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Abstract. PBW degenerations are a particularly nice family of proper flat degenerations
of type A flag varieties. We show that the cohomology of any PBW degeneration of the
flag variety surjects onto the cohomology of the original flag variety, and that this holds in
an equivariant setting too. We also prove that the same is true in the symplectic setting
when considering Feigin’s linear degeneration of the symplectic flag variety.

1. Introduction

Degenerate flag varieties were introduced by Feigin in [Fei] by Lie theoretic
methods, and extensively investigated afterwards, from several viewpoints. In type
A they admit a linear algebraic description, which inspired a series of papers
[CFR12], [CFR13], by Cerulli Irelli, Feigin and Reineke, where they produce a
realisation of these degenerations in terms of quiver Grassmannians which was
exploited, for example, to produce a cellularization or to study the singular locus.
In [CL] and [CLL] it was shown that in types A and C, Feigin’s degenerations of
flag varieties are isomorphic to Schubert varieties in an appropriate partial flag
variety, hence explaining many of their good properties which had been already
noticed, such as, for instance, their normality and Cohen–Macaulyness.

Recently, more general linear degenerations of type A flag varieties have been
studied in [CFFFR]. In particular, a large class of proper flat degenerations of
flag varieties, called PBW degenerations, turn out to be isomorphic to Schubert
varieties.

In the present paper, we show that all PBW degenerations of the flag variety
F`n have a further good property: their cohomology (with Z-coefficients) surjects
onto the cohomology of F`n. Moreover, both varieties are equipped with an action
of an (n−1)-dimensional complex algebraic torus, and the same surjectivity result
holds for the equivariant cohomology groups with integer coefficients.

The way to compare the cohomology of a complex algebraic variety X and that
of a proper flat degeneration Y of X goes as follows. One considers a proper flat
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family π : X̃ → C with X = π−1(1), Y = π−1(0). Then one knows (see [C] or [P])

that since X̃ is proper and flat, it contracts to Y and so there is a map

g : H∗(Y,Z) ∼= H∗(X̃,Z)→ H∗(X,Z),

induced by the inclusion of X in X̃.
We want to conclude this introduction by recalling that in general the surjecti-

vity of g is not to be expected, and the fact that it holds for PBW degenerations
shows once more that these degenerations are extremely well-behaved. A parti-
cularly nice and easy example of this failure is the toric degeneration of the
Grassmannian of 2-planes in C4 (identified under the Plücker embedding with
the Klein quadric inside P5) given by

X̃t =
{

[Z12, Z13, Z14, Z23, Z24, Z34] ∈ P5 | Z12Z34 − Z13Z24 + tZ14Z23 = 0
}

;

in this case the homomorphism g is neither injective nor surjective (cf. [IX, Prop.
5.1(3)]). This small example should not induce the reader to believe that surjectivi-
ty fails always for toric degenerations: by the main result of this paper — or
by direct computation — one can see that surjectivity holds for Feigin’s linear
degeneration of F`3, which in this case is toric (and coincides with the Gel’fand–
Tsetlin degeneration of F`3).

2. Flag varieties, Schubert varieties and their cohomology

In this section we collect some classical results about type A flag varieties and
their Schubert varieties (see, for example, [Fu]).

Let d = (d1 < d2 < · · · < dr) be a sequence of strictly increasing positive
integers and let n > r. Let V be an n-dimensional complex vector space. We
denote by F`d,n the variety of (partial) flags:

F`d,n = {Ud1 ⊂ Ud2 ⊂ · · · ⊂ Udr | Uk ∈ Gr(k, V )}.

If d = (1, 2, . . . , n− 1), we write F`n instead of F`d,n.
The action of SLn on V induces a transitive action on F`d,n. Fix an ordered basis

(e1, e2, . . . , en) of V and for any i = 1, . . . , n denote by Ei = spanC{e1, . . . , ei}.
Then F`d,n is the SLn-orbit of the flag E• = (Ed1 ⊆ Ed2 ⊆ · · · ⊆ Edr ). Given a
permutation w ∈ Sn, we write Ew• for the coordinate flag whose i-th space is

Ewdi = spanC{ew(1), ew(2), . . . , ew(di)}.

Let Wd be the stabiliser of (d1, . . . , dr) in Sn and denote by S
d
n the set of minimal

length coset representatives in Sn/Wd. Let B ⊂ SLn be the Borel subgroup
of upper triangular matrices. Then F`d,n is a CW-complex with cells BEw• for

w ∈ S
d
n, all of even real dimension. Schubert varieties are the closures Xw := BEw• ,

and their fundamental homology classes constitute a Z-basis of H∗(F`d,n,Z). A
Z-basis for H∗(F`d,n) is obtained taking duals of these classes, the Schubert classes.
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Denote by ≤ the Bruhat order on Sn. Any Schubert variety inherits a structure
of CW-complex from F`d,n, as it is a disjoint union of B-orbits:

Xw =
⊔
y≤w
y∈Sm

d

BEy• .

Therefore also the integral cohomology of Xw is determined by the integral homo-
logy of it. This will play an important role in the proof of our main result, where
instead of dealing with 2-cocycles, we will be allowed to work with 2-cycles.

Recall that in the case of the variety of complete flags, H∗(F`n,Z) is a ring
generated in degree 2 by the classes of the Schubert varieties Xsi , where si is the
simple transposition which exchanges i and i+ 1:

Xsi =
{
E1 ⊂ E2 ⊂ · · · ⊂ Ei−1 ⊂ U ⊂ Ei+1 ⊂ · · · ⊂ En−1 | U ∈ Gr(i, V )

}
. (1)

The fact that these varieties (of complex dimension 1) also lie in the special fibre
of the PBW degenerations, which are going to be introduced in the next section,
will be crucial for us.

In general, given a complex semisimple algebraic group G with Borel B, the
corresponding generalised flag variety G/P (where P ⊇ B is a parabolic subgroup)
is also a CW-complex, whose cells have even real dimension. In particular, the
group H2(G/B,Z) is free with basis the homology classes of the Schubert varieties
Xsi , indexed by simple reflections of the Weyl group W of G. Moreover, in type
A and C, which are the cases we are going to consider in this paper, H∗(G/B,Z)
is generated, as a ring, in degree 2, see [Bo].

Finally, we want to mention an alternative presentation of the cohomology of the
flag variety F`n, due to Borel [Bo], in terms of invariant rings. The symmetric group
Sn naturally acts on the polynomial ring S := Z[x1, x2, . . . , xn] by permuting the
variables, and we have

H∗(F`d,n,Z) ∼=
(
(S/(SSn

+ ))
)
Wd , (2)

where (SSn
+ ) denotes the ideal generated by the Sn-homogeneous invariants of

positive degree. As for a Schubert variety Xw, the inclusion Xw ↪→ F`d,n induces
the presentation

H∗(Xw,Z) ∼=
((
S/(SSn

+ )
)
�Iw

)Wd

, (3)

where Iw is the Z-span of the Schubert classes [Xu]∗, for u 6≤ w, u ∈ S
d
n.

3. PBW degenerations of flag varieties

We recall here the definition of PBW degenerations of the flag variety from
[CFFFR].

Let V be a complex, n-dimensional vector space, and let {e1, . . . , en} be an
ordered basis of V .
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For any t ∈ C, and i = 1, . . . n, we define the map

pri,t(ej) =

{
ej if j 6= i,

tei if j = i.

Moreover, we set pr0,t := IdV .
Let j = (j1, . . . , jr) be such that 1 ≤ j1 < . . . < jr ≤ n− 2, for some r ≥ 1, and

define

bk :=

{
i, if k = ji,

0 otherwise.
(k = 1, . . . , n− 1).

We consider the variety

F̃`
j

n =
{

(V1, V2, . . . , Vn−1, t) | Vi ∈ Gr(i, V ); prbi,t(Vi) ⊂ Vi+1; t ∈ C
}
.

Note that there is an obvious projection:

π : F̃`
j

n → C, (4)

given by π((V1, V2, . . . , Vn−1, t)) = t, such that π−1(1) is isomorphic to the variety
F`n of complete flags in Cn.

Following [CFFFR], we denote by F`jn the fibre over 0, and call it a PBW
degeneration.

Given our r-tuple j = (j1, . . . , jr), we define

`1 = 1, `i = #{z | 1 ≤ z ≤ r and jz < i}+ i, (i = 2, . . . , n− 1).

The following result generalises [CL, Thm. 1.2] and tells us that every PBW
degeneration of a flag variety can be realised as a Schubert variety inside an
appropriate partial flag variety.

Theorem 1 ([CFFFR, Thm. 6]). We have an isomorphism of projective varieties

F`jn
∼→ Xwj , where Xwj is a Schubert variety inside F``,n+r.

The above fact will be a central ingredient in the proof of our main theorem.
We recall here the explicit isomorphism, since it will be needed later. In the

proof of [CFFFR, Thm. 6], the isomorphism is given by using the formalism of
quiver Grassmannians; we will reformulate it here so that such a formalism will
not be necessary.

We denote by {ẽ1, . . . , ẽn+r} the standard basis of Cn+r and consider the maps
πi : spanC{ẽ1, ẽ2, . . . , ẽn+`i−i} → Cn given by

πi(ẽk) =


0, if 1 ≤ k ≤ `i − i− 1,

ek, if `i − i ≤ k ≤ n,
ek−n, if n+ 1 ≤ k.

Then the isomorphism of the theorem is given by

ζ : F`jn → F`l,n+r, (V1, . . . , Vn−1) 7→ (π−11 (V1), . . . , π−1n−1(Vn−1)). (5)

For i = 1, . . . , n− 1, recall the Schubert variety

Xsi = {E1 ⊂ E2 ⊂ · · · ⊂ Ei−1 ⊂ U ⊂ Ei+1 ⊂ · · · ⊂ En−1 | U ∈ Gr(i, V )} .
Denote

◦
Xsi := Xsi \ {E•, E

(i,i+1)
• }.
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Lemma 2.

(1) The variety Xsi × {t} is contained in π−1(t) for any t ∈ C.
(2) The torus T 0 ⊂ SLn+r of complex diagonal matrices acts on ζ(

◦
Xsi) via the

character
diag(µ1, µ2, . . . , µn+r+1) 7→ µiµ

−1
i+1.

Proof. (1) Clearly, prbk,t(Ek) ⊆ Ek for any k = 1, . . . , n − 2 and t ∈ C, so that
prbk,t(Ek) ⊂ Ek+1 for all k = 1, . . . , n−2 and for all t ∈ C, and prbi−1,t(Ei−1) ⊂ U .

Moreover, since there exists [a1 : a2] ∈ P1 such that U = Ei−1 ⊕C(a1ei + a2ei+1),
we also have prbi,t(U) ⊆ Ei+1.

(2) For j ≤ k, the C-span of the vectors {ẽj , ẽj+1, . . . , ẽk−1, ẽk} is denoted by

Ẽ[j,k] , and we abbreviate Ẽk := Ẽ[1,k]. Moreover, we use the convention that

Ẽ[j,k] = {0} if k < j. We have

ζ(Ek) = π−1k (Ek) = Ẽk ⊕ Ẽ[n+1,n+`k−k],

so that

ζ(Xsi) = {ζ(E1) ⊂ · · · ⊂ ζ(Ei−1) ⊂ ζ(Ei−1)⊕ C(a1ζ(ei) + a2ζ(ei+1))

⊂ ζ(Ei+1) ⊂ · · · ⊂ ζ(En−1) | [a1 : a2] ∈ P1
}

= {ζ(E1) ⊂ · · · ⊂ ζ(Ei−1) ⊂ ζ(Ei−1)⊕ C(a1ẽi + a2ẽi+1)

⊂ ζ(Ei+1) ⊂ · · · ⊂ ζ(En−1) | [a1 : a2] ∈ P1
}
,

where the second equality follows from the fact that i > `i−i, so that π−1i (ek) = ẽk
for all k > i. At this point it is clear that T 0 acts on

ζ(
◦
Xsi) = {ζ(E1) ⊂ · · · ⊂ ζ(Ei−1) ⊂ ζ(Ei−1)⊕ C(a1ẽi + a2ẽi+1)

⊂ ζ(Ei+1) ⊂ · · · ⊂ ζ(En−1) | a1, a2 ∈ C×
}
,

via the character diag(µ1, µ2, . . . , µn+r) 7→ µiµ
−1
i+1. �

4. Main result

Let us start by remarking that there is an isomorphism

F̃`
j

n \ F`
j
n → F`n × C×,

(V1, V2, . . . , Vn−1, t) 7→ (V1, pr−1b1,t(V2), . . . , pr−1b1,t · · · pr−1bn−2,t
(Vn−1), t).

Moreover, by [CFFFR], the degeneration (4) is proper and flat so that F̃`
j

n is
the closure of π−1(C×). This implies (see, for example, [C] or [P]) that we get a

contraction of F̃`
j

n onto F`jn. In particular, H∗(F`jn,Z) ∼= H∗(F̃`n,Z).

Since π−1(1) = F`n ↪→ F̃`
j

n, we obtain a homomorphism of graded rings

g : H∗(F`jn,Z)→ H∗(F`n,Z).

Our main result is that the above homomorphism is surjective.
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Theorem 3. The homomorphism g is surjective.

Proof. Since H∗(F`n,Z) is generated by H2(F`n,Z) (see [Bo] or [Fu, pp. 131–153]),
it is enough to show that

g2 : H2(F`jn,Z)→ H2(F`n,Z)

is surjective. By Theorem 1, H∗(F`jn,Z) ∼= H∗(Xwj ,Z) as graded Z-modules, and

we deduce that H∗(F`jn,Z) is torsion free. Hence, it is sufficient to prove that the
dual homomorphism in homology

g2 : H2(F`n,Z)→ H2(F`jn,Z)

is injective and its image is a split direct summand.
To prove this, we will use the known fact that H2(F`n,Z) is spanned by Schubert

cycles

Xsi := {E1 ⊂ E2 ⊂ · · · ⊂ Ei−1 ⊂ U ⊂ Ei+1 ⊂ · · · ⊂ En−1 | U ∈ Gr(i, V ) } .

Recall that a basis for H2(F`n,Z) is given by the cycles ci, i = 1, . . . , n− 1, of the
varieties Xsi defined above.

By Lemma 2(1), Xsi is contained in π−1(t) for any t ∈ C. Such a containment

induces a map Xsi×[0, 1]→ F̃`
j

n, which gives a homotopy in F̃`jn between Xsi×{1}
and Xsi ×{0}. In particular the cycles Xi×{1} and Xsi ×{0} are homologous in

F̃`jn and we deduce that the class of Xsi in H2(F`jn,Z) is the image of the class of
Xsi in H2(F`n,Z). From what we have noticed, these are cycles of 1-dimensional

(complex) subvarieties of F`jn and by Lemma 2(2) they are linearly independent
and part of a basis. Hence the claim follows. �

Remark 1. It is natural to ask whether the above surjectivity result can be exten-
ded to all flat and irreducible degenerations of [CFFFR]. In [CFFFR], a Bialynicki-
Birula decomposition of the special fibre, say Y , is provided, so that also in that
case one could check surjectivity by looking at the induced map between the 2-
homology groups. As in the proof of our main result, it is possible to determine
the image of the fundamental homology class of Xsi inside H2(Y,Z). However, to
show linear independence, the identification of the special fibre with a Schubert
varietiety in a partial flag variety of bigger rank was necessary, and we do not see
at the moment an alternative argument. Such an identification is missing in the
more general case, which we leave to future work.

4.1. The equivariant case

Let us denote by T ⊂ SLn(C) the algebraic torus consisting of diagonal matrices
with respect to the basis {e1, . . . , en}.

The torus T acts on Cn by rescaling the coordinates: if λ = diag(λ1, . . . , λn) ∈ T
and v =

∑
ajej ∈ Cn, then λ ·v =

∑
λjajej . Now, v ∈ Vi if and only if λ ·v ∈ λVi,

so if this holds and prbi,tVi ⊂ Vi+1, then

prbi,t(λv) =
∑
j 6=bi

λjajej = λprbi,t(v) ∈ λVi+1.
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Therefore, if (V1, V2, . . . , Vn−1, t) ∈ F̃`n, then (λV1, λV2, . . . λVn−1, t) ∈ F̃`n. The
torus action preserves any fibre of the map π and, hence, we have a homomorphism

H∗T (F`jn)→ H∗T (F`n).

Theorem 4. The homomorphism H∗T (F`jn)→ H∗T (F`n) is surjective.

Proof. The statement follows once it is noticed that the cycles Xsi are stabilised

by the torus T and hence they define equivariant cycles both in F`n and in F`jn,
which (by Lemma 2(2)) are in both linearly independent. �

Remark 2. The homomorphism g is not injective if n ≥ 2. The total dimension
of the cohomology of the Schubert variety Xwj coincides with the number of its

T 0-fixed points (T 0 being the maximal torus of diagonal matrices in SLn+r(C) as
in Lemma 2), that are the coordinate (partial) flags Ẽy• in F``,n+r, for y ≤ wj ,

y ∈ S
`
n+r. Now we notice that any coordinate flag in F`n is also contained in

F`jn and that its image under ζ is a coordinate flag in F``,n+r, hence a T 0-fixed
point. If n > 2, then the cardinality of the set of T 0-fixed points is strictly greater
than the number of coordinate flags in Cn, which is the total dimension of the
cohomology of F`n.

Remark 3. By the previous remark, we know that ker(g) 6= {0} and it would be
very interesting to give an explicit description of it. Given that both the cohomo-
logy of the flag variety H∗(F`n,Z) and the cohomology of the Schubert variety
H∗(Xwj

,Z) admit a nice presentation (cf. Equations (2), (3)) involving Schubert
classes, one might hope to be able to describe the kernel in terms of Schubert
classes. Unluckily, it does not seem to be feasible, since the embedding ζ from (5)
does not map in general a Schubert variety of F`n to a Schubert variety inside
F`j,n+r. A first example of this phenomenon can be already observed in the the

case n = 3, j = {1}.

5. The symplectic case

We extend here our result to the case of Feigin’s degenerations of symplectic
flag varieties.

Let W be a 2n-dimensional complex vector space. We keep the same notation
as in the previous section and denote by (ẽ1, ẽ2, . . . , ẽ2n) an ordered basis for W .
Moreover, we equip W with the symplectic form given by the following matrix:(

0 J
−J 0

)
,

where J denotes the n× n-antidiagonal matrix with entries (1, 1, . . . , 1). Given a
subspace U ⊆W , we denote by U⊥ its orthogonal space in W with respect to the
above symplectic form. Let d = (1 ≤ d1 < d2 < · · · < dr ≤ 2n − 1) be such that
dr−i+1 = 2n− di for any i. Then one can define an involution

ι : F`d,2n → F`d,2n, (Wdi) 7→ (W ′di),
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with W ′di = W⊥2n−di . The symplectic flag variety SpF`d,2n can hence be realised
as the subvariety of flags in Fd,2n which are fixed by ι.

On the other hand, also Feigin’s degeneration of the symplectic flag variety can
be obtained by taking fixed points of an involutive automorphism of the type A
degeneration, as proven in [FFL].

Let V be a 2n-dimensional complex vector space, with basis {e1, . . . , e2n}. As
in [CL, §4.41], we equip the vector space V with a non-degenerate skew-symmetric
bilinear form bV [· , ·] such that

e∗k =

{
e2n−1−k if 1 ≤ k ≤ 2n− 2,

e2n if k = 2n− 1.
(6)

Again, for a subspace Z ⊆ V , we write Z⊥ for its orthogonal space in V with
respect to the form bV [· , ·].

Thus, one can consider inside F̃`
(1,2,...,2n−2)
2n the subvariety of isotropic elements,

that is,

SpF̃`
(1,2,...,2n−2)
2n :=

{
(V1, V2, . . . , V2n−1, t)

∣∣∣ Vi ∈ Gr(i, V ); prbi,t(Vi) ⊂ Vi+1;
V2n−i = V ⊥i ; t ∈ C

}
.

Again, we consider the projection

π : SpF̃`
(1,2,...,2n−2)
2n → C, (V1, . . . , V2n−1, t) 7→ t.

The fibre over t 6= 0 is isomorphic to the symplectic flag variety

SpF`2n ∼= {(V1 ⊂ V2 ⊂ · · · ⊂ V2n−1) | Vi ∈ Gr(i, V ); V2n−i = V ⊥i }

and we denote by SpF`a2n the fibre over 0, following the notation in [FFL], [CL].

Any fibre of the homomorphism π : F̃`
(1,2,...,2n−2)
2n → C is hence equipped with

an involutive automorphism:

ιt : π−1(t)→ π−1(t), (V1, V2, . . . , V2n−1, t) 7→ (V ⊥2n−1, V
⊥
2n−2, . . . , V

⊥
1 , t).

Let T 0 ⊂ SL4n−2 be the maximal torus of diagonal matrices. In [CL, §4.1] it is
proven that the following diagram of T 0-varieties commutes:

F`a2n
ι0 //

ζ

��

F`a2n
ζ

��
Xw(1,2,...,2n−2)

ι // Xw(1,2,...,2n−2)

(7)

for an appropriate Schubert variety Xw(1,2,...,2n−2)
inside F`(1,3,...,4n−5,4n−3),4n−2.

It follows that also in the symplectic case Feigin’s degeneration can be realised
as a Schubert variety ([CL, Thm. 4.1]), since any Schubert variety inside the
variety SpF`(1,3,...,4n−5,4n−3),4n−2 is obtained as a fixed point set of the involution ι
restricted to a Schubert variety in F`(1,3,...,4n−5,4n−3),4n−2 (cf. [LR, Prop. 6.1.1.2]).
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5.1. Symplectic version of the main result

By [FFL, Prop. 4.10], the map π : SpF̃`
(1,2,...,2n−2)
2n → C is proper and flat and we

get once again a homomorphism g : H∗(SpF`a2n)→ H∗(SpF`2n).

Theorem 5. The homomorphism g : H∗(SpF`a2n)→ H∗(SpF`2n) is surjective.

Proof. First of all, an element invariant under the involution ιt is uniquely deter-
mined by the first n-vector spaces (V1, V2, . . . , Vn), so that in this proof we will
write (V1, V2, Vn, t) for (V1, V2, . . . Vn, V

⊥
n−1, . . . , V

⊥
1 , t).

For k = 1, . . . , 2n, denote by Ek the C-span of the vectors {e1, e2, . . . , ek}. We
let F• = (Fk) be the symplectic flag given by Fk = Ek for k = 1, . . . , n − 1, and
Fn = En−1 ⊕ Ce2n−1. Moreover, for i = 1, . . . , n− 1, we define

F
(i,i+1)
• = (F

(i,i+1)
k ), F

(i,i+1)
k =

{
Fk if k 6= i,

Fi−1 ⊕ Cei+1 if k = i.

We also set

F
(n,n+1)
• = (F

(n,n+1)
k ), F

(n,n+1)
k =

{
Fk if k 6= n,

Fn−1 ⊕ Cen+1 if k = n.

Next, for i = 1, . . . , n, consider the varieties

Xsi := {F1 ⊂ F2 ⊂ · · · ⊂ Fi−1 ⊂ U ⊂ Fi+1 ⊂ · · · ⊂ Fn}.

At this point the proof goes exactly as in the type A case, with the difference that
the 2-cycles to be considered now are the cycles ci corresponding to the above Xsi .

Also in the symplectic case, the cohomology of SpF`2n is generated in degree 2
and hence it is sufficient to prove that the dual map restricted to the degree 2 part

g∗2 : H2(SpF`2n)→ H2(SpF`a2n)

is injective.

The same argument as in the proof of Lemma 2(1) shows that Xsi is contained
in every fibre π−1(t), so again we deduce that the class of Xsi in H∗(SpF`a2n) is
the image under g∗2 of the class of Xsi in H∗(SpF`2n).

Finally, let Xι
w(1,2,...,2n−2)

denote the Schubert variety of SpF`(1,3,...,4n−3),4n−2
which is obtained as the ι-fixed points of the Schubert variety Xw(1,2,...,2n−2)

of

F̃`(1,2,...,4n−3),4n−2. The same argument as for Lemma 2(2) shows that the classes
of ζ(Xsi) in H∗(Xι

w(1,2,...,2n−2)
) are linearly independent, and so must be the classes

of Xsi in H2(SpF`a2n). �
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