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Abstract – We report on a systematic analysis of the frequency spectrum of a system often con-
sidered for quantum computing purposes, metadevice applications, and high-sensitivity sensors,
namely a superconducting loop interrupted by Josephson junctions, the core of an rf-SQUID. We
analyze both the cases in which a single junction closes the superconducting loop and the one in
which the single junction is replaced by a superconducting interferometer. Perturbation analysis
is employed to display the variety of the solutions of the system and the implications of the results
for the present interest in fundamental and applied research are analyzed.

Copyright c© EPLA, 2016

Introduction. – Research on metamaterials and
metadevices is receiving much attention from both funda-
mental science and applications [1,2]. The “functional”
features of devices when these are thought to perform
specific tasks in response to electromagnetic stimuli, are
particularly rich in their required multi-disciplinary un-
derstanding. Excellent reviews covering several aspects
of the developments of this new topic have already ap-
peared [3,4]. Condensed-matter systems which could op-
erate at specific electromagnetic wavelengths performing
particular operations occupy a somewhat privileged role
and, within this framework, superconducting systems have
already been considered by several groups [5,6].

Josephson junction systems, having the ability to pro-
vide active response in a continuum range of wavelengths
in the microwave and millimeter wave range of the elec-
tromagnetic spectrum, have been considered [7] due to the
inherent ac-Josephson relationship, which uniquely relates
frequency (ν) to voltage V , namely hν = 2eV , where h is
Planck’s constant and e the elementary charge. The ratio
h/2e = Φ0 = 2.07 × 10−15 Wb is the flux quantum [8].

A superconducting loop interrupted by a Josephson
junction, the core of the rf-SQUID [8], is a system com-
bining two fundamental phenomena in superconductivity,

(a)Also at: CNR-SPIN Institute - Genova, Italy.

namely flux quantization and Josephson effect; these loops
have been extensively investigated since the discovery
of the Josephson effect [8]. An rf-SQUID core exploits
the Josephson sensitivity to the electromagnetic field
thereby achieving unprecedented magnetic-flux sensitiv-
ities. Today’s rf-SQUID relies just on a superconducting
ring made by planar thin films interrupted by a tunnel
junction, a device which is not beyond the reach of con-
temporary medium-level technological facilities.

The interest for the rf-SQUID core, relevant in macro-
scopic quantum tunneling [9], in quantum computa-
tion [10] and metamaterial research [6], has often required
operation of the system under the application of external
microwaves, or pulsed-microwave bursts, and we believe
that is relevant for tracing a detailed spectrum of proper
modes in the system. Our analysis will be carried out in
two steps: in the next section we trace the properties of
a superconducting loop interrupted by a single Josephson
junction while in the third section we analyze the case in
which the single Josephson junction of the loop is replaced
by a two-junction interferometer. This system was first
investigated by Blackburn and Smith [11] and then taken
as a basis for barrier-modulated Josephson macroscopic
quantum tunneling devices [12,13]. Metadevice applica-
tions based on rf-SQUIDs, and two-dimensional arrays
of rf-SQUIDs cores, have been recently reported [14].

50004-p1



J. A. Blackburn et al.

Fig. 1: (a) The system subject of the present work: a super-
conducting loop closed by a Josephson junction; (b) example of
the potential for different values of the normalized inductance
of the loop but for zero applied external flux; (c) examples of
the potential for an applied external flux ϕx = π/2. It is herein
assumed that the direction of the external magnetic field is al-
ways orthogonal to the plane of the loop. We can see that the
effect of the applied flux is to introduce an asymmetry in the
shape of the potential. The curves for the plotted potential are
obtained from eq. (4).

A systematic analysis of the frequency spectrum can be
relevant within the framework of the selective microwave
filters described in the context of these and of the other
publications mentioned above.

Single-junction case. – We start from the rf-SQUID
(core) equation for the magnetic flux Φ through a su-
perconducting loop interrupted by a Josephson junction
shown in fig. 1(a) [8],

Φ0C

2π
Φ̈+

Φ0

2πR
Φ̇+Ic sin

(

2π
Φ

Φ 0

)

+
Φ0

2πL
(Φ − Φx) = 0. (1)

In this equation C is the total capacitance of the junc-
tion, R a resistance modeling loss due to subgap tunneling,
the quantity Φx represents an externally applied magnetic

flux, and Φ0 is the flux quantum. In what follows we as-
sume that the external magnetic field has a time-constant
direction orthogonal to the plane of the loop. Normaliz-
ing time to (1/ωj) = (2πIc/Φ0C)1/2, the current to the
maximum Josephson current Ic, the flux to Φ0/2π, and
defining the parameters α = 1/

√
βc = (Φ0/2πIcR

2C)1/2,
and βL = 2πLIc/Φ0, the above equation for the flux
through the loop becomes

ϕ̈ + αϕ̇ + sin ϕ +
1

βL
(ϕ − ϕx) = 0, (2)

where ϕ is the phase difference across the junction closing
the loop. The static solutions of eq. (2) in the absence of
applied external flux are determined by the solutions to
the equation

sin ϕ +
ϕ

βL
= 0. (3)

Let us call ϕe an equilibrium angle solution of eqs. (2)
and (3). We note that these angles correspond to the
minima of the rf-SQUID core potential for eq. (2), with the
particle sitting at the bottom of the wells. This potential,
normalized to the Josephson energy Φ0Ic/2π, is

U (ϕ) =
1

2βL
(ϕ − ϕx)

2 − cos ϕ. (4)

Plots of this potential are shown in fig. 1(b), (c). We now
look for solutions of eq. (2) (no loss, α = 0, and no applied
magnetic flux ϕx = 0) of the type

ϕ = ϕe + ψ, with ψ ≪ 1. (5)

It is worth recalling that in typical experiments α ≈
10−4 [10–13] which makes the omission of dissipation in
our considerations a good approximation. Later we will
comment more quantitatively on this assumption, show-
ing that the influence of such small loss terms is really not
relevant for the frequency spectrum. The condition (5),
to the first order in ψ, gives sin ϕ = sin ϕe + ψ cos ϕe, and
transforms eq. (2) to the following equation for ψ:

ψ̈ +

(

cos ϕe +
1

βL

)

ψ +

[(

ϕe

βL

)

+ sinϕe

]

= 0. (6)

The term in the square brackets is eq. (3) and vanishes
since ϕe is a solution of eq. (3), and so eq. (6) becomes

ψ̈ +

(

cos ϕe +
1

βL

)

ψ = 0, (7)

which is the harmonic-oscillator equation for the vari-
able ψ. Defining ξ = (cos ϕe+

1
βL

) this equation has modes

with frequency Ω = ξ1/2 meaning that the “proper” oscil-
lation frequency of the system in unnormalized units is

ω0 = ωjΩ = ωjξ
1/2 = ωj

(

cos ϕe +
1

βL

)1/2

. (8)

This equation shows the effect of βL on the proper oscil-
lation frequencies. Taking the limits βL → ∞ or βL → 0

50004-p2
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Fig. 2: Dependences of the oscillation frequencies, around the
equilibrium angle, on the normalized loop inductance βL for
zero applied external magnetic flux (a) and for a normalized
flux ϕx = π/2 (b).

in eq. (3) we see that the resulting allowed static solu-
tions are, respectively, ϕe = 2kπ, k integer, and ϕe = 0.
The corresponding resonant frequencies are, respectively,
the usual zero-bias Josephson plasma frequency (for all k
integers) and ω0 → ∞.

Figure 2(a) shows the frequency dependence on βL

around the stable equilibrium points. The plot is obtained
for zero applied external magnetic flux and we can see that
multiple frequencies are allowed for increasing βL. This
plot has been obtained by sweeping the value of the nor-
malized flux in the interval [−8π, 8π] while finding numer-
ically the minima of the potential (eq. (4)) for each given
value βL. The mode whose frequency tends to infinity for
βL → 0 is the one of the center well of the potential while
the others are those that develop for increasing values of
βL in the side wells.

Let us now turn to the non-zero applied flux case for
which we apply the same analysis performed for eq. (2).
That approach can be readily be applied to the non-zero
flux case which will lead to the two equations

sin ϕ +
1

βL
(ϕ − ϕex) = 0 (9)

for the equilibrium angles and

(Ωx)2 =

(

cos ϕex +
1

βL

)

(10)

for the system frequencies. Note that Ωx becomes the
previous Ω for the unbiased case, when ϕx = 0. The

unnormalized angular frequency ωx corresponding to each
Ωx value will be

ωx = ωj

√

cos ϕex +
1

βL
. (11)

Although eq. (11) looks formally identical to eq. (8) the
external flux here introduces an asymmetry in the poten-
tial and the minima leading to values of ϕex (eq. (9)) that
are different from those of eq. (3). In fig. 2 we can see
the branching of the curves of fig. 2(b) obtained for an ap-
plied external flux equal to a quarter of the flux quantum
(which is 2π in normalized units). The plots of fig. 2 were
obtained by sweeping values of the phase in the interval
[−8π, 8π]. To each of the frequency branches shown in the
figures naturally corresponds a specific minimum of the
potential.

The spectrum of the possible frequencies as a function
of the externally applied flux can be obtained from eq. (10)
employing the ϕex solutions of eq. (9) which we find nu-
merically. In fig. 3 we see how, in the opposite plots
the βL = 1 singled-value spectrum evolves in a crossing-
branches spectrum for increasing values of βL. For βL = 2
(fig. 2(b)) and βL = 4 the resonance curves only cross
at multiples of half the flux quantum (π in our normal-
ized units) while already for βL = 6 the crossings of the
branches take place for half integer values of the flux quan-
tum. The plots of fig. 3 have been obtained by sweeping
the ϕ values in the range [−4π, 4π]. The resonant branches
represent oscillation frequencies in different wells of the
rf-SQUID potential.

More crossings for increasing values of βL take place
generating complex patterns. An example is given in fig. 4
for βL = 10 (a) and βL = 20 (b). We display here the
results only in the field interval [0, 2π] and, moreover in
fig. 4(b) only a narrow segment of the plot along the ver-
tical direction is presented in order to preserve clarity. At
this point (βL = 20) we see that three crossings take place
at half the flux quantum, meaning, for example, that pos-
sible operation of the device when biased with a dc mag-
netic flux linking half a magnetic flux through the loop
is likely going to be difficult to control in terms of fre-
quency response. In fig. 2(b)–(d) we have only two res-
onant branches close to the ϕx = π point, whereas in
fig. 4(a) and (b) we have, respectively, four and six reso-
nance branches: To these resonant branches naturally one
can associate different classical energy levels correspond-
ing to given values of the external flux.

We would like to emphasize that operation of the
rf-SQUID core has often been considered by biasing the
system with an external flux which would generate half
of the flux quantum in the rf-SQUID core [9,12,13]. In
this case we can see in fig. 3 and fig. 4 that the crossing
of branches corresponding to different frequencies is re-
markable and the resulting dynamics could be noticeably
complex. For βL = 10 we have two frequency crossings
for ϕx = π separated roughly by a (normalized) frequency
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Fig. 3: The frequency spectrum of the rf-SQUID core as a
function of an applied flux for different values of the normalized
inductance βL, indicated in the panels. We can clearly see that,
for increasing values of this parameter, the system develops a
number of crossing states of the resonance curves. All the
crossings occur for integer and half-integer values of the flux
quantum (2π in our normalized units).

gap of 0.2, while for βL = 20 we have three crossings sep-
arated by tenths normalized frequency units. Naturally,
the closer we get to integers and half-integers values of the
flux quantum the smaller is the difference in frequency
(and energy) between the different states corresponding
to different branches. Overall we can say that the system
behaves as a metaatom [6,14] with different energy states
available in correspondence to given values of the applied
field. These frequencies naturally represent oscillation fre-
quencies in the wells of the potential (4).

The effect of dissipation on eq. (4) can be readily eval-
uated using the ansatz (5) for eq. (2). In this case we get

ψ̈ + αψ̇ +

(

cos ϕex +
1

βL

)

ψ = 0, (12)

Fig. 4: Two more examples of (ϕx, Ωx) plots exhibiting the
more complex structures that develop for increasing values of
the normalized inductance of the rf-SQUID loop. In this figure,
as in the others, the phase of the potential is swept in the
interval [−4π, 4π].

which tells us that, in the presence of dissipation, the an-
gular frequency of underdamped oscillations will be

(Ωα)2 = (Ωx)2−α2/4 or Ωα = [(Ωx)2−α2/4]1/2. (13)

From which we see that corrections, given the values of α
·

in the experiments [10–13] typically of the order of 10−4

and below, should not be really significant.

Double-junction rf-SQUID. – We now consider the
two-junctions rf-SQUID system shown in fig. 5(a). Our
starting point for the analysis are eqs. (7) and (8) of
ref. [11]. Normalizing in these equations time and currents
as we did for eq. (1) we obtain the two coupled differential
equations:

ϕ̈a + αϕ̇a + cos ϕb sin ϕa +
1

2βab
(ϕb − ϕx) = 0, (14)

ϕ̈b + αϕ̇b + cos ϕa sin ϕb +
1

2βb
(ϕb − λϕx) = 0. (15)

The subscripts a and b for the normalized fluxes refer to
the large area loop (a) and small area loop (b), and the two
parameters βab = 2πIc (La + Lb)/Φ0 = βa + βb and βb =
2πIcLb/Φ0 are the normalized inductances corresponding,
respectively, to the sum of the areas of the two loops and to
the area of the single smaller loop; βa is the normalized in-
ductance of a loop having area A. The factor ϕx accounts
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Fig. 5: (a) The “double”-loop rf-SQUID system and its
potential (b). The analytical form of the potential is written
in eq. (22). A and B represent the areas of the two supercon-
ductive loops. Here ϕa and ϕb are spanned between −2π and
2π, while the potential is spanned between −3 and 10.

for an external magnetic flux applied uniformly over the
two loops and λ = [1+2(A/B)]−1 = 1/[(2βab

βb

)−1] is a ge-
ometrical factor since A and B are, respectively, the areas
of the big loop and of the small loop in fig. 5(a) [11]. In
terms of the Josephson phase differences shown in fig. 1(b)
ϕ1 and ϕ2 we have ϕ1 = ϕa + ϕb and ϕ2 = ϕa − ϕb.

We look, similarly to what we did in the previous sec-
tion, for solutions of eqs. (14) and (15) in the forms

ϕa = ϕea + ψa with ψa ≪ 1, (16)

ϕb = ϕeb + ψb with ψb ≪ 1. (17)

In these equations ϕea and ϕeb are the equilibrium angles
corresponding to solutions of (14) and (15) in the static
limit. We are interested again in solutions of eqs. (14)
and (15) in the form of small oscillations around equilib-
rium angles ϕea and ϕeb. Inserting eqs. (15) and (16) into
eqs. (13) and (14), and using the small amplitudes oscil-
lation limits sinϕa = sin(ϕea + ψa) = sin ϕea + ψa cos ϕea

and sinϕb = sin(ϕeb+ψb) = sin ϕeb+ψb cos ϕeb, we obtain
the two coupled equations

ψ̈a + αψ̇a +

(

cos ϕb cos ϕea +
1

2βab

)

ψa = 0, (18)

ψ̈b + αψ̇b +

(

cos ϕeb cos ϕa +
1

2βb

)

ψb = 0. (19)

Fig. 6: The two frequency bands obtained when the inner loop
area B is ten times smaller than the area A. In order to cal-
culate the minima of the potential the phases ϕa and ϕb are
swept in the interval [−4π, 4π].

The two equations above are coupled damped harmonic-
oscillator equations. Neglecting the loss term (an assump-
tion which can be justified just as we did above for
the single-junction case) the proper frequencies associated
with eqs. (18) and (19) are

ωa =

√

cos ϕb cos ϕea +
1

2βab

(20)

and

ωb =

√

cos ϕeb cos ϕa +
1

2βb

. (21)

When looking for stable equilibrium points of the coupled
system (14), (15) and (18), (19), both the conditions for
the equilibrium on the two phases must be fulfilled and,
therefore, in eqs. (20) and (21) the cross-cosine terms
just become cos ϕeb cos ϕea in both equations. It is worth
noting that the static solutions of the system of equa-
tions (1), (2) also correspond to the minima of the po-
tential of our physical system. This potential, normalized
to the Josephson energy Φ0Ic/2π, reads

U =
(ϕx − ϕa)

2

4βab
+

(λϕx − ϕb)
2

4βb
− cos ϕa cos ϕb. (22)

This two-dimensional potential is plotted in fig. 5(b) for
two βab = 6 and βb = 3. Note that this corresponds to the
case in which the areas A and B of the two loops are equal:
This is not a condition that we will further investigate (we
will work in the approximation βab ≫ βb) but we have
chosen these parameters in order to illustrate the nature
of the potential and its characteristic features. It can be
readily seen that setting to zero the first derivatives of
the potential (22) corresponds to the static solutions of
eqs. (14) and (15). We are here interested in investigating
the frequency spectrum dependence of our system upon
the externally applied magnetic flux ϕx. In order to do so
we will first find, numerically, the minima of the potential
function (22). These minima will provide the values of
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Fig. 7: (a) The frequency “spectrum” of the double squid as
a function of the externally applied flux when A = 20B. The
expansion of the two frequency bands is shown in (b) and (c).
Here we can see the analogous shapes of the bands.

the phase to be substituted in eq. (20) and eq. (21) for
determining the values of the frequencies.

In order to find the minima of the potential (22) we
swept both the phases ϕa and ϕb in the interval [−4π, 4π]
and the externally applied flux between 0 and 2π. Setting
βab = 5 and choosing a very small value for the param-
eter βb (10−5) we found, as expected, since the presence
of the second loop is negligible, a “flux spectrum” iden-
tical to that of a single-junction rf-SQUID core having a
value of the normalized inductance βL = 10 (see fig. 4(a)).
This is correct since the critical current of our system is
twice that of a single-junction rf-SQUID. We have then
changed the values of the normalized inductances of the
two loops trying to maintain our calculations close to real-
istic experimental parameters [12,13]. In fig. 6 we see the
“flux spectrum” obtained for βab = 5 and βb = 0.45 cor-
responding to having the area (B) of the smaller loop in
fig. 5(a) ten times smaller than the area (A) of the larger
loop. We can here see that there are now two bands of fre-
quencies and the maximum of the upper band is 1.44 as
expected from eq. (21). The upper band is just a replica,
at higher frequencies, of the pattern exhibited for lower
frequencies. In fig. 7(a) we show the spectrum obtained
by setting βab = 5 and βb = 0.238, corresponding to the

Fig. 8: An example of the somewhat irregular “branches”
appearing in an optical band when the normalized inductance
of the inner loop gets close to 1. In this case A = 5B.

case in which the area B is 20 times smaller than A. We
can clearly see that the “optical” mode moves up while
the “acoustic” mode remains in the same position as in
fig. 6(b). In fig. 7(b), (c) we show details of the frequency
bands demonstrating that, apart from occupying a more
compressed frequency interval, the two “bands” have anal-
ogous shape and branch crossing.

We have found the patterns of figs. 6 and 7 to be very
controllable features of the spectrum of the two-junctions
rf-SQUID system. This is naturally a very interesting phe-
nomenon to consider in perspective of metadevice appli-
cations. Beside the tuning of the modes of the systems as
a function of the external flux we find that an adequate
choice of the ratios between the areas of the loops gen-
erates an additional (higher) band of frequency in which
the system can operate. However, we have also found that
attention must be paid to not letting the normalized in-
ductance of the inner loop be close to 1. In this case we
reach the point in which the single junctions of the loop
could generate crossings of the modes and the resulting
features become very irregular and, most likely, very diffi-
cult to control. An example of this phenomenon is shown
in fig. 8 for which we have chosen βab = 5 and βb = 0.83:
we can see that an additional, somewhat irregular, branch
appears in the frequency-vs.-flux pattern of the “optical”
modes. The “acoustic” modes in this case showed the
same type of pattern at lower frequencies.

We point out that several experiments have been per-
formed independently controlling the fluxes applied to the
two loops of the “double SQUID” [12,13]. Having the
possibility to tune independently the fluxes means that
one could perform a selection between the “acoustic” and
“optical” band of operation.

Conclusions. – The analysis, performed in a per-
turbation approach for finding the oscillation modes of
rf-SQUID cores around the equilibrium angle, has shown,
a variety of configurations and crossings of the branches
of the different modes. The crossings of the branches oc-
cur when the external magnetic flux attains half and in-
teger multiple values of the flux quantum. Close to these
values of the external flux the response of the system to
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an external microwave/millimeter-wave excitation could
have intriguing aspects; it is worth noting that this specific
magnetic-flux bias has been often chosen for macroscopic
quantum tunneling and coherence investigations [9,12].
The analysis of the case in which the junction closing the
rf-SQUID loop is replaced by a double-junction interfer-
ometer has shown additional features of the system cor-
responding to a splitting of the response of the modes of
the system in a lower (“acoustic”) and a higher (“optical”)
frequency band. The degeneracy can be governed by ad-
equately choosing the areas (and the inductances) of the
two loops of the device. Potential applications such as
those described in ref. [14] or the wide spectrum described
within metamaterial research [6] open interesting perpec-
tives for the future of a system which has already sub-
stantially contributed to the development of the research
in fundamental and applied superconductivity.

As far as microwave and millimeter-wave fields reaching
the rf-SQUID region are concerned, one can reasonably
assume that the radiation fields will be distributed uni-
formly in the loop areas and in the junctions; however,
we should bear in mind that the magnetic fields in the
two loops of the double-loop rf-SQUID can be controlled
independently [12,13]. This means that the two modes,
the acoustic mode and the optical one, can be tuned inde-
pendently and this represents another interesting direction
for future devices. From the “rf” point of view, however,
the relevant feature of the system having two frequency
bands remains unchanged. High-frequency features of the
Josephson junctions have demonstrated, over the years,
that this field is very rich and intriguing and there still
are features which have not been explained [15]. We have
herein provided evidence, through a systematic analysis,
that a basic superconducting system could lead to further
experimental rf work and devices.

Throughout the paper we have normalized time to
the inverse of zero-bias Josephson plasma angular fre-
quency ωj . This is a very well-known parameter in
Josephson research and, for current densities in the
range (100–1 kA) A/cm2 it attains values in the interval
(0.4–1.3)×1012 rad/s meaning that the frequencies will be
roughly in the range 60–200GHz. Here we have considered
a standard trilayer Nb-NbAlOx-Nb fabrication process for
which the specific capacitance of the junctions is of the or-
der of 0.05F/m2 [15]. From these estimates it follows that
we investigated issues in a range of the electromagnetic
spectrum which is still of noticeable interest for applica-
tions. An “optical” mode of the double rf-SQUID that we
analyzed could have proper frequencies around 300GHz.
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