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ABSTRACT
We present non-linear hydrodynamic pulsation models for OGLE-BLG-RRLYR-02792 – a
0.26 M� pulsator, component of the eclipsing binary system, analysed recently by Pietrzyński
et al. The star’s light and radial velocity curves mimic that of classical RR Lyrae stars, except
for the bump in the middle of the ascending branch of the radial velocity curve. We show
that the bump is caused by the 2:1 resonance between the fundamental mode and the second
overtone – the same mechanism that causes the Hertzsprung bump progression in classical
Cepheids. The models allow us to constrain the parameters of the star, in particular to estimate
its absolute luminosity (≈33 L�) and effective temperature (≈6970 K, close to the blue edge
of the instability strip).

We conduct a model survey for the new class of low-mass pulsators similar to OGLE-
BLG-RRLYR-02792 – products of evolution in the binary systems. We compute a grid of
models with masses corresponding to half (or less) of the typical mass of RR Lyrae variable,
0.20 ≤ M ≤ 0.30 M�, and discuss the properties of the resulting light and radial velocity
curves. Resonant bump progression is clear and may be used to distinguish such stars from
classical RR Lyrae stars. We present the Fourier decomposition parameters for the modelled
light and radial velocity curves. The expected values of the ϕ31 Fourier phase for the light
curves differ significantly from that observed in RR Lyrae stars, which is another discriminant
of the new class.

Key words: hydrodynamics – methods: numerical – binaries: eclipsing – stars: oscillations –
stars: variables: RR Lyrae.

1 IN T RO D U C T I O N

OGLE-BLG-RRLYR-02792 (below shortened to RRLYR-02792)
is a large amplitude, single-periodic (P0 ≈ 0.6275 d) pulsator, com-
ponent of a physical, well-detached, double-lined eclipsing binary
system discovered in the Galactic bulge by the Optical Gravita-
tional Lensing Experiment (OGLE) survey (Soszyński et al. 2011)

� E-mail: smolec@camk.edu.pl

and analysed in detail in the course of the Araucaria project by
Pietrzyński et al. (2012). Disentangled I-band light curve and radial
velocity curve are presented in Fig. 1. The pulsation period and
shape of the light curve place the star among classical RR Lyrae
stars pulsating in the fundamental mode (RRab stars), which is
clear from the analysis of the Fourier decomposition parameters,
amplitude ratios, Rk1, and Fourier phases, ϕk1. They are constructed
through the fit of the Fourier series to the data, i.e.

mI = A0 +
∑

k

Ak sin(kωt + ϕk), (1)

C© 2012 The Authors
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Models for binary evolution pulsators 3035

Figure 1. Disentangled I-band light curve (top) and radial velocity curve
(bottom) for RRLYR-02792 (the BEP). Solid lines represent the 10th (light
curve) and sixth (radial velocity curve) order Fourier fits to the data. Fourier
decomposition parameters are given in Table 1. Note that we use an ob-
servers’ convention in the plot of radial velocity curve, i.e. negative values
correspond to expansion.

Table 1. Fourier decomposition parameters for the
I-band light curve and radial velocity (RV) curve of
RRLYR-02792 (the BEP, sine decomposition). Standard
errors are given in the parentheses. In the last line, the
peak-to-peak amplitude, A, is given.

I-band RV

A1 (mag) (km s−1) 0.218(2) 13.46(27)
R21 0.232(12) 0.526(27)
R31 0.066(11) 0.160(21)
ϕ21 (rad) 2.93(5) 3.11(6)
ϕ31 (rad) 0.34(17) −0.17(15)
A (mag) (km s−1) 0.486 34.67

and then,

Rk1 = Ak/A1, ϕk1 = ϕk − kϕ1, (2)

where ω = 2π/P is pulsation frequency. As computed by
Pietrzyński et al. (2012), the pulsation period decreases with the
rate of (8.4 ± 2.6) × 10−6 d yr−1. Here we adopt the mean pulsa-
tion period derived from the I-band photometry, which spans nearly
10 years, P0 = 0.627 527 d. Fourier decomposition parameters of
RRLYR-02792 are given in Table 1 and plotted in Fig. 2, along
with the OGLE data for thousands of RRab stars from the Galactic
bulge (Soszyński et al. 2011). Note that the Fourier phases from the
OGLE catalogue, given in the cosine convention, were shifted to
match the sine convention (equation 1) that we consistently use in
this paper (for both the light and radial velocity curves).1 Fourier
phases of RRLYR-02792 fit the typical values of RR Lyrae stars
very well. Amplitude ratios are low, but fit the tail well visible in
the progression for RRab stars between P0 = 0.6 and 0.65 d.

1 ϕ
(sine)
21 = ϕ

(cosine)
21 − π/2, ϕ

(sine)
31 = ϕ

(cosine)
31 − π.

Figure 2. Peak-to-peak amplitude, A, and Fourier decomposition param-
eters for the I-band light curves of the Galactic bulge RR Lyrae stars of
the OGLE survey (grey dots, each third plotted; Soszyński et al. 2011),
RRLYR-02792 (the BEP, black diamond) and hydrodynamic models adopt-
ing convective parameters of set S1 (lines, see the keys in the top and bottom
panels).

Surprisingly, the dynamical mass of RRLYR-02792 derived by
Pietrzyński et al. (2012) is very low, M = 0.261 ± 0.015 M�, which
is roughly two times smaller than the typical mass of the RR Lyrae
star. It is too low to initiate the helium burning. As discussed by
Pietrzyński et al. (2012), the star is a result of mass transfer in the
binary system. Other parameters of RRLYR-02792 relevant for this
study and derived by Pietrzyński et al. (2012) are radius, R = 4.24 ±
0.24 R�, and estimate of the effective temperature, Teff = 7320 ±
160 K (rough estimate based on the assumed 5000 K temperature
of the secondary 1.67 M� giant component and temperature ratio
derived from the analysis of the light curve). Corresponding abso-
lute luminosity may be estimated to be L = 46.2 ± 9.3 L�. No
metallicity determination is available for RRLYR-02792.
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3036 R. Smolec et al.

RRLYR-02792 is a new member of a class of pulsators, for
which mass transfer associated with binary evolution has significant
effect on their pulsation properties. We will call such stars binary
evolution pulsators (BEPs) and we will call the RRLYR-02792
the BEP. Other well-known examples of the class are hot subdwarf
pulsators, members of eclipsing binary systems (see For et al. 2010).
We also note that BEP may be a single object that went through
binary evolution in the past, and was ejected from the binary because
of, e.g., tidal interactions in the globular cluster.

In this paper, we present the first pulsation calculations for the
BEP, both linear and non-linear, full-amplitude models. Nearly ex-
act fit of the light and radial velocity curves is possible, which allows
us to constrain the stellar parameters and provides an insight into
the pulsation dynamics of the star (Section 3). We also present a
non-linear model survey with parameters of the models correspond-
ing to the expected parameters of the members of the new class,
i.e. with masses two to three times smaller than typically assumed
for RR Lyrae stars (Section 4). The main goal is to provide the
criteria to distinguish the BEPs from classical RR Lyrae stars, for
which binary nature cannot be inferred directly because of too low
inclination angle. In this case, we only see the light/radial velocity
curve of a pulsating component, which, as in the case of the BEP,
may strongly mimic the typical curve of RR Lyrae pulsator.

2 N U M E R I C A L M E T H O D S

All our models are computed with the convective pulsation codes
described in detail by Smolec & Moskalik (2008). These are static
model builder, linear non-adiabatic code and non-linear direct time-
integration hydrodynamic code. The codes are Lagrangian. Radia-
tive transfer is treated with a simple diffusion approximation. For the
convective energy transport, we use the time-dependent, turbulent
convection model of Kuhfuß (1986). It is a simple 1D, one-equation
formulation that contains several dimensionless scaling parameters.
These are the mixing-length parameter, α, and parameters scaling
the turbulent fluxes and the terms that drive/damp the turbulent
energy: αp (turbulent pressure), αm (eddy-viscous dissipation), αc

(convective heat flux), αt (kinetic turbulent energy flux), αs (buoy-
ant driving), αd (turbulent dissipation) and γ r (radiative cooling).
Theory provides no guidance for their values. For αs, αc, αd and γ r,
values which result from comparison of the static time-independent
version of the model with the mixing length theory are in use (see
Table 2 caption). In practice, the values of convective parameters
are calibrated to match as many observational constraints as possi-
ble. Slightly different values are necessary for modelling different
groups of stars, e.g. Cepheids and RR Lyrae stars of different stel-
lar systems. It makes the modelling of BEPs particularly difficult.
The only known member of the class, the BEP, provides very little

Table 2. Convective parameters adopted in the models.
Parameters αs, αc, αd, αp and γ r are given in the units
of standard values (αs = αc = 1/2

√
2/3, αd = 8/3

√
2/3,

αp = 2/3 and γr = 2
√

3; see Smolec & Moskalik 2008,
for details). Only first three sets of parameters were used in
non-linear computations.

Set α αm αs αc αd αp αt γ r

S1 1.5 0.4 1.0 1.0 1.0 0.0 0.0 0.0
S2 1.5 0.6 1.0 1.0 1.0 0.0 0.0 1.0
S3 1.5 0.2 1.0 1.0 1.0 0.0 0.0 0.0

S4 1.5 0.6 1.0 1.0 1.0 1.0 0.01 0.0

constraints on the models. Consequently, several sets of values of
convective parameters need to be considered (Table 2). As a first
guess, we adopt the parameters that well reproduce the observed
properties of the Galactic bulge RR Lyrae stars, in particular the
Fourier parameters of the I-band light curves. In Fig. 2, we compare
the computed Fourier parameters for models adopting convective
parameters of set S1 and assuming typical parameters of RR Lyrae
stars (masses 0.55 and 0.65 M�, luminosities: 40–70 L�, metallic-
ities, Z: 0.01, 0.001 and 0.0001) with OGLE observations. We get
a good agreement for amplitudes, Fourier phases and R21 ratio, and
somewhat too low model values for R31. Similar agreement (with
much better match of R31) is obtained for models of set S2, which
include the effects of radiative cooling. In set S3, the convective
parameters are the same as in set S1, except eddy viscosity which is
lower. Consequently, we expect higher pulsation amplitudes in mod-
els adopting parameters of set S3. In linear model survey, we also
consider set S4, in which effects of turbulent pressure are turned
on. Inclusion of turbulent pressure in non-linear models leads to
long-lasting integration and convergence difficulties for some mod-
els. Consequently, in this first non-linear model survey for BEPs,
we neglect the effects of turbulent pressure and consider models of
sets S1, S2 and S3, only.

Our models are chemically homogeneous, non-rotating, enve-
lope models. They consist of 150 mass shells extending down to
2 × 106 K. It is a standard depth in modelling the Cepheid and
RR Lyrae pulsation. It is deep enough to cover the region relevant
for κ mechanism driven pulsation but too shallow to enter the in-
homogeneous hydrogen-burning shell region. In order to capture
and resolve the thin hydrogen ionization region, the anchor zone
of temperature equal to 11 000 K is located 40 zones below the
surface. Non-linear model integration is conducted till the limit cy-
cle pulsation (single-periodic, full-amplitude pulsation) is reached,
which requires computation of 1000 up to 5000 pulsation cycles.
Each pulsation cycle is covered with 600 time-steps. The bolometric
light curves are transformed to the I band through the static Kurucz
(2005) atmosphere models.2 Projection factor for the BEP is un-
known. We scaled the model velocity curves by projection factor
used for classical RR Lyrae pulsators, i.e. p = 1.38 (Fernley 1994).

The chemical structure of the star is subject of uncertainty. No
metallicity determination is available. Also, no realistic evolution-
ary computations exist for this type of binary evolution. Significant
fraction of the envelope was removed during the evolution. Pulsa-
tion is driven in the outermost layers which, although very extended,
contain only a fraction of per cent of the total stellar mass (typically
below 1 per cent in our models). In this study, we assume that the
outer shell has preserved the standard chemical composition typical
for Population II stars, i.e. X = 0.76 and Z = 0.01–0.0001. We also
compute model sequences with X = 0.70, which corresponds to
higher helium content as in Population I stars. In all our models, we
adopt the Opacity Project (OP) opacities (Seaton 2005) and solar
mixture of Asplund et al. (2004).

3 PU L S AT I O N M O D E L S F O R T H E B E P

In this section, we focus on modelling the observed properties of the
BEP. We first conduct a linear model survey and discuss properties
of the static models (Section 3.1). Next, we focus on non-linear
modelling of the I-band light curve and radial velocity curve of the
BEP (Section 3.2).

2 http://kurucz.harvard.edu/
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Models for binary evolution pulsators 3037

3.1 Linear model survey

The models are computed along horizontal stripes of constant lumi-
nosity (L = 16–40 L�, step 2 L�) and with 100 K step in effective
temperature. We adopt M = 0.26 M� for all the models. Computed
Hertzsprung–Russell (HR) diagrams for different sets of convective
parameters and assuming different chemical compositions are plot-
ted in Fig. 3. Except for model computations adopting convective
parameters of set S2, first overtone is linearly damped in our mod-
els. The typical width of the fundamental mode instability strip is
1000 K and increases towards the higher luminosities.

Before we discuss the models appropriate for the BEP, we first
discuss general properties of typical static model, as pulsation prop-
erties of BEPs were not studied so far. In Fig. 4, we plot results for
a model located in the middle of the instability strip (Teff = 6500 K,
L = 25 L�, marked with open circle in the top-left panel of Fig. 3).
Its period is only slightly longer than the period of the BEP. The
top panel shows the convective heat flux (solid line) and adiabatic
temperature gradient (dashed line). In the middle panel of Fig. 4,
we plot the logarithm of Rosseland opacity (solid line) and its log-
arithmic temperature derivative (dashed line) – crucial quantities
for studying the pulsation driving. The metal, helium and hydrogen
opacity bumps are marked with labels. In the bottom panel, the
work integrands are plotted – total with the solid line and contribu-
tion of eddy-viscous work with the dashed line. Pulsation driving
occurs in regions with positive work integrand. Eddy viscosity al-
ways damps the pulsation and its contribution is negative. Model
properties are very similar to the properties of classical RR Lyrae

models (e.g. Stellingwerf 1982). It is clear that pulsation is driven
through the κ mechanism working in the hydrogen–helium ioniza-
tion zone. We note a significant contribution from the hydrogen
ionization region. The main envelope convection zone is associated
with the hydrogen–helium (He I–H) ionization region. The second,
less effective convective region develops deeper at the He II ioniza-
tion zone. All ionization regions are properly resolved in our models
as the run of ∇ad indicates.

In each panel of Fig. 3, we plot a line of constant fundamental
mode period, P0 = 0.627 527 d. The dashed lines in Fig. 3 are
lines of constant photospheric radius R = 4.24 R�, with 1σ errors
(±0.24 R�), which correspond to the values measured for the BEP.
For models with mass corresponding to the measured mass of the
BEP, these two lines (of constant P0 = 0.6275 d and of constant R =
4.24 R�) should roughly overlap (period–mean density relation),
which is not the case for any of the considered model parameters.
The lines are nearly parallel but shifted with respect to each other.
The best agreement is obtained for models of the lowest metal
abundance and for the models including the effects of turbulent
pressure, which expands the model envelope (bottom right panel
in Fig. 3). In this case, the difference is 1σ (at high L). For other
models, the difference is larger; however, it is always smaller than
2σ . Hence, we treat this discrepancy as a warning sign and note
that multiband photometric observations are necessary to derive the
radius of the BEP more accurately (see also discussion in Section 5).

In the HR diagrams in Fig. 3, we also plot the loci of the 2:1
resonance between the fundamental mode and the second over-
tone, P2/P0 = 0.5 (dotted lines). This resonance causes the famous

Figure 3. The HR diagrams for 0.26 M� models adopting different values of convective parameters and different chemical compositions as indicated in the
top-right part of each panel. Instability strips are indicated with grey-shaded areas (light grey for the fundamental mode, dark grey for the first overtone). Solid
line is the line of constant fundamental mode period, P0 = 0.6275 d. Long-dashed lines indicate the radius determination for the BEP (with 1σ errors) and
dotted line shows the loci of the 2:1 resonance with the second overtone, P2/P0 = 0.5. Circle marks location of the static model from Fig. 4, and diamonds
mark the location of the best matching models for the BEP (Section 3.2, Table 3).
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3038 R. Smolec et al.

Figure 4. Properties of the exemplary static model with M = 0.26 M�,
L = 25 L� and Teff = 6500 K (marked with circle in the top-left panel of
Fig. 3). Top panel: convective heat flux (solid line) and adiabatic temperature
gradient (dashed line); middle panel: logarithm of opacity (solid line) and
its logarithmic temperature derivative (dashed line); bottom panel: work
integrands, total (solid line) and eddy-viscous contribution (dashed line).

Hertzsprung bump progression in classical Cepheids pulsating in
the fundamental mode (e.g. Simon & Schmidt 1976; Kovács &
Buchler 1989; Buchler, Moskalik & Kovács 1990). In the discussed
models, it lies well within the instability strip, independent of the
model parameters (see also Fig. 9 for models with different mass).
Our non-linear computations presented in the next sections show
that this resonance strongly influences the pulsation of BEPs.

3.2 Non-linear model survey

The non-linear models for the BEP are computed along lines of
constant fundamental mode period, P0 = 0.6275 d. Models are la-
belled by their absolute luminosity, which increases in a step of
1 L�. All models have M = 0.26 M�. The least luminous models
are located at the red edge of the instability domain and, as luminos-
ity increases, shift towards the blue (see Fig. 3). We computed six
model sequences: with convective parameters of sets S1, S2 and S3,
and with metallicities Z = 0.01 and 0.001 (X = 0.76) in each case.
For models with convective parameters of set S3, we also computed
two model sequences with X = 0.70 (Z = 0.01 and 0.001). In Fig. 5,
we show a full set of the computed I-band light curves and radial
velocity curves for models with convective parameters of set S1 and
with Z = 0.01. At phase 0, the radius reaches its maximum value
(velocity is equal to 0). The radial velocity curves have a usual trian-
gular shape. One may note a systematic progression of the curve’s
shape as luminosity changes. For the lowest luminosity models, the
velocity curves are more or less symmetrical; the descending branch
is even slightly longer than the ascending branch for the model with
L = 19 L�. The velocity varies slowly at the phase of maximum
expansion velocities. For models with L = 22–23 L�, the velocity

Figure 5. I-band light curves (left-hand panel) and radial velocity curves (right-hand panel, observers’ convention, i.e. negative values correspond to envelope
expansion) for hydrodynamic models of 0.26 M� computed along a line of constant fundamental mode period corresponding to the pulsation period of the
BEP. Models adopt convective parameters of set S1. For clarity, the consecutive light curves were shifted by 0.12 mag and radial velocity curves by 10 km s−1.
Velocity curves were scaled by constant projection factor, p = 1.38. Thick red lines indicate the best matching model for the BEP.
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curve is nearly flat at this phase. As luminosity increases, a bump
appears on the ascending branch (visible already for L = 25 L�
at phase around 0.8), which moves upwards towards the phase of
maximum radius (L = 31 L�) and then vanishes (L = 32 L�).

Considering the I-band light curves, at the lowest luminosities
they differ significantly from the typical RR Lyrae curves. A pro-
nounced bump is present on the ascending branch – two brightness
maxima are observed during one pulsation cycle. As luminosity
increases, the bump becomes less pronounced, turns into narrow
standstill (28, 29 L�) and vanishes. At highest luminosities, the
light curves resemble those of typical RR Lyrae stars, except for
less sharp light variation in the brightness maximum.

Described variation of the shape of radial velocity and I-band light
curves suggests that the 2:1 resonance with the second overtone is
influential here, and shapes the bump progression. It is not very
pronounced because we consider a specific model sequences of
constant period. It is clear from Fig. 3 that most of our models lie to
the blue of the P2/P0 = 0.5 line and thus majority of models have
P2/P0 > 0.5 – see exact values on the right-hand side of Fig. 5. In
the case of bump progression observed, e.g., in classical Cepheids,
which is caused by the same resonance, the shape of the light/radial
velocity curves is affected by the resonance in a wide range of period
ratios, 0.48 < P2/P0 < 0.54. The position of the bump depends
critically on the value of P2/P0, as model computations indicate
(Kovács & Buchler 1989; Buchler et al. 1990). For P2/P0 > 0.5,
the bump is located on the ascending branch of the velocity curve,
which is also the case in our models. The full bump progression in
our models will be demonstrated in Section 4, where we consider
models covering the full instability strip and thus probing the P2/P0

ratio in a wide range (Fig. 11).
It is clear that, among the models displayed in Fig. 5, these are the

highest luminosity ones that reproduce the observations of the BEP
best (cf. Fig. 1). In particular, the model for L = 31 L� (marked
with thick red lines in Fig. 5) seems to be the best one. A more
quantitative selection of the best models for the BEP is based on
comparison of the observed and computed Fourier decomposition
parameters of the lowest order, the amplitude A1, amplitude ratios,
R21 and R31, and Fourier phases, ϕ21 and ϕ31, for both I-band and
radial velocity curves. In Figs 6 and 7, we show such comparisons
for specific Fourier parameter planes, i.e. ϕ21–R21 and ϕ31–R31, and
three sequences of models. We stress that periods of all the models
match the period of the BEP. Models differ in luminosity (and
effective temperature) – the least luminous model (and the coolest
one) is marked with an open circle. Luminosity of the consecutive
models in a sequence differs by 1 L�. Again, it is clear that these
are the highest luminosity models that match the observations of
the BEP best.

Yet another observable that can be compared with the models is
the phase lag between the radial velocity curve and the light curve,
defined as 
ϕ1 = ϕvel

1 − ϕ
mag
1 (Simon 1984). For the BEP, we get


ϕ1 = 0.055 ± 0.027.3 Unfortunately, there are no phase lag deter-
minations for classical RR Lyrae stars using the I-band light curves.
With the V-band light curves, the mean phase lag for a sample of RR
Lyrae stars is 〈
ϕ1〉 = −0.19 (Ogloza, Moskalik & Kanbur 2000).
It is negative for all the stars used in the work of Ogloza et al. (2000)

3 Because of the pulsation period change, 
ϕ1 was computed using the
last 500 days of the OGLE-III photometry only. At the end of this span,
the radial velocities were measured. The adopted pulsation period [P =
0.627 510(5) d] was derived from the photometry alone, but agrees well
with the (less accurate) period derived from radial velocity measurements.

Figure 6. Plots of the Fourier parameters, ϕ21 versus R21 (top) and ϕ31

versus R31 (bottom) for the computed I-band light curves for three sequences
of models of constant period (all models with X = 0.76 and Z = 0.01, but
with different convective parameters, as indicated in the key). Open circle
marks the first, lowest luminosity model in each sequence. Consecutive
models differ by 1 L�. Larger symbols show the best matching models for
the BEP (marked with diamond).

Figure 7. The same as Fig. 6, but for the radial velocity curves.

(Moskalik, private communication). Our models for classical RRab
stars (displayed in Fig. 2) point, however, that phase lags computed
using the I-band light curves are systematically larger than phase
lags computed using the V-band light curves and may have both
positive and negative values.
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We now compute the offsets between the model and the observa-
tions in the Fourier parameter space, defined as

d =
√∑

i

(pi,mod − pi,obs)2/p2
i,obs, (3)

where pi denotes one of the low-order Fourier parameters and am-
plitudes, pi ∈ {A, R21, R31, ϕ21, ϕ31}, for our models (pi,mod) and
for the observed curves (pi,obs, Table 1). Depending on the Fourier
parameters used, several offsets may be constructed. At first, we
consider three definitions of d. The first offset, d2, is computed in
the 2D plane of the lowest order Fourier coefficients, ϕ21–R21 (top
panels of Figs 6 and 7). The second offset, d4, is constructed from
all four low-order amplitude ratios and Fourier phases, and the third
offset, d5, includes also the amplitude.

We note that for a given model sequence and for both the I-band
and radial velocity curves the three offsets are minimized either for
the same model or by models that differ by 1 L�. For example,
for models adopting convective parameters of set S2 and Z = 0.01,
all offsets for the I-band light curves and radial velocity curves are
minimized in the model with L = 32 L�, except d4 for the radial
velocity curves which is minimized in the model with L = 31 L�.
In the more complex case of models with convective parameters of
set S1 (and Z = 0.01), d4 and d5 for the I-band light curves and d2

for the radial velocity curves are minimized in the model with L =
31 L�, while d2 for the I-band light curves and d4 and d5 for the
radial velocity curves are minimized in the model with L = 30 L�.

For the final selection of the best model, we use the offset dall

constructed from all low-order Fourier decomposition parameters
and amplitudes for both the I-band light curve and radial velocity
curve (10 parameters). The model that minimizes dall for a given
model sequence is considered the best one. Properties of our best
matching models for all considered model sequences are given in
Table 3. In the last row, we provide the value of dall. In the HR
diagrams in Fig. 3, location of the best models is indicated with
diamonds (in relevant panels). In Figs 6 and 7, the best models
are marked with larger symbols. In Fig. 8, the light and radial
velocity curves for our best models for the BEP are compared with
observations. The light curves were shifted vertically so the mean
brightness is zero. All the curves were phased in the same way –
phase 0 corresponds to the maximum radii (radial velocity goes
through 0). No other shifts were applied to the curves (except the
vertical shift between consecutive models applied for clarity).

Analysis of Table 3 and Figs 3, 6, 7 and 8 allows us to draw some
interesting conclusions.

(i) All the best-fitting models are located close to the blue edge
of the instability strip (Fig. 3). The effective temperatures and

Table 3. Properties of the best hydrodynamic models for the BEP.

Set S1 S2 S3
X/Z 0.76/0.01 0.76/0.001 0.76/0.01 0.76/0.001 0.76/0.01 0.76/0.001 0.70/0.01 0.70/0.001

L/ L� 31 33 32 35 32 34 33 36
Teff (K) 6864.2 6913.8 6910.5 7003.0 6911.4 6957.3 6966.7 7053.6
R/ R� 3.88 3.94 3.88 3.95 3.88 3.95 3.88 3.96
P2/P0 0.530 0.537 0.536 0.545 0.532 0.539 0.532 0.542

ϕ1 −0.14 −0.11 −0.16 −0.14 −0.13 −0.03 −0.07 −0.06

dall 0.597 0.421 0.382 0.742 0.290 0.630 0.200 0.227

Figure 8. I-band (left-hand panel) and radial velocity (right-hand panel) curves for hydrodynamic models reproducing the observations of the BEP (black
solid line, Fourier fit from Fig. 1) best. Models adopting convective parameters of sets S1, S2 and S3 are plotted with red, green and blue lines, respectively.
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Models for binary evolution pulsators 3041

absolute luminosities lie in a narrow ranges of ∼6850–7050 K and
31–36 L�, respectively. More metal-rich models (Z = 0.01) are
slightly (50–100 K) cooler and less luminous (2–3 L�) than metal-
poor models (Z = 0.001).

(ii) Radius depends on metallicity and is equal to ≈3.88 R� for
Z = 0.01 and ≈3.95 R� for Z = 0.001.

(iii) Considering the I-band light curves (left-hand panel of
Fig. 8), clearly the best fit to the observed light curve is obtained for
models with convective parameters of set S3 and with X = 0.70 (for
both metallicities, bottom two curves in Fig. 8). These are the mod-
els with the lowest value of dall. A slightly worse fit is obtained for
models with X = 0.76. Among these models, the best ones are those
with convective parameters of sets S2 and S3 and with the higher
metallicity (Z = 0.01, third and fifth curves from top in Fig. 8).
For all these models, the radial velocity curves well reproduce the
observed curve; in particular, a bump on the ascending branch is
present, although less pronounced than in observations. We con-
clude that chemical composition typical for Population I stars (X =
0.70) seems more appropriate for the BEP (see discussion in Sec-
tion 5).

(iv) For the lower metallicity models (Z = 0.001), a phase shift
between the model and the observed light curves is apparent for
models of all three sets of convective parameters (left-hand panel
in Fig. 8). A minimum brightness in these models follows the ob-
served minimum by ≈0.1–0.15 pulsation cycle. The shift is also
present in the case of the radial velocity curves, for all the mod-
els. A phase of maximum expansion velocity in our models occurs
later than is observed. Again the difference is slightly larger for
the lower metallicity models. To explain these phase shifts, we first
note that we defined phase 0 as the phase of maximum radius. It is
determined with the help of the radial velocity, which changes the
sign. At around this phase, a bump is present in the radial velocity
curves, which manifests itself as a slower (less steep) variation of
the radial velocity. Thus, its exact location may influence our phas-
ing of the model curves. The location of the bump depends on the
P2/P0 period ratio which is a function of metallicity, as is evident
from an analysis of the values given in Table 3. At lower metal-
licity, the P2/P0 ratio becomes larger and the bump moves up the
ascending branch of the radial velocity curve. The second effect is a
systematic difference between the observed and the computed phase
lag between the radial velocity curves and the light curves. Indeed,
the phase lag of the BEP is positive and equal to 
ϕ1 = 0.055,
while the phase lags for all our models (Table 3) are systematically
smaller and negative. A significantly better agreement is obtained
for models with higher helium content, i.e. with X = 0.70. We also
note that in spite of the model phase lags being all negative, the
phase of maximum expansion velocity always precedes the phase
of maximum brightness, just as in the case of the BEP. The negative
value of 
ϕ1 results from the highly non-linear shape of the light
and radial velocity curves.

(v) The model for the BEP that reproduces both the light and ra-
dial velocity variation best (has the lowest value of dall) is the model
with convective parameters of set S3 and with chemical composition
of Population I stars (X = 0.70, Z = 0.01). Its absolute luminosity
is 33 L� and effective temperature is ≈6970 K. Among the models
with chemical composition corresponding to Population II stars,
the best two models (with convective parameters of sets S2 and
S3) have the same metallicity (Z = 0.01), luminosity (L = 32 L�)
and nearly the same effective temperature (≈6910 K). All our best
matching models have very similar P2/P0 ratios, in agreement with
interpretation that the bump is caused by the 2:1 resonance between
the fundamental mode and the second overtone.

4 N ON-LI NEAR MODEL SURV EY FOR B EPs

At first, the BEP was recognized as a classical RR Lyrae star – its
light variation and radial velocity curves mimic that observed in RR
Lyrae stars pulsating in the fundamental mode. Only its presence
in the eclipsing binary system allowed us to determine its mass and
to reveal its true nature. Its mass is only half the typical RR Lyrae
mass, too low to ignite helium. It cannot be a classical RR Lyrae
star; it is a product of mass transfer during the binary evolution. The
incidence rate of such stars estimated by Pietrzyński et al. (2012)
is only 2 per cent and only a fraction may be discovered through
eclipses. Majority of such binaries are expected to be non-eclipsing
systems. Consequently, direct estimate of mass of the pulsating
component will not be possible. Then, the shape of the light/radial
velocity curve may mimic that of RRab star, as it is the case for the
BEP, and lead to wrong interpretation. The goal of this section is to
conduct a large model survey of the light and radial velocity curves
of BEPs, to check how to distinguish these stars from classical RRab
stars and to check whether the case of the BEP – RR Lyrae impostor
– is a rule or an exception.

We consider model sequences with three different masses corre-
sponding to one-third – one-half the typical RR Lyrae mass, 0.2,
0.26 (mass of the BEP) and 0.3 M�, and with different absolute
luminosities, 20, 25, 30, 35 and 40 L�. Models are computed along
horizontal stripes of constant luminosity with a step of 100 K in
effective temperature. Chemical composition is the same in all our
models, X = 0.76 and Z = 0.01. Full model survey was computed
adopting convective parameters of set S1. In addition, for 0.26 M�
we have computed model sequences adopting convective parame-
ters of sets S2 and S3.

In Fig. 9, we present the HR diagrams for models with M =
0.20 M� (top panel) and M = 0.30 M� (bottom panel), adopting
convective parameters of set S1. For M = 0.26 M�, the HR diagram
is plotted in the top-left panel in Fig. 3. For the highest considered
mass, the first overtone instability strip appears at the lowest lumi-
nosities. The models cover a wide period range from 0.3 to 1.5 d.
We focus our attention on models with P0 below 1 d, as in RRab
stars. As discussed in the previous section, the 2:1 resonance is
expected to shape the light and radial velocity curves of BEPs. For
all considered masses, its loci (thick dotted lines in Figs 9 and 3)
cross the instability strip at fundamental mode periods between 0.6
and 1 d.

An analysis of the light and radial velocity curves and of the
corresponding Fourier decomposition parameters clearly show that
indeed the 2:1 resonance with the second overtone causes the pro-
gression of the light and radial velocity curve’s shape. This is illus-
trated based on model sequences with M = 0.26 M� (and different
luminosities) and adopting convective parameters of set S1. The
bump progression, akin to that observed in classical Cepheids, is
best visible for radial velocity curves. The amplitude and the lowest
order Fourier decomposition parameters are plotted in Fig. 10 for
model sequences with different luminosities. The Fourier parame-
ters are plotted versus the P2/P0 period ratio. The progression of
the Fourier coefficients clearly correlates with P2/P0 ratio and re-
sembles very well the results obtained for classical Cepheid models
(e.g. Buchler et al. 1990) and predictions based on analysis of am-
plitude equations for the 2:1 resonance (Kovács & Buchler 1989).
A clear drop in the pulsation amplitude is observed, followed by the
decrease and minimum of the R21 ratio at somewhat larger values of
P2/P0. In the case of the Fourier phase, a bell shape is apparent. The
ascending part of the bell follows a universal progression – ϕ21 is a
function of P2/P0 only (for P2/P0 > 0.52). The value of P2/P0 at
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3042 R. Smolec et al.

Figure 9. The HR diagrams for 0.20 M� (top panel) and 0.30 M� (bottom
panel) models of set S1 and with X = 0.76 and Z = 0.01. Long-dashed lines
are lines of constant fundamental mode period (0.3, 0.6, 1.0 and 1.5 d). Loci
of the 2:1 resonance with the second overtone and of the two half-integer
resonances (P0/P1 = 1.5 and P0/P5 = 3.5) are also plotted. Triangles show
the location of period-doubled models.

which the departure from this relation is observed and the maximum
value of ϕ21 depend strongly on the luminosity. The correlation of
the Fourier parameter progression with the P2/P0 ratio is lost if
the Fourier parameters are plotted versus the period – see the blue
curves in the right-hand panel of Fig. 14, which represent the same
model sequences as plotted in Fig. 10. No doubt, the 2:1 resonance
is crucial in shaping the progression of the radial velocity curves.

In Fig. 11 (right-hand panel), we plot the radial velocity curves
along a sequence of L = 25 L�. In contrast to Fig. 5, now a wide
range of period ratios is probed, which clearly reveals the bump
progression. The bump appears first in the middle of the ascend-
ing branch of the velocity curve, at the phase of maximum radius
(P2/P0 ≈ 0.54). Then, as period increases and period ratio de-
creases, the bump moves towards the phase of maximum expansion

Figure 10. Peak-to-peak amplitude and the lowest order Fourier decompo-
sition parameters for the radial velocity curves for 0.26 M� models (set S1)
of different luminosities (different symbols) plotted versus the linear P2/P0

period ratio. Pulsation period increases to the right.

velocity (P2/P0 ≈ 0.51). For period ratios below ≈0.5, the bump is
present on the descending branch and disappears for P2/P0 < 0.47.

The bump progression is also visible for the I-band light curves
(left-hand panel of Fig. 11), although in this case the interpreta-
tion is more difficult, because of additional features present in the
light variation. At the highest effective temperature, the light curve
is roughly triangular. A trace of bump appears on the descending
branch, just after the maximum brightness, which next moves to-
wards the ascending branch and deforms the brightness maximum.
For effective temperatures below 6700 K (P2/P0 < 0.52), a pro-
nounced bump is present on the ascending branch. It is present even
for the lowest temperature model and, in general, is a feature of
our models located in the centre and close to the red edge of the
instability strip, even with period ratios as low as P2/P0 ≈ 0.44
(not shown in Fig. 11), although it is much less pronounced in such
models. It is likely that other non-resonant effects play a role in
shaping this bump. Another feature of the light curves, well visi-
ble in Fig. 11, is a nearly flat and long phase of high brightness for
cooler models (Teff ≤ 6200 K). At the lowest effective temperatures,
two brightness maxima at similar level are present. Origin of such
shape is most likely non-resonant and connected to the develop-
ment of extensive zone of efficient convective transfer at the phase
of maximum compression, which is sustained then for nearly half
the pulsation cycle.

Analysis of Figs 10 and 11 indicates that the 2:1 resonance in-
fluences the shape of the light and radial velocity curves in a wide
range of period ratios, which we estimate to 0.47 < P2/P0 < 0.54.
The border values of P2/P0 are plotted with thin dotted lines in

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/428/4/3034/996581 by U
N

IVER
SITA' D

EG
LI STU

D
I D

I R
O

M
A LA SAPIEN

ZA user on 30 January 2019



Models for binary evolution pulsators 3043

Figure 11. I-band light curves (left-hand panel) and radial velocity curves (right-hand panel) for hydrodynamic models of 0.26 M� computed along a line
of constant luminosity, L = 25 L�. Models adopt convective parameters of set S1. Effective temperature is given on the right-hand side of the I-band curves,
fundamental mode period and linear P2/P0 period ratio are given on the right-hand side of the velocity curves. For clarity, the consecutive light curves were
shifted by 0.2 mag and radial velocity curves by 15 km s−1. In the latter case, short horizontal line segments mark the zero velocity level. Velocity curves were
scaled by constant projection factor, p = 1.38.

Fig. 9 and labelled with P2/P0 value. Clearly, the 2:1 resonance
is influential in a significant part of the instability strip and hence
is the most important effect shaping the light and radial velocity
curves of BEPs.

Another resonant effect which we find in our models is a period-
doubling effect. For some models, we observe alternating deep and
shallow minima/maxima in the light and radial velocity variation
– see Fig. 12 for exemplary light curves. Consequently, pulsation
repeats after two fundamental mode periods. The behaviour is found
only for some model sequences and is restricted to rather narrow
parameter ranges. For models adopting convective parameters of

Figure 12. Exemplary I-band light curves for models with period-doubling
effect.

set S1, period doubling was found only in the least massive, most
luminous models. Their location is plotted with triangles in the top
panel of Fig. 9.

As analysed by Moskalik & Buchler (1990), period doubling in
the hydrodynamic models is caused by the half-integer resonances.
The effect is observed in several types of large amplitude pulsators
including RV Tau variables (caused by the 5:2 resonance, P0/P2 =
2.5; Moskalik & Buchler 1990), RR Lyr stars showing the Blazhko
effect (caused by the 9:2 resonance, P0/P9 = 4.5; Szabó et al.
2010) and BL Her stars (caused by the 3:2 resonance, P0/P1 = 1.5;
Smolec et al. 2012). In Fig. 9, we plot the loci of two half-integer
resonances that might be influential in the case of BEPs models (red
lines). These are the 3:2 resonance with the first overtone (P0/P1 =
1.5) and the 7:2 resonance with the fifth overtone (P0/P5 = 3.5).
To cause the period doubling, the resonant overtone mode cannot
be damped too strongly (Moskalik & Buchler 1990). This is the
case for both resonances. The fifth overtone is a trapped envelope
mode in the discussed models, for which the growth rate is high
(Buchler & Kolláth 2001). Without the relaxation technique (e.g.
Stellingwerf 1974), however, it is hard to identify which resonance
is operational in these models. As the models are limited to nar-
row parameter ranges, we do not study this issue in more detail
here.

We now turn to the discussion of the overall properties of the
model light and radial velocity curves for BEPs, in terms of their
Fourier decomposition parameters. To provide a feeling of how
reliable our non-linear code is in predicting the Fourier parameters,
and to provide a background for discussing the parameters of BEPs,

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/428/4/3034/996581 by U
N

IVER
SITA' D

EG
LI STU

D
I D

I R
O

M
A LA SAPIEN

ZA user on 30 January 2019



3044 R. Smolec et al.

Figure 13. Fourier decomposition parameters for the I-band light curves of non-linear models of BEPs. Left-hand panel: models of different masses, 0.20,
0.26 and 0.30 M�, along five horizontal stripes with different luminosity (20–40 L�, different symbols). Right-hand panel: models of 0.26 M� and different
luminosity and adopting different values of convective parameters (sets S1, S2 and S3). Diamond indicates the position of the BEP. For comparison, data for
classical RR Lyrae stars from the Galactic bulge from the OGLE catalogue are plotted (grey dots for RRab stars, magenta dots for RRc stars, each third plotted;
Soszyński et al. 2011). Sine convention is used for Fourier phases.

we have conducted a model survey for classical RR Lyrae stars,
briefly mentioned in Section 2, results of which were presented in
Fig. 2. These models adopt the convective parameters of set S1,
but results for other sets of convective parameters are very similar.
Amplitude and R21 amplitude ratio are modelled satisfactorily, a
somewhat too low values of R31 are predicted. Fourier phases agree
well with the observations, indicating that majority of RR Lyrae
stars have absolute luminosity around 50 L�.

Fourier parameters from similar survey of BEP models are plotted
in Figs 13 (I-band light curves) and 14 (radial velocity curves) for
all considered model sequences. Left-hand panels in these figures
illustrate the effects of different mass of the models (with convective
parameters of the models fixed to that of set S1), while right-hand
panels illustrate the effects of using different convective parameters

in the modelling (sets S1, S2 and S3) while mass of the models is
fixed to 0.26 M�. For each case, five model sequences with dif-
ferent absolute luminosities were computed. Successive models in
each sequence were computed with a step of 100 K in effective
temperature. The first, shortest period model in each sequence is
the hottest model located at the direct proximity of the blue edge
of the instability strip. It is clear that, with increasing luminosity,
model sequences shift towards longer periods. In all the figures,
we also mark the location of the BEP (diamond) and for the I-
band light curves we also plot the location of RRab and RRc (first
overtone pulsators) stars from the Galactic bulge for a reference.
Such comparison is not possible in the case of radial velocity pa-
rameters. Only for a few RR Lyrae stars, coverage of radial veloc-
ity curves is good enough to allow determination of their Fourier
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Models for binary evolution pulsators 3045

Figure 14. Fourier decomposition parameters for the radial velocity curves of non-linear models of BEPs. Left-hand panel: models of different masses,
0.20, 0.26 and 0.30 M�, along five stripes of different luminosity (20–40 L�). Right-hand panel: models of 0.26 M� and different luminosity and adopting
different values of convective parameters (sets S1, S2 and S3). Diamond indicates the position of the BEP. Sine convention is used for Fourier phases.

parameters. Consequently, a meaningful comparison is not possible
at the moment.

We first discuss the Fourier parameters for the I-band light curves
displayed in Fig. 13. As discussed before, we expect that the 2:1
resonance will have a significant effect in shaping the light curves.
We first note that progressions of Fourier parameters with pulsation
period are very similar for different model sequences displayed in
the figure. For example, the R21 progressions have a wavy shape with
local minima in the middle and at the edges of the progression. R21

drops for the shortest and the longest period as a result of amplitude
decrease at the edges of the instability strip. The decrease of R21

in the middle of the progression is a resonant effect (see Fig. 10).
As resonance centre falls at different periods for different model
sequences, the minimum of R21 also shifts in period. For example,
for models with M = 0.20 M� the resonance centre is located at
P0 ≈ 0.6 d for 20 L� and at P0 ≈ 1 d for 40 L� (top panel in Fig. 9).

The predicted peak-to-peak amplitudes of BEPs are below
0.6 mag in the I band, which is smaller than the typical amplitudes
of RRab stars with periods shorter than ≈0.55 d. In this period
range also the predicted amplitude ratios are smaller than in RRab
stars. We note, however, that the predictions for amplitudes and
amplitude ratios should be treated with caution. Amplitudes and
consequently amplitude ratios strongly depend on the convective
parameters adopted in the model, which is well visible if one com-
pares the results for the models of sets S1 and S3 in the right-hand
panel of Fig. 13. The lower the eddy viscosity (set S3), the higher
the amplitudes and amplitude ratios become. Convective parame-
ters should be calibrated to match the observational constraints, in
particular the amplitude–period relation for a given group of pul-
sators. With only one BEP known at the moment, the calibration
is necessarily very rough. Fortunately, the Fourier phases do not
depend strongly on the pulsation amplitude, which is clear from the
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analysis of the bottom-right panels of Figs 13 and 14. The Fourier
phases depend only weakly on the adopted convective parameters
as well. Thus, the Fourier phases are the best and most reliable
predictions of our modelling.

The progressions for the Fourier phases (bottom panels of Fig. 13)
are very interesting. Note that for ϕ31 the model sequences were
plotted twice, shifted by 2π. The 2π ambiguity in the values of the
Fourier phases should be kept in mind while analysing the figures.
We note that ϕ21 progressions strongly depend on the mass and
on the absolute luminosity adopted in the models. Thus, ϕ21 may
provide useful constraints on the physical parameters of BEPs dis-
covered in the future. Although for the majority of our models ϕ21

significantly differs from the RRab progression, values typical for
RRab stars are also possible, particularly for models located on the
hot side of the instability strip. Consequently, ϕ21 is not the best
indicator of BEP. It is the ϕ31 Fourier phase that may be used to
distinguish BEPs from RR Lyrae stars. Clearly, the values of ϕ31

predicted for BEPs differ significantly from the values typical for
RR Lyrae stars. Only very close to the blue edge of the instabil-
ity strip (and this is the case for the BEP) the values of ϕ31 are
similar for the two groups. Through the majority of the instability
strip ϕ31 is larger in the BEPs models. For cooler models, the ϕ31

value increases. In the middle of the instability strip, the difference
between ϕ31 as predicted for BEPs and the RRab progression is
around π rad. For lower masses, the difference becomes smaller,
but even for 0.2 M� models the difference is about 2 rad.

We also note that at shorter periods BEP models are also different
from RRc stars. The predicted amplitudes are larger than those of
RRc stars, and the same is true for the R21 ratio. The modelled
Fourier phases, both ϕ21 and ϕ31, fall in between the RRab and RRc
progressions. The phases are larger than in RRab stars, but smaller
than in RRc stars.

In the case of the radial velocity curves, the Fourier parameters
displayed in Fig. 14 should be treated as predictions, to be compared
with future observations of BEPs. It is hard to pinpoint the expected
differences between the Fourier parameters for BEPs and those
for RRab stars, as radial velocity observations of RRab stars are
currently very scarce. The ϕ21 values seem to be the most interesting
ones for radial velocity curves. They depend only slightly on the
adopted convective parameters. The bell shape is a result of the
bump progression, and this is the most important difference between
BEPs and RRab stars. No bump progression is expected in the latter
case. The presence of a bump on a radial velocity curve is thus a good
indicator for a BEP. The situation is more difficult in the case of the
light curves, as additional features (bumps, shoulders) which may
result, for example, from the shock propagating in the atmosphere
(e.g. Bono & Stellingwerf 1994) are commonly present in RRab
stars. We also note that the ϕ21 values for the radial velocity curves
might be used as an indicator of mass and absolute luminosity.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

In Section 3, we have conducted a model survey to reproduce the
observed properties of the BEP. Our best model adopts the convec-
tive parameters of set S3 and a chemical composition typical for
Population I stars, i.e. X = 0.70 and Z = 0.01. The model is located
at the blue edge of the instability strip, its absolute luminosity is
33 L� and effective temperature is Teff ≈ 6970 K. The model light
curve fits the observed light variation very well. Good agreement
was also obtained for the radial velocity curve (Fig. 8). We have
reproduced the bump on the ascending branch of the radial velocity

curve of the BEP, and traced its origin to the 2:1 resonance between
the fundamental mode and the second overtone, P2/P0 = 0.5.

The models with a chemical composition typical for Population II
stars (X = 0.76) also reproduce the observations of the BEP well
and have nearly the same luminosity and effective temperature. We
note that although the mass of the BEP is very low and its pulsation
resembles that of an RR Lyrae star, the BEP is the product of mass
transfer in the binary system. 5.4 Gyr ago the progenitor of the BEP
was a 1.4 M� star, as models of Pietrzyński et al. (2012) indicate,
and thus the chemical composition typical for Population I stars is
very likely the correct one.

We also considered models with other values of convective pa-
rameters. The resulting properties of the best matching models for
the BEP are then very similar to those quoted above (see Table 3)
and therefore depend only slightly on the detailed treatment of con-
vection in the model.

We note that the phase lag between the radial velocity curve and
the light curve is systematically smaller in our models than that
observed in the BEP. More computations are needed to find out
how this discrepancy might be removed. The current models indi-
cate that a slight helium enrichment might be needed. Also, effects
of turbulent convection, not considered in this study (e.g. turbu-
lent pressure, overshooting), need to be checked. A more detailed
modelling of the BEP is planned in the near future.

The effective temperature of the BEP estimated by Pietrzyński
et al. (2012) is ≈350 K larger (Teff = 7320 ± 160 K) than in our
best matching model. Consequently, also the absolute luminosity is
higher (L = 46.2 ± 9.3 L�). The estimates of effective temperature
and absolute luminosity of the BEP not only differ from our results,
but are also in conflict with stellar pulsation theory. They place the
BEP outside the instability strip, as the analysis of Fig. 3 clearly
indicates. This conclusion is independent of the convective param-
eters and chemical composition adopted in the model calculations.

The estimate of the effective temperature of the BEP by
Pietrzyński et al. (2012) was based on the assumed T2 = 5000 K
effective temperature of the secondary component. It is a typical
temperature for a 1.67 M� giant, but it is not an actual measure-
ment. Then, the effective temperature of the pulsating component
of the binary was calculated using a temperature ratio (T1/T2 =
1.464 ± 0.010) obtained from the analysis of the light curve of the
binary. To check how the assumption on T2 affects the results, we
have redone the analysis of Pietrzyński et al. (2012) but adopting
lower values of T2. It turned out that a decrease of T2 by 100 K
leads to a decrease of T1 by ≈240 K. Thus, only a slight decrease of
the effective temperature of the secondary component, by ≈150 K,
brings the effective temperature of the BEP into agreement with the
effective temperature resulting from our best models. The absolute
luminosity is still somewhat too high (L ≈ 38 L�) as compared to
our models, which is caused by slightly different estimates of the
radius.

The radius of the BEP estimated by Pietrzyński et al. (2012) is R =
4.24 ± 0.24 R� and, as we checked, is independent on the assumed
value of T2. The values inferred from our models (see Fig. 3 and
Table 3) are lower by up to 1.5σ (1.5σ for models with Z = 0.01
and 1.2σ for models with Z = 0.001). Multicolour photometry of
the binary system may help us to determine the radius of the BEP
more accurately and this way tell us how severe the discrepancy is.

We have conducted a large non-linear model survey for the new
class of variable stars. The aim was to provide the criteria to dis-
tinguish BEPs from classical RR Lyrae pulsators. The resonant
bump progression caused by the 2:1 resonance between the funda-
mental mode and the second overtone is the main factor expected to
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determine the shapes of the light and radial velocity curves of BEPs.
This is not the case for classical RR Lyrae stars. In the latter case, the
2:1 resonance falls close to the red edge of the instability strip and
hence no bump progression is observed in classical RR Lyrae stars.
Thus, the presence of a bump may indicate the binary evolution of
the RR Lyrae impostor. We note that the location of the bump on
the radial velocity curve is a measure of the P2/P0 ratio, which pro-
vides an excellent constraint on the stellar models. In the case of the
light curves, one may expect pronounced bumps on the ascending
branch, and long and flat or long and double-peaked phases of high
brightness (Fig. 11). In some of our models with the lowest M/L
ratio, we find a period-doubling effect (Fig. 12).

The other excellent discriminant of the new class of pulsating
stars is the value of the ϕ31 Fourier phase for the I-band light curve.
Except the models located extremely close to the blue edge of the
instability strip, the expected values of ϕ31 differ significantly from
the typical values for RRab stars. The values of ϕ21, on the other
hand, might be useful indicators of stellar mass and absolute lumi-
nosity. We also note that BEPs are expected to change (decrease)
their periods very fast (Pietrzyński et al. 2012).

Our models clearly indicate that the BEP, with its light and radial
velocity curves strongly mimicking the typical RR Lyrae curves,
might be a rare case. For the majority of BEPs, significant departures
from the observational properties of RR Lyrae stars are expected.
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Buchler J. R., Kolláth Z., 2001, ApJ, 555, 961
Buchler J. R., Moskalik P., Kovács G., 1990, ApJ, 351, 617
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