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Abstract: Industrial energy management is an important topic of discussion nowadays for both economic and 
sustainability reasons.  A monitoring and control system able to guarantee the practice of a real-time control is a key 
point in enacting an effective management of energy consumption in a complex organization. In this context, the 
ISO 50000 family of standards suggest the application of different types of energy performance indicators (EnPIs), 
in a range of varying complexity: from simple absolute values of energy consumption, to statistical models, to 
engineering models. The evolution of machine learning techniques falls between the statistical and the engineering 
models, depending on the volume of data and the human involvement required for building a model. Therefore, the 
value of the present work is to explore the use of these tools, already consolidated in other fields, but not yet 
adequately assessed for energy performance control. In particular, the generation and distribution of compressed air 
is among the biggest uses of energy in production plants. This work starts with the application of the classical 
statistical approach and then proceeds to compare two different machine learning techniques, artificial neural 
networks and support vector machines, for the creation of energy performance indicators. The analysis begins 
comparing the feasibility of application, implementation complexity, data and level of human interaction required, 
making use of the results of a real application to a compressed air generation unit in a production plant. The 
comparison was then carried out using various performance indicators (R-squared, Mean Squared Error, Mean 
Absolute Percentage Error) as well as a graphical inspection of the resulting control charts produced with the 
different models. The work demonstrates the applicability of machine learning techniques in this specific context, 
proving them as an efficient compromise between the complexity and accuracy of statistical and engineering models. 

 

Keywords: Machine Learning, Compressed Air Generation Unit, Energy Management, Artificial Neural 
Networks, Support Vector Machines 

1. Introduction 

In the wake of the outbreak of the energy crisis of 1973 
and the consequent sudden and drastic increase in the 
price of energy (Geller et al., 2006; Di Silvio et al., 2007), 
public opinion was struck by the awareness that its energy 
resources may not be able to sustain the pace of increasing 
human consumption. On this occasion, the countries 
affected by the embargo resorted to two different 
strategies: the search for new energy sources and the 
development and implementation of energy saving 
policies. 

In time, attention to climate change and more generally to 
the sustainability of human development has only 
strengthened the importance of the issue. Thus, legislators 
decided to act on several levels, establishing international 
agreements as well as national laws and specific sectorial 
standards. Since the industry sector is considered a major 
energy consumer and consequently producer of 
greenhouse gas (GHG) emissions (Edelenbosch et al., 
2017), the necessity to intervene in this sector to change 
the current situation is clear.  

In the recent market report “Energy Efficiency 2O17” the 
International Energy Agency (IEA) reported an 
improvement of energy efficiency in the industrial sector 
with the energy use per unit of economic output in the 
industrial sector falling by nearly 20% between 2000 and 
2016. Moreover, the report states that “The application of 
energy management systems, which provide a structure to 
monitor energy consumption and identify opportunities to 
improve efficiency, is growing, driven by policy and 
financial incentives. The number of certifications for ISO 
50001 (…) grew to nearly 12000 in 2015, 85% of which 
were in Europe.” Indeed, the aim of an energy 
management system is to establish an energy policy and 
energy objectives and implement processes and 
procedures to achieve those objectives (ISO 50001:2011). 

The main goal of energy management is to ensure the 
most efficient provision of energy to all users, at the 
lowest cost possible and without negative effects on the 
other aspects of the organization (production quality and 
environmental sustainability among the most important) 
(Petrecca, 2014). According to Turner and Doty (2004), 
energy management can be an effective tool in order to 
guarantee the economic competitiveness of an 
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organization in the global marketplace, fostering the 
reduction of industrial energy intensiveness while 
upholding customer service’s needs for quality and 
delivery times.  

A monitoring and control system able to guarantee the 
practice of a real-time control is of great importance in 
enacting an effective management of energy consumption 
in a complex organization. 

Furthermore, a key factor in achieving a continuous 
improvement of the energy performances of the 
organization is the implementation of energy performance 
indicators (EnPIs) (ISO 50006:2014; Benedetti et al., 
2017a). 

On a different note, the rapid innovations regarding 
sensor technology, wireless transmission, network 
communication and cloud computing are producing an 
exponential growth in the volume and complexity of data 
acquired (Zhou et al., 2016). The diffusion of connected 
devices is growing, enhancing monitoring of production 
processes.  This innovation generates several 
opportunities in the monitoring of energy consumption, 
providing a better insight on the real energy behaviour of 
the systems monitored (Shrouf and Miragliotta, 2015). 

Among the primary challenges deriving from the use of 
energy data there are the issues of how to efficiently 
analyse and mine the data, how to use them in the 
decision-making process and how to obtain values from 
the data. In this context, many data analysis techniques 
can be applied from clustering to optimization in order to 
gain specific information from the data (Zhou et al., 
2016). 

When focusing on industrial energy efficiency, one aspect 
of great interest is the energy performance of the 
compressed air generation system. In fact, compressed air 
is widely used in industry as demonstrated by the number 
of companies that use compressed air in their operations 
(approximately 70%)(Morvay, 2008) and  by the great 
availability of related services (Benedetti et al., 2015). The 
energy consumption resulting its generation represents 
approximately 10% of the plant electricity consumption 
(Morvay, 2008). Results from analyses conducted on a 
data collection acquired from the mandatory energy audits 
conducted in Italy in accordance with the European 
Directive 2012/27/EU seem to further confirm this fact. 
Compressed air systems (CAS) appear to be a significant 
energy use in most industries, with variable ranges from 
4% to 12%, with a mean value across different industries 
of 7% and national industry consumption of 5% 
considering all analysed industries (Benedetti et al., 
2017b). Moreover, the cost of a compressor over a ten-
year life consists for the 73% of energy cost, while the 
maintenance cost is approximately 7% and capital cost 
and installation together are 20%. Finally, only the 8-10% 
of the total energy supplied to a compressor is converted 
into usable energy at the point of use (Carbon Trust, 
2012).  

The cost of generation of compressed air is influenced by 
the efficiency of singles compressors and by different 

factors (Morvay, 2008): operational procedures, 
compressor configuration, individual compressor control 
system, number of compressors used to meet the demand, 
overall control system, location of compressor room, 
temperature of the inlet air, quality of the cooling systems, 
and quality of maintenance. 

Indeed, many are the factors that should be taken into 
account when monitoring the performance of compressed 
air systems because their variable characteristics can make 
the monitoring of reliable key performance indicators very 
difficult (Salvatori et al., 2018). 

However, as already stated, the definition of clear and 
effective energy performance indicators is a key point in 
the process of performance control of energy systems. 

In literature, the range and complexity of possible 
indicators is huge. In particular, with the purpose of 
providing guidance and clarification in the difficult 
process of establishing energy performance indicators 
(EnPIs) to measure energy performance and energy 
performance changes, the International Organization for 
Standardization (ISO) has published another specific 
standard, ISO 50006:2014. In this standard there are 
proposed four types of different EnPIs, presented in 
increasing degree of complexity: measured energy value, 
ratio of measured values, statistical model or engineering 
model. 

The first two types of EnPIs are simple and widely 
diffused. Their drawback is that they do not take into 
account the influence of different conditions and variables 
that can impact the energy consumption. Instead, the 
other two types of EnPIs are more complex and take into 
consideration changes in relevant variables and their 
interactions. Various statistical models use historical data 
to individuate the relation between energy consumption 
and its drivers with different complexity (Cesarotti et al., 
2009): from simple univariate linear regression to 
quadratic or cubic regressions. Engineering models use 
physical and thermodynamic functions to exactly derive 
the value of the theoretical energy consumption. They can 
be divided into simplified and elaborate models according 
to the number of equations and variables considered in 
the model (Magoulès, and Zhao, 2016). However, the 
energy performance of a system can be also modelled with 
other more advanced techniques. In fact, many different 
artificial intelligence techniques, such as artificial neural 
networks, decision trees and support vectors machines, 
could be used for creating different energy performance 
indicators (Benedetti et al., 2016; Magoulès, and Zhao, 
2016).  

Figure 1 shows all the possible types of EnPIs, 
highlighting the ones cited in the ISO 50006:2014. 

The evolution of machine learning techniques falls 
between the statistical and the engineering models, 
depending on the volume of data and the human 
involvement required for building a model.  

This work describes the application of the classical 
statistical approach and then proceeds to compare two 
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different machine learning techniques, artificial neural 
networks and support vector machines, for the creation of 
energy performance indicators. Therefore, the value of the 
present work is to explore the use of these tools, already 
consolidated in other fields, but not yet adequately 
assessed for energy performance control.  

 
Figure 1: types of different EnPIs 

Moreover, to the best of our knowledge we believe that 
this is the first paper that focus directly to the use of these 
three specific techniques in the specific domain of energy 
consumption control of a compressed air generation 
system. 

2. Methodology 

With the aim of highlighting the differences and the 
similarities in the use of the three techniques, building on 
the characteristics recognised by Magoulès, and Zhao 
(2016), five categories of drivers have been identified: 
model complexity, data requirements, accuracy, control 
issues, hardware and software requirements. 

Figure 2 shows the five drivers identified and their sub-
categories of comparison. 

2.1 Model complexity 

This first category is related to the capabilities for the 
human resources to have to effectively create the model 
and use it in time. 

First of all, machine learning models are usually described 
as “black-box” models (Benedetti et al., 2016) while the 
statistical models are called “white-box”. The reason 
behind this different description is that in contrast to a 
statistical model, whose equation can be explicitly known, 
for machine learning models it is not possible to know 
what relation has been learned by the algorithm during the 
training (Model comprehensibility).  

Moreover, machine learning techniques require a different 
body of knowledge than the one used to create the 
statistical models both for the development of the model 

itself and for its maintenance in time (Knowledge 
required). 

 
Figure 2: drivers for the comparison of the different types of 

models presented 
Another aspect to consider is the feasibility of the 
automation of the model execution. This aspect is 
connected to the realization and execution of the model as 
well as the infrastructure used for the implementation of 
the control (Automation). Since the implementation of 
machine learning models already requires the existence of 
a certain infrastructure, the development of advanced real-
time control procedures could be proved easier. On the 
other hand, the issues always at the basis of machine 
learning, concerning the cleaning and processing 
procedures of input data, complicate the automatization 
of the procedure, which would therefore also involve the 
automation of these steps. 

2.2 Data requirements 

The amount of data necessary to create a machine 
learning model is very huge in comparison to the data 
necessary to the creation of a statistical model. The lack of 
an adequate amount of data will result in a poorly 
generalized model, unable to predict accurately the energy 
consumption expected with different conditions 
(Volume). This will also mean that according to the 
volume and nature of data available (e.g. monthly or 
weekly data for a limited period), certain types of model 
could be impossible to create. 

Furthermore, the choice of the right set of data is of the 
upmost importance. Since in machine learning the relation 
described by the model is not known, it is possible to go 
into overfitting of the model when choosing an 
inadequate data set and thus losing the capacity of 
generalization of the model (Importance of data cleaning 
and data selection).  
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Figure 3: simplified process of creation for the model, from 

data acquisition to model validation 
Lastly, the choice of model inputs is affected by the type 
of model used. First of all, machine learning models can 
be applied to nonlinear problems, whereas a statistical 
linear regression would not work efficiently. This means 
that in machine learning models, in contrast with the 
statistical linear regression one, even variables that do not 
have an approximately linear relation with the output can 
be added.  Besides, with artificial intelligence models it is 
possible to use not only continuous variable but also 
categorical ones (Magoulès and Zhao, 2016).  

However, it is important to remember the aim in the use 
of an energy performance model: the model must take 
into account only non-controllable factors, thus 
highlighting the real inefficiencies in the energy 
performance when compared with the actual energy 
consumption and distinguishing from the differences in 
behaviour that are inherent of the system and therefore 
are not the object of the control system (Model input).  

In Figure 3 it is shown the simplified process required for 
the creation of the model, from data acquisition to model 
validation. 

2.3 Accuracy 

The accuracy of the model represents its capacity of 
correctly predict the energy baseline performance of the 
system when presented with new data. However, it is 
important for the model to not learn the “faulty behaviour 
of the system” otherwise it would become ineffective in 
the detection of behavioural anomalies.  

The comparison is carried out using three performance 
indicators: R-squared, Mean Squared Error, Mean 
Absolute Percentage Error (Accuracy). 

Furthermore, the comparison includes a graphical 
inspection of the resulting residuals control charts 
produced, showing the difference between the actual 
value of energy consumption and the one predicted by the 

model, in order to detect out of range points or non-
random patterns like shifts, trends or mixtures for 
example (Montgomery, 2009).  

Maintaining the same trend and behaviour shows a 
capacity of generalization from the model 
(Generalization).  

2.4 Control issues 

The residuals control charts are made using control limits 
ensued by the different models. The width of the limits 
reflects the sensitivity of the control system: the larger 
they are, more probable is the possibility of not detecting 
an anomaly in the energy performance of the system 
(Sensitivity).  

Since different input variables can be used in the models 
and different relationships can be described it is important 
to analyze the differences in the control charts and the 
anomalies detected by the different models (Differences). 

2.5 Hardware and software requirements  

A smart object, according to Shrouf and Miragliotta 
(2015) is an object which possesses some functionalities 
such as self-diagnosis and location awareness, 
communication with other smart objects and/or with the 
central acquisition system, optional interaction with the 
surrounding environment. It could also possess the 
capability of data processing, i.e. elaboration of the data 
collected. It is obvious that the feasibility of the model will 
be firmly connected to the presence of an adequate 
measurement system (Necessary equipment).  

While the elaboration of a statistical model could be 
usually achieved through a simple software or even by 
mathematical calculation, machine learning models 
requires different kind of infrastructures to enable the 
processing of the models, even more if the architecture 
and desired characteristics are personally designed by the 
user (Software required). 

3. Case study 

The comparative analysis has been applied to the case 
study of a compressed air generation system in an Italian 
manufacturing company. 

The system is composed of four air compressors with 
similar capacity, with one of them equipped with variable-
speed drive. All compressors produce a single compressed 
air flow at a pressure of 8 bar and part of the flow is 
reduced immediately to the pressure of 3 bar.  

Main variables monitored by the monitoring system are: 
low pressure flow rate (3 bar) and medium pressure flow 
rate (8 bar), energy consumption of singles compressors, 
external air temperature and humidity. All data is collected 
with a fifteen minutes time step. The original dataset 
available is from the 1st September 2017 till the 14th  
January 2018. 
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During the data cleaning process and preliminary analysis, 
it was detected a measurement error in the second and 
third weeks of November. Thus, data used for model 
processing excluded the period 15 - 23 November. This 
process is quite critical when working with machine 
learning techniques because differences in the variability 
of the dataset could result in poorly generalized models. 

Furthermore, it was discovered that the humidity sensor 
goes frequently in error, signalling zero instead of the 
actual value. It was so decided to exclude this variable 
because deemed unreliable. 

To take into consideration the variability between the two 
flow rates profiles, a new variable was created: the ratio 
between low pressure flow rate and total flow rate. The 
inputs of the three regression models are global flow rate, 
ratio flow rate and external air temperature. The output of 
all models is the global energy consumption (sum of the 
single values of energy consumption for all the 
compressors). 

Three different typologies of models have been therefore 
realized: artificial neural network, support vector machine 
and statistical linear regression.  

For the artificial neural network was chosen a Multilayer 
Feedforward Perceptron structure with only one hidden 
layer. The selection of the ideal number of neurons was 
made through different experimentations, changing both 
the random sampling selection and the number of 
neurons in the hidden layer (from 1 to 27) to determine 
the structure with the best performance. Before training 
the network, the training data was divided into three 
groups: data used to actually train the network, data used 
for validation, and data used to test the performance, with 
a percentage respectively of 60%, 20% and 20%. 

For the support vector machines model instead, different 
kernel functions were tested, resulting in the selection of a 
linear kernel. 

After having created the three models, the process of 
validation via observation of the residuals control charts 
highlighted anomalies in the behaviour of the system 
examined. The control limits were estimated as multiples 
of the standard deviation of the residuals’ distribution in 
the period, assessed via moving range. Further analysis 
confirmed the occurrence of anomalies in the systems. 
Consequently, new models were created, eliminating the 

two anomalous time periods: 1-10 September 2017 and 8-
11 October 2017.  

The three new models were then applied to a new data 
set: from 15th January to 4th March 2018. 

As an example, in Figure 4 is depicted the application of 
the recalculated statistical linear regression model to the 
complete dataset (1st September 2017 - 4th March 2018). 
It is possible to observe the anomalous periods excluded 
in both training procedures. 

The performance indicators of the resulting models on the 
new training period are shown in Table 1. Overall the 
three models seem to have similar performances, with the 
ANN model showing slightly more precision. Moreover, 
the control limits, were narrower for the machine learning 
models: respectively 3.56 kWh/15min for the ANN, 3.94 
kWh/15min for the SVM and 4.47 kWh/15min for the 
statistical linear regression. 

Table 1: Performance indicators on the training period 

 R2 
MSE 

(kWh/15min)2 MAPE 

Statistical linear regression 0.9698 6.28  66.1% 

Artificial Neural Network 0.9734 5.54 17.7% 

Support Vector Machines 0.9697 6.31 126.7% 

Figure 4: Residuals Control Chart created using the statistical linear regression model – Complete dataset to allow the 
identification of anomalous periods, excluded in the training (1st September 2017 - 4th March 2018) 

 

Figure 5: weekly estimation of the performance indicators 
(R2, MSE, MAPE) in the test period (15 January-4 March) 
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Figure 5 shows the indicators estimated weekly in the test 
period: it appears that except for the week starting the 26th 
February, the ANN model retained a slightly better 
accuracy. Moreover, for a performance comparison, the 
models were tested simultaneously for real-time 
monitoring by assessing the reliability of the reported 
anomalies and the timeliness of their detections. 

Indeed, the control charts in Figure 6 show similar 
profiles but with a different sensitivity. Furthermore, it 
can be observed that anomalies superior to the single 
point are always reported by all three models. 

While the use of machine learning techniques enables the 
modelling of complex non-linear behaviours, probably 
due to the simplicity of the system, in this specific case, 
using only the three variables selected, the application of 
machine learning models does not hugely improve the 
control system performance. Nevertheless, the strength of 
these models is their ability to include a lot more variables, 
even categorical ones, to characterize the system’s 
behaviour more accurately. It is possible, for example, to 
include information about the state of single air 
compressors, by using binary variables. Indeed, the 
inclusion of new variables made the models acquire more 
accuracy (see the new performance indicators in Appendix 
A). However, it is important to point out that the 

inclusion of new variables would change the aim of the 
control system: the new model would be normalized in 
reference to the new variables included. In this context, it 
could be interesting to use both types of models (with and 
without the new variables) to build a control system able 
to detect the probable reason of the anomalous behaviour 
by the comparison between the different residuals’ 
profiles. Thus, the complexity of the model would be 
justified by the different objective of the control system.  

In reference to the hardware and software requirements, 
in this case for the company to continuously enact a real-
time control through machine learning techniques it 
would be necessary to install new equipment as well as 
new software to be able to modify the model in case of 
need. 

4. Conclusions 

In this paper a comparative analysis has been presented to 
investigate the multiple implications of the use of different 
types of modelling techniques in the specific case of a 
compressed air system examined for energy control 
purposes. The case highlighted how the choice of a 
technique is connected to the specific application and its 
context.  

While continuously striving towards the paradigm of 

Figure 6: Residuals Control Chart created using the three models – Test period (15th January - 4th March 2018) 
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Industry 4.0, in fact, organizations are now trying to orient 
themselves and build their own path towards this goal. In 
this context, different new tools are made available 
everyday by the innovations in digitalization and machine 
learning and the resulting versatility of applications 
provides many possibilities of improvement in various 
aspects of industrial plants. According to the result of this 
research, simpler tools, based on statistical regression can 
successfully be implemented for the detection of main 
anomalies in common systems, whereas machine learning 
techniques as artificial neural networks or support vector 
machines can enable the implementation of additional 
functions such as failures analysis or even prescriptive 
maintenance methods. Furthermore, the development of 
sensors can foster low-cost implementations, bringing 
significant benefits to systems in industrial plant not yet 
affected by strategies for preventing inefficiencies and 
failures because deemed economically unfeasible. On the 
other hand, the need to adapt to different data availability 
lends itself to different levels of introduction in industrial 
plants.  

Indeed, the proposed framework can and will be applied 
to further studies to investigate the application of these 
techniques in other contexts (e.g. chillers, boilers, HVACs, 
characterized by more complexity). The choice of tools 
will have to consider data availability, the specific systems’ 
characteristics and measurement systems available. 
Analysing possible implementations by means of these 
categories can help determine easily specific drawbacks 
and advantages could emerge from their use, thus making 
a more conscious choice. 
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Appendix A. Performance indicators with categorical 
variables included in the machine learning models 

Week 
R2 

ANN Stat. linear 
regression SVM 

15-Jan-2018 0.975 0.936 0.972 

22-Jan-2018 0.979 0.945 0.970 

29-Jan-2018 0.979 0.944 0.975 

05-Feb-2018 0.989 0.954 0.981 

12-Feb-2018 0.979 0.933 0.962 

19-Feb-2018 0.984 0.957 0.983 

26-Feb-2018 0.974 0.946 0.963 

 

Week 
MSE (kWh/15min)2 

ANN Stat. linear 
regression SVM 

15-Jan-2018 3.0 7.8 3.4 

22-Jan-2018 2.7 7.0 3.8 

29-Jan-2018 2.5 6.6 2.9 

05-Feb-2018 1.4 5.8 2.4 

12-Feb-2018 2.6 8.2 4.7 

19-Feb-2018 2.5 6.8 2.7 

26-Feb-2018 3.4 7.1 4.9 

 

Week 
MAPE 

ANN Stat. linear 
regression SVM 

15-Jan-2018 9% 23% 59% 

22-Jan-2018 34% 39% 77% 

29-Jan-2018 11% 31% 53% 

05-Feb-2018 9% 40% 76% 

12-Feb-2018 11% 32% 70% 

19-Feb-2018 77% 93% 229% 

26-Feb-2018 13% 33% 71% 
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