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Abnormal activation of human endogenous retroviruses (HERVs) has been associated
with several diseases such as cancer, autoimmunity, and neurological disorders. In
particular, in cancer HERV activity and expression have been specifically associated with
tumor aggressiveness and patient outcomes. Cancer cell aggressiveness is intimately
linked to the acquisition of peculiar plasticity and heterogeneity based on cell stemness
features, as well as on the crosstalk between cancer cells and the microenvironment.
The latter is a driving factor in the acquisition of aggressive phenotypes, associated with
metastasis and resistance to conventional cancer therapies. Remarkably, in different cell
types and stages of development, HERV expression is mainly regulated by epigenetic
mechanisms and is subjected to a very precise temporal and spatial regulation
according to the surrounding microenvironment. Focusing on our research experience
with HERV-K involvement in the aggressiveness and plasticity of melanoma cells, this
perspective aims to highlight the role of HERV-K in the crosstalk between cancer cells
and the tumor microenvironment. The implications for a combination therapy targeted
at HERVs with standard approaches are discussed.

Keywords: endogenous retroviruses, cancer plasticity, cancer therapy, cancer biomarker, combination therapy,
reprogramming, stemness, tumor microenvironment

Abbreviations: CAR-T, chimeric antigen receptor T cells; Clone6, highly proliferating melanoma cell line; CSCs, cancer stem
cells; FBS, fetal bovine serum; Grapes, non-adherent dark cellular aggregates; HDACi, histone deacetylate inhibitors; HERVs,
human endogenous retroviruses; hESCs, human embryonic stem cells; HML, human endogenous MMTV-like; IFITM1,
interferon induced transmembrane protein 1; iPSCs, induced pluripotent stem cells; LTRs, long terminal repeats; Melan
A/MART-1, protein melanoma-A/melanoma antigen recognized by T cells 1; MHC-I, major histocompatibility complex;
NANOG, DNA binding homeobox transcription factor; NNRTIs, non-nucleoside reverse-transcriptase inhibitors; OCT4,
octamer-binding transcription factor 4; ORFs, open reading frames; RPMI, standard medium; SOX2, transcription factor,
Sex determining region Y-box 2; TVM-A12, human melanoma cell line; X-VIVO, serum free medium.
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INTRODUCTION

Human endogenous retroviruses are replication-defective
proviruses comprising a portion of human genome (∼8%).
HERVs are recognized as having a role in health maintenance
(Vargas et al., 2009) and complex diseases (Suntsova et al., 2015;
Meyer et al., 2017; Grandi and Tramontano, 2018) acting by
remodeling structure and function of DNA. Although most of
the HERV sequences have been inactivated over time, some of
them remain active and, with LTRs, retain the genes encoding
the structure, replication, and accessory proteins of retroviruses
(Wildschutte et al., 2016). LTRs contain regulatory sequences
and their activity essentially depends on the chromatin and
CpG island methylation of their regulatory regions (Katoh and
Kurata, 2013). In different cell types and stages of development,
HERV expression is mainly regulated by epigenetic mechanisms
and is subjected to regulation according to the surrounding
microenvironment (Hurst and Magiorkinis, 2017). Numerous
endogenous/exogenous factors lead to the activation of HERVs,
including hormones (Buslei et al., 2015), cytokines (Manghera
et al., 2016), cytotoxic chemicals/drugs (Diem et al., 2012;
Mercorio et al., 2017), radiation (Schanab et al., 2011), vitamins
(Liu et al., 2016), and interactions with microorganisms (Balada
et al., 2009; Toufaily et al., 2011; Gonzalez-Hernandez et al.,
2012).

In the last few decades, many studies have highlighted the
involvement of HERVs in complex diseases, such as cancer,
autoimmunity and neurological disorders (Young et al., 2013;
Meyer et al., 2017). Although the research activity focused on the
“omics” characterization of tumor from the primary site to the
metastasis, the molecules that act as intermediaries between the
epigenetic effect mediated by the microenvironment and cell fate
haven’t been completely identified.

The ability of tumors to adapt to microenvironmental changes
is embedded in their plasticity. Moreover, on the basis of the
genetic predisposition, both differentiated and stem cells are
driven toward transformation by the epigenetic pressure of the
tumor niche and the microenvironmental changes (van den Hurk
et al., 2012; Taddei et al., 2013).

An overview of the knowledge on HERVs related to tumors,
in light of our experience in melanoma, is provided in order to
achieve new insights into the contribution of HERV-K to the
crosstalk between cancer cells and the tumor microenvironment.
In addition, we suggest future perspectives on their potential
therapeutic uses.

HERVs IN CANCER

Several mechanisms by which HERVs could produce pathological
effects have been proposed, including generation of new variants
of HERVs, insertional mutagenesis, and protein toxicity (Young
et al., 2013). In this regard, HERV activation appears to
influence the aggressiveness of different cancers, including
seminoma, melanoma, leukemia, hepatocellular carcinoma,
sarcoma, prostate, breast and colon cancer (Cegolon et al.,
2013; Kassiotis, 2014; Pérot et al., 2015; Suntsova et al., 2015;

Giebler et al., 2018). Likewise, the pathologic process of
rheumatic disorders, systemic lupus erythematosus, multiple
sclerosis, autism spectrum disorders, schizophrenia, bipolar
disorder, psoriasis, type I diabetes, and systemic sclerosis shows
a correlation with HERV activity (Alelú-Paz and Iturrieta-Zuazo,
2012; Balestrieri et al., 2012; Brodziak et al., 2012).

Several studies suggested that the aberrant activation of
HERVs promotes tumorigenesis through oncogenic mechanisms,
such as: (1) insertional mutagenesis with inactivation of tumor
suppressor genes (Gerdes et al., 2016); (2) activation of
downstream (proto-)oncogenes or genes involved in cell growth
(Fan and Johnson, 2011); (3) expression of HERV-K oncogenes
such as Rec and Np9 (Denne et al., 2007; Chen et al., 2013); (4)
expression of HERV proteins involved in the fusion of tumor cells
or immunosuppression (Downey et al., 2015); (5) disruption of
cellular checkpoints (Kassiotis and Stoye, 2017; Lemaître et al.,
2017).

Manifold HERV families have been identified; the HERV-K
family is the most recently integrated in human genome,
comprising 10 so-called HML subgroups (Subramanian et al.,
2011). Of these, HML-2 subgroup maintains most of the ORFs
actively transcribed. Due to differential transcript splicing and the
deletion of 292-bp at the pol and env boundary, HML-2 produces
the protein Env (single spliced) and accessory proteins Np9 and
Rec (double spliced) (Armbruester et al., 2002; Büscher et al.,
2006). Their identification helped to understand and characterize
this subgroup of HERV-K in many tumors, including ovarian,
breast and prostate cancer, melanoma, lymphomas, leukemias,
and sarcomas (Cegolon et al., 2013; Kassiotis, 2014). HERV-K
DNA-polymorphisms, mRNA and proteins have been detected
in cancer cells; in addition, viral particles have been identified
in tissue, serum, and cell lines (Hohn et al., 2013). Interestingly,
HERV-K is involved in cell transformation and contributes to
the metastatic phenotype (Downey et al., 2015). Accordingly,
we demonstrated the reactivation of HERV-K under restrictive
conditions to be strictly required in human melanoma cells to
support the expansion of a subpopulation of cancer cells with
stemness features (Serafino et al., 2009; Argaw-Denboba et al.,
2017).

HERVs AND STEMNESS

Stem cells have self-renewal capacity and give rise to progeny
capable of differentiating into diverse cell types. The transcription
factors OCT4, SOX2, and NANOG have fundamental roles in
maintaining the pluripotency and stemness features of hESCs
and contribute to the reprogramming of adult somatic cells into
iPSCs (Kashyap et al., 2009; Yamasaki et al., 2014). Recent studies
showed HERV activity (mainly HERV-H and HERV-K) in hESCs
and iPSC (Ohnuki et al., 2014; Grow et al., 2015). Specifically,
LTR7/HERV-H is one of the transposable elements found more
often at the binding sites of OCT4 and NANOG (Kunarso et al.,
2010) and its targeting compromises the self-renewal functions
(Wang et al., 2014). Furthermore, DNA hypomethylation
at HERV-K LTRs elements together with transactivation by
OCT4, increase HERV-K expression during embryogenesis.
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In addition, the overexpression of Rec in pluripotent cells
increases the interferon-induced transmembrane protein 1
(IFITM1), suggesting a role of HERV-K in the immunoprotection
of human embryos against viruses sensitive to the IFITM1-type
restriction (Grow et al., 2015).

Possessing stemness features is crucial for cancer progression
and metastasis. The generation of subpopulations with stemness
features determines cancer self-renewal, proliferation and
differentiation, allowing immune evasion and acquisition of
resistance to therapy. These subpopulations, called CSCs,
give rise to heterogeneous cell populations and maintain an
undifferentiated state that equips them with the plasticity
required to survive environmental stress (Aponte and Caicedo,
2017; Ramos et al., 2017).

The role of HERVs in stemness and the acquisition of cancer
stemness are linked by a complex crosstalk of cellular signals,
in which microenvironmental changes play a significant role
(Cabrera et al., 2015; Argaw-Denboba et al., 2017; Flavahan et al.,
2017).

THE ROLE OF HERV-K IN THE
PLASTICITY OF CANCER CELLS: OUR
POINT OF VIEW IN MELANOMA

Several studies suggest that the tumorigenesis is determined by
genetic alterations, which contribute to transformation, as well as
by external factors present in the cancer microenvironment. The
microenvironment is therefore considered a part of the tumor
that constantly changes in parallel with cancer progression, as
a result of bidirectional interactions between tumor cells and
cellular and molecular components of their “niche” (Plaks et al.,
2015; Wang et al., 2017). These interactions are essential for
the establishment of a permissive stem cell microenvironment,
providing a fine balance between self-renewal/differentiation
and quiescence/proliferation. The tumor microenvironment
is characterized by adverse growth conditions (hypoxia and
acidosis), which trigger a stress response in cancer cells that, with
molecules such as cytokines and growth factors, is instrumental
in phenotype switching, angiogenesis, tumor growth, and
immune evasion.

Cellular plasticity is fundamental for tumor progression and
metastasis, to adapt to changes in the microenvironment (Taddei
et al., 2013). Aggressive cancer cells share many characteristics
with embryonal progenitors, expressing developmental genes
that allow the differentiation into a wide range of cell lineages,
including neural, mesenchymal, and endothelial cells. This
mimicry of other cell lineages becomes essential in the cancer’s
ability to adapt to microenvironmental changes. For instance,
melanoma cells show phenotypic heterogeneity and maintain
their morphological and biological plasticity despite repeated
cloning (Bröcker et al., 1991; Hendrix et al., 2003; Boiko et al.,
2010).

Several studies from our and other groups demonstrated that
HERV-K (HML-2), has a potential aggravating role in malignant
melanoma and in immune escape during metastasis (Büscher
et al., 2006; Serafino et al., 2009; Argaw-Denboba et al., 2017).

Since HERV-K is responsive to microenvironmental changes,
and melanoma cells are strongly associated with epigenetic
and microenvironmental anomalies, the association of HERV-K
activation with carcinogenesis is particularly intriguing (Li et al.,
2015; Roesch, 2015).

Our group has established and characterized a metastatic
human melanoma cell line, termed TVM-A12, that is
highly heterogeneous, plastic and responds strongly to
microenvironmental alterations (Melino et al., 1993; Serafino
et al., 2009; Argaw-Denboba et al., 2017) (Figure 1). This has
supplied a model to study the crosstalk between HERVs and
cancer cells in a changing microenvironment. The TVM-A12
cellular monolayer is characterized by the presence of cells
with different morphologies including small ovoid, spindle
polygonal and large dendritic forms. Notably, the multiple
morphology with melanin production persisted after years of
continued passage in culture. When grown in different media,
despite changing the morphology and functional characteristics,
TVM-A12 retain the ability to restore the original phenotype if
standard conditions are re-established. Peculiarly, when cultured
in specific media that promote differentiation, TVM-A12
cells show specific phenotypes of melanogenic, adipogenic,
and osteogenic lineages (unpublished data) (Figure 1). This
morphological transition correlated with the change of culture
media, without committing to terminal differentiation, has been
previously described and is considered a hallmark of stemness in
melanoma cells (Zhu et al., 2014).

TVM-A12 cells were also cultured at low serum
concentrations (RPMI with 1%FBS), a recognized protocol
for inducing microenvironmental stress conditions in vitro. This
prompted a change in their phenotype, switching from adherent
to suspension cells, generating a highly proliferating cell line
called Clone6 (Figure 1). A major event for the generation
of metastatic tumor cells is the inhibition of anoikis, the
programmed cell death pathway induced by loss of integrin-
mediated cell matrix interactions, revealed in vitro by the ability
of cells to grow in an anchorage-independent manner (Paoli
et al., 2013). In the case of Clone6, following cell detachment,
cells undergo uncontrolled growth and show loss of expression
of immune recognition molecules (MHC-I, Melan A/MART-1),
loss of melanin production and ability to generate tumor masses
in mice (unpublished data), as one would expect from highly
malignant cells. Uniquely, Clone6 cells are unable to return to
the original phenotype when standard culture conditions are
re-established, and there is a marked transcriptional activation
of HERV-K with the concomitant production and release of viral
particles, along with these phenotypic and functional changes.
The generation of Clone6 from TVM-A12 is shown to be
dependent on HERV-K as down-regulation by RNA interference
prevents it.

When switching to a serum free medium, such as X-VIVO
(typically used for stem cells), TVM-A12 generated non-adherent
dark cellular aggregates called Grapes, with a low growth rate
(Figure 1). Grapes are characterized by increased expression
of CSCs markers (CD133 and nestin), loss of expression of
immune recognition molecules (MHC-I, Melan A/MART-1)
and an increase in melanoma progression and metastasis
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FIGURE 1 | HERV-K as the master of melanoma plasticity in tumor adaptation to microenvironment. In response to different types of media, TVM-A12 melanoma
cells change morphology and functional properties. The acquisition of undifferentiated and of stemness features under microenvironment alterations is
HERV-K-dependent and related to increased malignancy, metastatic potential, and immune evasion.

associated markers (CD10 and CXCR4). This phenotype switch
is accompanied by an increased expression of HERV-K, and the
link to microenvironmental changes is confirmed by a strong
down-regulation of HERV-K expression when cells are returned
to media containing serum (RPMI with 10%FBS; X-VIVO with
2–10%FBS). Once again confirming its important role, the
silencing of HERV-K in TVM-A12 leads to a reduction in Grapes
formation and an induction of cell death.

This HERV-K interference, during Grapes generation, also
specifically inhibits the expansion of a CD133+ subpopulation
with stemness features, demonstrating the requirement
of HERV-K activation to sustain the expansion of this
subpopulation. Microenvironmental stress is indicated as
critical for regulating stemness of tumor cells (Plaks et al., 2015).
This subpopulation is characterized by recognized hallmarks
of cancer aggressiveness such as high expression of OCT4,
self-renewing, migration and invasion capacity. Remarkably,
when these cells are treated with NNRTIs such as efavirenz
and nevirapine, the results mimic HERV-K interference, with
a decrease in HERV-K expression and a concomitant cell
death induction. We cannot be certain if the effect of NNRTIs

treatment is due to a direct inhibition of the reverse transcriptase
of HERV-K or is mediated by the action on other cellular
components such as LINE-1 (Sinibaldi-Vallebona et al., 2011).

Tumors are graded and evaluated based on their degree
of cellular differentiation, more malignant cancers lose the
characteristics of the original tissue and approach a more stem-
cell-like state (Lathia and Liu, 2017). Given this, it appears that
HERV-K inhibition offers a promising avenue of research for
combination therapy in cancer.

HERV-K AND THE ACQUISITION OF
CANCER HALLMARKS: RATIONALE FOR
COMBINATION THERAPIES

Cell heterogeneity and plasticity are the main drivers of the
clonal evolution of genetic resistance and the emergence of
highly metastatic tumor phenotypes resistant to conventional
chemotherapies and radiation (Skvortsov et al., 2014; Roesch,
2015). The phenotype-switching ability of melanoma cells
in response to the microenvironment drives the dynamicity
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FIGURE 2 | HERV-K provides new avenues for combination therapy. (A) HERV-K and cancer hallmarks. In melanoma cells, microenvironment modifications lead to
the increase of HERV-K transcriptional activity associated to cell plasticity and different hallmarks of cancer such as phenotype switching, stemness features,
immune evasion, and metastatic properties. (B) HERV-K targeting in cancer combination therapy. Targeting HERV-K in association with conventional and innovative
therapies such as immunotherapy, cell transdifferentiation/reprogramming-inducing agents, epigenetic modifiers and antiretrovirals, could shift the balance in the
search for effective and less toxic cancer treatment.

of its immune escape and malignant characteristics (Li et al.,
2015). Accordingly, our studies on melanoma have shown how
the activation of HERV-K under microenvironmental stress
induces and maintains tumor cell plasticity and determines
the acquisition of the typical cancer hallmarks, such as
changes in phenotype, stemness feature, immune evasion, and
metastasis (Figure 2A). Cancer progression is accompanied
by metabolic alterations and epigenetic reprogramming. The
tumor microenvironment, poor in nutrients and oxygen, is
responsible for the metabolic switch observed in cancer cells.
The accumulation of glycolysis metabolic products, such as
lactate, induces local immune suppression, which facilitates
tumor progression and metastasis (Renner et al., 2017). Both
cellular nutrient metabolism and chromatin organization are
remodeled in cancer cells, and these alterations play a key role
in tumor development and growth. Indeed, many chromatin
modifying-enzymes utilize metabolic intermediates as cofactors
or substrates, and recent studies have shown that the epigenome
is sensitive to cellular metabolism (Yun et al., 2012). Thus,
while epigenetic alterations can modify the expression of
metabolic enzymes, the metabolic reprogramming can affect
the cancer cell epigenome as well (by DNA methylation and
histone modifications). One of the most important events for
the development and progression of cancer is global DNA
hypomethylation (Ehrlich, 2009; Sandoval and Esteller, 2012);
indeed, the expression of HERV-K is strongly associated with
hypomethylation (Stengel et al., 2010; Kreimer et al., 2013), and
with increased genomic instability and transcriptome activity
(Romanish et al., 2010). In this context, the identification and
study of mechanisms and regulators of the metabolic switch and
epigenetic modifiers, with an eye toward targeted therapies to
be used in combination, should provide more effective cancer
therapies.

The eradication of tumors and prevention of recurrences
are current challenges in cancer therapy. Thus, starting
from conventional cancer treatments, including chemotherapy,
radiotherapy and surgery, new combination approaches are
needed. In this view, we consider HERV-K targeting as a strategy
to improve response to therapy (Figure 2B). The enhancement
of patient’s immune response plays a key role in the treatment of
cancer. Indeed, in the field of cancer immunotherapy, progress
has been made in the development of new technologies aimed at
boosting the immune system, such as monoclonal antibodies and
engineered CAR-T against tumor antigens (Khalil et al., 2016).
Actually, targeting of the HERV-K envelope protein by CAR-T
cells has already been reported as a potential immunotherapeutic
approach for melanoma and other tumors (Krishnamurthy
et al., 2015). Targeted immunotherapy research demonstrated
the potential of anti-HML-2-Env antibodies in inhibiting tumor
growth and inducing apoptosis, both in vitro and in vivo mouse
models (Wang-Johanning et al., 2012). Moreover, based on the
immunogenic property of HERV-K proteins (Reis et al., 2013),
studies are underway on a peptide-based vaccine derived from
HERV-K in order to control the spread of cancer (Kraus et al.,
2013).

Another approach is the identification of the micro-
environmental factors and the corresponding signal transduction
pathways that are responsible for transdifferentiation of cancer
cells. These could be potential targets for a new therapeutic
approach for cancer reprogramming into a differentiated state,
with a decrease or even loss of cancer stemness features and
malignancy (Carpentieri et al., 2016). One promising result in this
direction has been the achievement of a new type of cancer cell
reprogramming: the osteogenic differentiation of neuroblastoma
cells, switched to a different germ layer through rapamycin
induction in the presence of a scaffold, without an intermediate
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iPSCs step (Carpentieri et al., 2015). It would be of interest to
study how the expression of retroelements is regulated during the
cancer transdifferentiation process.

Histone deacetylate inhibitors are currently used in the clinical
setting as anticancer agents that alter the regulation of histone
proteins. HDACi can modify the acetylation status of histones,
resulting in the induction of cell cycle arrest, apoptosis or
differentiation (Eckschlager et al., 2017). HDACi potentially
re-activate HERVs, however, the beneficial or detrimental effects
of epigenetic drugs on HERV modulation are currently discussed
(Chiappinelli et al., 2015; Hurst et al., 2016; Daskalakis et al., 2018;
White et al., 2018).

In a broader context, our group and other authors had
already suggested intervening on the activity of retroelements
with antiretroviral drugs (Sinibaldi-Vallebona et al., 2011; Argaw-
Denboba et al., 2017; Contreras-Galindo et al., 2017), which now
more than ever appears as a promising new component in future
combination therapies in cancer.

FUTURE DIRECTIONS

In this scenario, the responsiveness to external stimuli of HERVs
attributes to these genetic elements a high relevance in the
crosstalk between tumor and microenvironment. Based on our
experience we have demonstrated that HERV-K is fundamental in
the acquisition of stemness features and aggressiveness under the
pressure of the microenvironment. Following the path indicated

by our results on melanoma cells, we aim to widen the scope
and depth of our knowledge of HERV-K in cancer plasticity, by
exploring other cancer types and by deciphering the molecular
pathways underlying the responsiveness of HERV-K to the
microenvironment. We believe that future combination therapies
able to target HERV-K and other retroelements will become
indispensable weapons in a wider arsenal for fighting cancers.
Therefore, we propose that expanding the range of therapeutic
options will allow defining personalized combination therapies
in the future.
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