
that is o(ρ/ε). Indeed, note that for any T 6∈ Ssε we have∣∣∣uε(i)− uε(j)

ε

∣∣∣ ≤ 2s for every side (i, j) of T. (6.4)

If no path as above exists then we may construct cρ/ε disjoint paths in
Lε ∩ Qν0ρ (x0); i.e., sets of indices {ijn : n = 0, . . . ,Mj} with ijn ∈ Lε and

ijn − i
j
n−1 ∈ εS, such that

〈ij0 − x0, ν0〉 ≤ −
1

2
ρ+ ε, 〈ijMj

− x0, ν0〉 ≥
1

2
ρ− ε

and ∣∣∣uε(ijn)− uε(ijn−1)

ε

∣∣∣ ≤ 2s for every n (6.5)

(for a construction of such paths we refer to the proof of Theorem 4(ii) in
[11]). Since vε,ρ − u±(x0) converge to 0 close two opposite sides of Qν0 it is not
restrictive to suppose that∑

j

ε|uε(ij0)− u−(x0)|+
∑
j

ε|uε(ijMj
)− u+(x0)| = ρ oε(1).
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By (6.5) we have

cρ|u+(x0)− u−(x0)| ≤
∑
j

ε
(
|u+(x0)− uε(ijMj

)|

+|uε(ijMj
)− uε(ij0)|+ |uε(ij0)− u−(x0)|

)
≤ ρ oε(1) +

∑
j

Mj∑
n=1

ε|uε(ijn)− uε(ijn−1)|

≤ ρ oε(1) +
∑
j

Mj∑
n=1

ε22s ≤ ρ oε(1) + ρ22s. (6.6)

Dividing by ρ and letting ε and ρ tend to 0 we then obtain |u+(x0)−u−(x0)| = 0,
which gives a contradiction.

We consider the connected set

Tε =

M⋃
i=1

Ti.

Note that by the convergence vε,ρ → ũ, for all δ > 0 the set Tε∩Qν0ρ (x0) will be
contained in the strip {x : |〈x− x0, ν0〉| ≤ δρ} for ε sufficiently small. It is not
restrictive to suppose that Qν0ρ (x0)∩ ∂Tε is composed exactly of two polygonal
chains P ε− and P ε+. Note that the set

{Ti : ∂Ti ∩ P ε− 6= ∅}

still gives a path with the same properties of {Ti}. We can therefore suppose
that this is our original path.

The contribution of the energy restricted to interactions in Tε gives

Eε(uε, Q
ν0
ρ (x0) ∩Tε) ≥ J(s)ϕ(ν0)ρ(1− δ) (6.7)

(see Proposition 4.6). We then deduce that

#{T ∈ Ssε : T 6⊂ Tε} ≤ c
ρ

ε
δ (6.8)

and, in addition, there exist cρε disjoint polygonal chains joining P ε− and the
side of Qν0ρ (x0) lying on {y : 〈y−x0, ν〉 = −ρ/2} such that they do not intersect
Ssε . Since vε,ρ → ũ, arguing as in (6.6), we deduce that∫

P ε±

|uε − u±(x0)|dH1 = ρ oε(1) + o(ρ) (6.9)

as ε→ 0.
For fixed ρ > 0 we may now consider the scaled functions

wρε(y) =
1

ρ
uε(x0 + ρy) =

1

ρ
vε,ρ(y).
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We may still argue as in Proposition 4.1 and deduce that wρε converge to uρ(y) =
1
ρu(x0 + ρy) as ε→ 0. Note that ∇uρ(y) = ∇u(x0 + ρy).

For fixed ρ, we may now consider the functions

w̃ρε = wρεχQν0\ 1
ρSsε

,

which are now discontinuous at ∂Ssε . They satisfy
(i) the determinant of ∇wρε is equibounded, by the definition of Ssε ;
(ii) ∇wρε are equibounded;
(iii) H1(∂Ssε ) is bounded;

(iv) the measures
∂wρε
∂ν⊥
H1 ∂Ssε are equibounded, by (ii) and since | ∂w

ρ
ε

∂ν⊥
| ≤ 2s

by definition. Here and below we simply denote by ν the normal to a disconti-
nuity set without specifying of which function, which is clear from the context.

By Theorem 5.8 in [3] from (i)–(iv) above and the convergence w̃ρε → uρ we

deduce that the measures
∂wρε
∂ν⊥
H1 ∂Ssε converge to ∂uρ,δ

∂ν⊥
H1 Suρ . We choose

the orientation of ν⊥ so that the determinant constraint on uε can be rewritten
on each line segment of P ε± as〈 ∂uε

∂ν⊥
, (u+

ε − u−ε )⊥
〉
> 0,

where u−ε and u+
ε are the values on two vertices of the corresponding triangle,

with u−ε ∈ P ε− and u+
ε ∈ P ε+. We then have, by (6.9)

0 ≤
∫
Q
ν0
ρ (x0)∩P ε−

〈 ∂uε
∂ν⊥

, (u+
ε − u−ε )⊥

〉
dH1

=

∫
Q
ν0
ρ (x0)∩P ε−

〈 ∂uε
∂ν⊥

, (u+(x0)− u−(x0))⊥
〉
dH1 + ρ oε(1) + o(ρ)

= ρ

∫
Qν0∩ 1

ρ (P ε−−x0)

〈∂wρε
∂ν⊥

, (u+(x0)− u−(x0))⊥
〉
dH1 + ρ oε(1) + o(ρ)

= ρ

∫
Qν0∩Suρ

〈 ∂uρ
∂ν⊥

, (u+(x0)− u−(x0))⊥
〉
dH1 + ρ oε(1) + o(ρ)

= ρ 〈R−ν⊥0 , (u+(x0)− u−(x0))⊥〉+ ρ oε(1) + o(ρ)

= ρ 〈R−ν0, u
+(x0)− u−(x0)〉+ ρ oε(1) + o(ρ).

Dividing by ρ and letting ε, ρ → 0 we obtain the first claim in (6.3). The
analogous inequality with R+ν0 is obtained in the same way.

Remark 6.2 (conjecture). We have obtained a weaker necessary condition than
the sufficient ones in (5.12). This comes from the fact that in the last argument
of the proof we have integrated the positive-determinant constraint on P ε±. We
conjecture that this is only a technical issue and indeed those conditions are
also necessary in order that the energy density be minimal on Su.
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Appendix: positive vs non-negative determinant
constraint

We have considered a strictly positive microscopic determinant constraint. Strictly
positive inequalities are weakened in the limit; however, our choice of not directly
considering weak inequalities allows to rule out some additional “unphysical”
deformations which would have to be taken into account by directly consider-
ing a non-negative microscopic determinant constraint. This would correspond
to allowing microscopic interpolations to “collapse” triangles to line segments
on the jump set even though such collapsed triangles cannot be viewed as a
limit for the strictly positive determinant case. This may happen in the case
of rotations R± ∈ SO(2) on both sides of the interface with R+ = −R−. In

A B C

Aʼ Bʼ Cʼ

Bʼ Aʼ CCʼ BA

Figure 5: Zero-determinant fracture with a planar interface and a 180-degree
rotation – reference and deformed microscopic configurations

Fig. 5 we depict such a microscopic deformation along a single coordinate line,
where all points of two rows are aligned. Note that allowing zero-determinant
deformations would include such a macroscopic deformation in the set of “min-
imal interfacial energy”, while in our setting the same must be achieved by the
introduction of at least one extra layer of atoms, thus doubling the energy.

Another possibility for having R+ = −R− is with the partition composed
of a pair of supplementary angles as in Figure 6. In this case it is possible to
“rotate” one of the two angles by π with positive or zero determinant on the
deformed triangles along the discontinuity set. In both cases, however, we have
a macroscopical failure of impenetrability, so we have regarded these cases as
degenerate by considering only the strictly-positive-determinant constraint.
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