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A behavioural modelling framework with a dynamic travel strategy path choice approach is presented for unreliable multiservice
transit networks. The modelling framework is especially suitable for dynamic run-oriented simulation models that use subjective
strategy-based path choice models. After an analysis of the travel strategy approach in unreliable transit networks with the related
hyperpaths, the search for the optimal strategy as a Markov decision problem solution is considered. The new modelling framework
is then presented and applied to a real network. The paper concludes with an overview of the benefits of the new behavioural

framework and outlines scope for further research.

1. Introduction

Transit network planning requires prediction of bus travel
times, on-board loads, and other state variables representing
system operations. One way to obtain such variables is to use
simulation models [1, 2] which reproduce interactions over
time among travellers, transit vehicles, and sometimes also
other vehicles sharing the right of way.

In simulation models, a transit supply module is able to
support detailed simulation of vehicles serving stops with a
given schedule [3], picking up, and dropping off passengers,
while monitoring transit vehicles” capacities and speeds. The
simulation takes into account when passengers cannot board
a vehicle because its capacity limit is already reached. Exam-
ples of supply model components are those of the simu-
lators MATsim [3], BUSMEZZO [4], and DYBUS [2]. The
simulators perform a within-day dynamic simulation. Each
transit vehicle from the departure terminal to that of arrival
is followed and, at each bus departure from a stop, the
forecasted vehicle travel times, considering the irregularities
of the transit services, are updated. Each traveller of a time-
dependent origin-destination matrix is followed from origin
to final destination, and dynamic routing is applied, taking
into account real-time information on current and forecasted
states of the transit network. Further, a day-to-day simulation
with a traveller learning and forecasting process of service

attributes allows a demand-supply equilibrium condition to
be obtained.

While the supply and demand-supply interaction compo-
nents of transit simulation models are quite well defined in
the literature [4], traveller path choice modelling still presents
its limits. A case that requires in-depth analysis is that of
multiservice stochastic (unreliable) service networks, where at
some bus stops more than one line is available to reach the
destination and some path attributes (e.g., waiting time, on-
board time, and on-board occupancy degree) are random
variables.

According to the seminal paper by Spiess [5], in the
case of multiservice stochastic networks, a stochastic decision
approach should be considered, and optimal travel strategy
modelling should be applied. In stochastic decision theory, an
optimal strategy, detailed in Section 2 below, is the behaviour
rule that travellers should follow to optimise the expected
value of the experienced travel utility.

Two types of travel strategies can be considered from a
modelling point of view. One is the objective (or normative)
optimal strategy, which is the behaviour that travellers should
follow to optimise the expected value of the experienced
travel utility. A different question is the actual strategic
behaviour, subjective (or descriptive) optimal strategy, which
travellers adopt, with their cognitive constraints and own
perceived path attributes. Drawing on data collected through
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new ticketing technologies, recent research confirms that, on
unreliable transit networks with diversion nodes, subjective
travel strategies are sometimes applied [6-11]. These sub-
jective strategies can differ among travellers and very often
differ from the objective optimal strategy. Therefore, in transit
path choice modelling, a subjective optimal strategy should
be used, in principle modelling each traveller or at least each
traveller category. In practice, such an approach would be
very complex, and therefore in the literature a unique optimal
strategy is assumed valid for all travellers. Further, in order
to determine the applied optimal strategy, until now two
main approaches have been followed. In one approach, an
objective optimal strategy is searched and adopted, such as
the optimal strategy reported in Spiess and Florian [12], but
in this way neglecting the travellers’ cognitive limitations
and simplifications. The other, as in BUSMEZZO [4] and
DYBUS [2], applies path choice random utility models, and
the stochasticity of the services is hidden in the stochasticity
of the path choice utilities.

From this analysis of transit path choice modelling
applied in simulation, the need arises to adopt in reproducing
traveller behaviour not a hypothetical objective optimal
strategy, but a subjective strategy-based approach, which is
more realistic in relation to the cognitive and computational
traveller’s capacities and obtained with a stochastic decision
approach. This paper proposes such a type of subjective
travel strategy approach, defining travellers utility as combi-
nations of anticipated values through travellers’ parameters
to estimate, moving from the first investigation performed
by Nuzzolo and Comi [13]. The estimation process of such
parameters is simplified by the new opportunities offered
by big data collecting and processing, which allows effective
reverse assignment procedures to be applied [14].

The paper is structured as follows: Section 2 analyses the
travel strategy approach in unreliable transit networks and
the related routes, while Section 3 considers the search for
an optimal travel strategy as a solution to a Markov deci-
sion problem. Section 4 presents the proposed behavioural
assumption framework and finally Section 5 reports some
concluding remarks and future research perspectives.

2. Transit Travel Strategy and Hyperpaths

Let there be an origin-destination pair od and an unreliable
transit service network with diversion nodes, that is, nodes
where choices are made among different subpaths. Because
of transit service stochasticity, rather than relying on a
pretrip selected single path from origin up to destination,
users should adopt a travel strategy ST which is [5] a set
of coherent behavioural decision rules (diversion rules) at
diversion nodes, according to random service occurrences
(e.g., random arrival times of buses at a stop, random transit
vehicle crowding, failure to board, and so on), with the aim
of minimising the expected travel cost or maximising the
expected travel utility.

Nguyen and Pallottino [15] highlighted the underlying
graph structure of Spiess’ basic strategy concept, introducing
a graph-theoretic framework and the concept of hyperpath,
which is an acyclic subnetwork, connecting the origin to the
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destination and including a subset of diversion nodes and a
subset of diversion links. At each diversion node, the choice of
diversion link depends on the occurrences of transit services
and therefore there are certain probabilities for choosing a
link among the alternative diversion links [16].

In general, two types of graph representation of a transit
service network can be used: line graph and run graph.
While nodes of a line graph (see Figure 1) have only spatial
coordinates, in a run graph the nodes have space-time
coordinates (diachronic graph). Hence, below we refer to two
types of hyperpath representations: line hyperpaths and run
hyperpaths. To each line hyperpath corresponds run hyper-
paths with the same spatial nodes, but with different temporal
coordinates for each spatial node.

3. Optimal Travel Strategy Search

Although this paper focuses on subjective optimal strategies,
objective optimal strategy search methods are first analysed
since such methods can suggest efficient search methods for
the subjective case as well.

3.1. Objective Optimal Travel Strategies as Solutions to Markov
Decision Problems. Path choice in an unreliable service net-
work entails decision making without comprehensive knowl-
edge of possible future evolution of all relevant factors. Hence
the outcomes of any decision depend partly on randomness
and partly on the agents decisions. Therefore, in this case a
general theoretical framework for objective optimal strategy
search can be found in stochastic decision theory. If path
choice is considered as decision making in a Markov decision
process (MDPs), the Markov decision problem (MDPm)
approach can be considered, as, for example, reported in
Nuzzolo and Comi [17] and as summarised below for the
reader’s convenience.

A Markov decision process (MDPs; [18]) can be defined
by the quintuple (T;SS%; A%; p* [s'/s,al; 7" [s, a]), where

(i) T is a set of stages T at which the decision maker
observes the state of the system and may make
decisions,

(ii) SSis the state space, where SS” refers to the possible
system states for a specific time 7,

(iii) A7 is the set of possible actions that can be taken after
observing state s at time 7,

(iv) p* [s'/s, a] are the transition probabilities, determining
how the system will move to the next state. In
particular, p* [s'/s,a] defines the transition to state s’
belonging to SS™*! at time 7 + 1 and, as a Markov
process, only depends on state s and chosen action a
at time 7. P is the set of transition probabilities,

(v) r"[s, a] is the reward function, which determines the
consequence for the decision maker’s choice of action
a while in state s, and R is the reward set. In our cases,
the value of the reward depends on the next state of
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the system, effectively becoming an expected reward,
expressed as

r'[s,a] =
SIESST+1

rr [s,a,s’]-pr[%,a] (1)

where 7"[s,a, s’] is the relative reward when the
system is next in state s'.

An MDPs with a specified optimality criterion (hence form-
ing a sextuple) is called a Markov decision problem MDPm.
Policies 7w are essentially functions that regulate, for each
state, which actions to perform. The solution of an MDPm
provides the decision maker with an optimal policyn™ that
associates to states SS actions A optimising a predefined
objective function.

3.2. Objective Optimal Travel Strategy as an Optimal Policy
of MDPm. Given a run service network, the optimal travel
strategy ST" can be seen as the optimal policy * of a finite
and discrete MDPm, considering that

(i) the set T'is the set of times () when the traveller is at a
diversion node s and a diversion link has to be chosen;

(ii) the state space set SS is the set of diversion nodes
among which travellers can move;

(iil) an action a is a set of diversion links among which
travellers can choose with a given diversion rule and
the action set AZ is the set of actions a;

(iv) the change in the time of traveller location within the
diversion node set consists in a Markov process;

(v) the transition probabilities pT[s' /s,a] are the prob-
abilities of going from a diversion node (s) to each
of the following diversion nodes (s") if action a is
applied;

(vi) the reward function r"[s; a] is the expected utility of
applying action a at diversion node s;

(vii) the optimal policy 7" gives the best sequence of
actions, considering the expected utility up to desti-
nation.

To represent an MDPm, a state-action tree can be used. At
every diversion node, each action can be represented with a
set of outgoing links to the next diversion nodes. In Figure 2,
in relation to the diachronic graph, the decision tree is
reported. For example, at diversion node F three different
actions are possible: (1) using run 7.1 (action a;) and hence
stop G; (2) using run 8.1 (action ag), and hence stop E; (3)
using both run 71 and run 8.1, with the diversion rule of
comparing the expected utility of boarding the first arriving
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run and the expected utility of the next run and then choosing
the best (action a,,¢). With regard to transition probabilities,
consider the case of diversion node F in Figure 2. If action
a,,s is applied, the probability of moving onto node G is
equal to the probability of using line 7, and the probability of
moving onto node E is equal to the probability of using line
8. If action g, is applied, the probability of going onto node G
is equal to 1. The same holds for action a4 and node E.

3.3. Objective Optimal Strategy Search Methods. As explored
above, the search for an objective optimal travel strategy
in a transit network is equivalent to the solution of a
Markov decision problem, MDPm. This solution, when the
transition probabilities and the expected rewards are known
or computable, can be found through exact linear or dynamic
programming algorithms. In particular, efficient network
algorithms based on the Bellman equation [19] can be used,
as in Nguyen and Pallottino [15]. For example, in the case
of the optimal strategy reported in Spiess and Florian [12],
hypotheses of random arrivals of buses and users at stops
and limited information on services allow the transition
probabilities to be computed analytically, although such
hypotheses are often not congruent with the case studies in
question. A more recent example is the dynamic routing of
Gentile [20]. Note that in this case operating conditions are
assumed for the transit system in several cases very different
from the real ones. In order to take into account the spe-
cific case study conditions without knowledge of transition

probabilities, some authors use MDPm approximate solution
approaches, such as enforcement learning methods (see, for
example, the simulator MILATRANS, in [21]). However, this
approach requires processes of exploration and exploitation
with excessive computation times to reproduce each event.
Other authors, in order to consider the actual conditions of
the case study, use an adaptive routing problem in a stochastic
time-dependent transit network, in which the link travel
times are discrete random variables with known probability
distributions [22]. Nuzzolo and Comi [11, 17] indicate a way
to estimate the transition probabilities and the expected
rewards for intelligent transit networks and thus apply an
exact objective optimal strategy search method.

3.4. Subjective Optimal Strategy Search. In order to find the
subjective optimal strategy given the actual conditions of the
case study, some authors assume diversion rules which are
too complex in relation to travellers’ cognitive capacity. For
example, a comparison of optimal subhyperpaths is applied
by Nuzzolo et al. [2] in the simulator DYBUSRT.

4. The Proposed Behavioural Framework

In this paper, an approach is proposed which applies path
choice behavioural modelling based on a dynamic subjective
travel strategy and defined in the framework of a Markov
decision problem. The proposed model, an advanced version
of that presented in Comi and Nuzzolo [13], allows for
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service occurrences and information provided to travellers
and considers some travellers’ cognitive limitations and
simplifications. In the following subsections, the proposed
behavioural framework is presented and examined in the
MDPm perspective. Further, some application examples are
reported.

Traveller behavioural assumptions are defined in the
context of

(i) an unreliable or stochastic and within-day dynamic
transit service network with diversion nodes;

(ii) transit users who often travel on the origin-destina-
tion (O-D) pair (frequent users) and are equipped
with advanced mobile route planners with real-time
individual predictive information, supplying a set of
suitable lines and relative path attributes (i.e., travel
time components) from current position to destina-
tion;

(iii) subjective optimal strategy-based travel behaviour.

4.1. Traveller Behavioural Hypotheses

4.1.1. Master Hyperpaths. Given an O-D pair od and its
set of available paths at time 7, traveller u, as a frequent
user on O-D pair od, and with the support of an advanced
transit trip planner, is assumed to consider a subset of line
paths feasible for the traveller. That is, paths that satisfy
some logical and behavioural constraints, sometime called
a mental map (see, e.g., [21]) and here called master line
hyperpath MHP'" (Figure 3). Due to the randomness of
transit services, travellers do not refer exactly to time 7 but to
a time slice A7 (e.g., AT = T + 5 min.), even if, for simplicity,
we continue to use 7 below.

As amaster line hyperpath MHP can depend on time slice
7 and day ¢, due to within-day and day-to-day dynamicity
of the transit service, it is indicated as MHP™". A master
line hyperpath can be dynamically upgraded at each diversion
node with respect to the service state at time 7 of day t. For

example, information on disrupted lines allows such lines to
be eliminated.

4.1.2. Experienced Path Utility. Given a line service graph, a
travel strategy ST is defined through a line hyperpath HP from
origin o to destination d, with a set of diversion nodes and a
diversion rule dr;, for each diversion node i, which determines
the diversion link choice behaviour at that node. Hence a
strategy ST will be indicated as ST[HP;dr], withdr the set
of diversion rules dr;. Note that on a service network, several
strategies and therefore several relative hyperpaths can be
used. Given a diversion rule and an objective function Of
the strategy ST*[HP",dr] which optimises this function is
the optimal strategy conditional upon the diversion rule dr
and the objective function Of, with HP" the relative optimal
hyperpath.

As a result of random service occurrences and traveller’s
choices according to a diversion ruledr, each feasible path k
from the origin to the destination has a certain probability
of use and its experienced path utility TU;"™ is a random
variable.

Therefore, it can be assumed that travellers consider the
average ATU oflong-period experienced values of all random
TU relative to all paths of strategy ST. Thus, the subjective
optimal strategy ST is the strategy with maximum average
experienced utility ATU™ perceived by the traveller

4.1.3. Dynamic Travel Choices and Diversion Rule. We assume
that a traveller u, in order to optimise his/her travel utility,
applies the following dynamic travel behaviour: “Given a
master line hyperpath, at each diversion node an optimal
diversion link is chosen (with the diversion rule reported below)
and the relative path is used up to the next diversion node,
where a new optimal diversion link is chosen and used.”

The proposed diversion rule dr; is composed as follows:
given a master line hyperpath MHP![, at diversion node i
and time 7 of day t, traveller u considers all the diversion links
il, associates to each of them an anticipated utility, defined



below, and chooses the diversion link iI* with maximum
anticipated utility.

4.1.4. Diversion Link Anticipated Utility. Given a diversion
node i and a diversion link i/, the anticipated utility AU;; is
obtained by summing:

(i) the anticipated utility AU, of the subpath from
diversion node i up to the next diversion node w,
including the diversion link il;

(ii) the nodal anticipated utility AU, of the diversion
node w up to the next nodes w'.

For example, the anticipated utility of link B-F of Figure 2 is
given by the anticipated utility of subpath B-F plus the nodal
anticipated utility of node F, which in turn is a function of the
anticipated utility of subpaths F-E-D and F-G-D.

4.1.5. Anticipated Utility of Subpaths (AU,). Given subpath k
up to the next diversion node w, the anticipated utility AU, at
time 7 of day f is a linear function of the vector AX}"™* of its
attributes AX, anticipated by traveller u at time 7 of day t:

u,T,t _ u U,T,t
AUP™ = qu AX 2
J

with 17}‘ parameters of the utility function. In turn, the

attributes AX anticipated by travellers are functions of path
attributes forecasted (if any) by travellers and those forecasted
by the information system:

AXpTt =B EX + (1-8) - PXT, 3)
where

(i) AXZ:JT.’t is the j-th anticipated attribute value at time 7
of day t;
(ii) FX;; is the j-th attribute value forecasted by the
information system;
(iii) PXZ:]T.’t is the value (if any) of j-th attribute forecasted

by traveller u at time 7 of day t (traveller forecasting
process);

(iv) & € [0,1] is the weight given by traveller u to the
information provided, dependent on the traveller’s
compliance with the information system.

4.1.6. Traveller Forecasted Attributes of a Path. Assuming that
travellers use an exponential smoothing forecasting method
[23], the values PXZ’JT.’t of the j-th attributes forecasted by

traveller u at time 7 of day ¢ are assumed as

PXET =" TXEY T 4 (1-0") - PXETT (4

where

(i) TXZ:JT.’H is the value of the j-th attribute experienced
by traveller u at time 7 of day #-1;

(ii) PXZ’;.’H is the value of the j-th attribute forecasted by
traveller u, at time 7 of day #-1;
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(iii) v € [0,1] is the weight given to attributes experi-
enced on day t-1, depending on the memory process
of traveller u.

4.1.7. Nodal Anticipated Utility of Next Diversion Node w
(AU,,). The nodal anticipated utility AU, at time 7 of day ¢,
of the diversion node w with G, subpaths k" up to their next
diversion nodes w', is obtained by travellers as a function of
the anticipated utilities of these subpaths k':

AUZ;T,t _ Z Pu,‘r,t [k’] ’AUZ;TJ
k'eG,

©)

Uu,T,t [

where p*"'[k'] is the perceived share of using path k' at time
7 in the past days and AUS™ is the anticipated utility of

subpath k' at time 7 of day ¢. It is assumed that the values
of shares p*™[k'] perceived by traveller u at time 7 of day ¢
are given by

=1 _urt
Dy G

=1 _unt
Zjer h “1;”

Pu,‘r,t [k,] _ (6)

where

(i) p k'] is, at time 7 of day ¢, the perceived share of
using path k';

u,T,t [

(ii) oc;:;”’ is the weight given by the traveller to path k" in
relation to day ¢';

0 if path k" was not used at day ¢’

ol =1 ¢t , , @)
) if path k" was used at day t,

with ¢" the parameter of the traveller’s memory pro-
cess.

In the learning process, travellers search for the optimal
weights & which maximise the average experienced utility
(ATU), as simulated in the application test of Section 4.2
below.

4.1.8. Example of Diversion Choices. As an example of a diver-
sion choice, consider the choice at origin O of the first
boarding stop in the master hyperpath of Figures 2 and 3.
Traveller u is assumed:

(i) to identify, within the master line hyperpath, the set
of diversion links with the root on O, in our case the
links O-B and O-C;

(ii) to associate an anticipated utility AU, to each diver-
sion link ol, in our case:

(a) for link O-C as the anticipated utility of path O-
C-E-D;

(b) for link O-B as the sum of the anticipated utility
of link O-B and nodal anticipated utility of node
B, which considers the anticipated utilities of
path B-G-D and the anticipated utility of path
B-F plus the nodal utility of diversion node F.
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(iii) to use the diversion link ol* with the maximum
anticipated utility AU”".

Subsequently, at time 7', when traveller u is at the (first board-
ing or interchanging) stop i and a run r of a line belonging to
the run master hyperpath arrives (as depicted in Figure 2),
s(he) is assumed:

(i) to consider the diversion link il, to board run r and
the diversion link il,, to wait;

(ii) to associate an anticipated utility to each of the two
above diversion links;

(iii) to compare the anticipated utilities of these diversion
links;

(iv) to board run r if the anticipated utility associated
with the link incorporating run r is greater than the
maximum anticipated utility associated with waiting
link il ;

(v) if the traveller does not board run r, the process is
reapplied when the next run arrives.

4.1.9. Model Parameter Estimation. The application of the
presented model requires the knowledge of the following
parameters:

(i) #; are the parameters of the anticipated utility func-
tion AU,

(i) & € [0,1] is the weight given by travellers to the
information provided,

(iii) v € [0,1] is the weight given to attributes experi-
enced on day #-1,

(iv) ¢* is the parameter of traveller’s memory process of
the perceived share of using path k.

Parameters #; can be obtained, for example, with stan-
dard stated-preference surveys and aggregate random utility
model calibration. Parameters v, £, and ¢ can be obtained
applying a reverse assignment procedure [14], minimising the
distance between measured alighting and boarding (or on-
board) counts and those obtained through the model [24, 25].

4.2. An Application to a Real Network. An application of the
proposed path choice modelling, with a unique subjective
optimal strategy and the same parameters v, £, and ¢ for all
travellers, within the assignment model in DYBUSRT [2], was
carried out for the same network as in the authors’ other
studies in the field of run-oriented transit assignment. The
aim of the application was to assess how different values
of parameters & and hence different combinations of the
forecasted utilities of the traveller and information system
affect expected values of average experienced utility ATU.
The service network (Figure 4) was obtained from the
real service structure of the Fuorigrotta district in Naples
(Italy), whose bus running time variation coefficients were
appropriately modified for the purpose of the simulation. The
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TABLE 1: Application results.
Running time cv £ Averagevalue of TU" Running time cv 4 Averagevalue of TU"
0.00 -1343.1 0.00 -504.1
0.25 -1058.0 0.25 -410.9
0.20 0.50 -992.2 0.75 0.50 -420.6
0.75 -713.7 0.75 -521.8
1.00 -978.8 1.00 -491.7
0.00 -874.5 0.00 -477.9
0.25 -704.3 0.25 -376.7
0.50 0.50 -649.4 1.00 0.50 -407.5
0.75 -938.3 0.75 -495.5
1.00 -973.8 1.00 -547.7

*The average experienced utility ATU is computed for 60 simulation days.

study area consists of 11 traffic zones served by 11 transit lines,
which supply 245 runs (with an average of 6 runs per hour
on each transit line) from 7:00am to 10:00am on a typical
workday (day ¢).

As regards the master line hyperpath, according to the
literature on choice set formation and as reviewed by Bovy
[26], the master set of path alternatives was generated from
the set of all available paths and then considering logical
constraints to avoid loops, successive boarding of the same
run or the use of opposite lines, and behavioural constraints
to eliminate unrealistic alternatives in terms of maximum
values of attributes, such as number of transfers, transfer
time, access and egress times, and schedule delay. Combining
the residual paths, a master line hyperpath from each origin
o to each destination d was generated. Level-of-service
attributes composing path utilities were calculated by using
a diachronic graph, whose service subgraph consists of about
10,400 nodes and 20,100 links. The experienced path utility
function is the same as that reported by Nuzzolo et al. [2].

The results entail the reproduction of an initial transient
of about 60 days to set up the traveller’s prior knowledge of
path attributes and to reach an equilibrium state, followed by
30 replications of each simulation period, aiming to obtain
statistically significant estimates of state variable expected
values (i.e., confidence interval method with specified preci-
sion at 95%). Anticipated attributes are estimated assuming
parameter v equal to 0.3 [27, 28], while ¢ was hypothesized
equal to 1.

The assignment algorithm is coded in C++ and data are
managed with a Postgres 9.1 DBMS. As the programming
code is optimised to use the latest technologies in the
field of multicore CPU processing, simulation times strictly
depend on the CPU architecture (i.e., number of cores and
processors) and on the operating system. Referring to the
above-mentioned three-hour morning period of a workday
(i.e., 7:00am - 10:00am), simulation takes 35 seconds on a
computer with an Intel Core 2 Duo 3.33GHz, 8Gb RAM,
running on Mac-OSX. This time is reduced to 12 seconds if
we use a computer equipped with two Intel Core i7 293 GHz,
16Gb RAM, running on MS-Windows 7.

Four different coefficient variations of bus running times
were used to consider different levels of service unreliability.

The results (see Table 1) indicate that the weights used for
combining the utilities in question strongly influence the
average experienced utility and that the weights to use in
order to minimise the experienced travel disutility strongly
depend on the unreliability of the transit system. As expected,
with increasing transit service unreliability and hence with
increasing forecasting failures, the best overall performances
are obtained with the use of a low £ parameter, to give much
more weight to personal than to system forecasted attribute
values.

4.3. The Proposed Behavioural Framework from an MDPm
Perspective. If the behavioural framework with the proposed
diversion rule is applied, the subjective optimal strategy
found at a diversion node can be considered as an approxi-
mate solution of a MDPm, where

(i) the master hyperpath is found by considering quite
simple logical and behavioural constraints (see
Figure 3);

(ii) the perceived shares of use of subpaths k' at time 7
in previous days, from the diversion node w up to
the next diversion node, are proxies for transition
probabilities (see (6));

(iii) the anticipated utilities are proxies for expected
rewards (see (2)). Indeed, the anticipated utilities are
functions of the anticipated path attributes, given by
a combination of the values forecasted by the infor-
mation system and the values forecasted by travellers.
The information-system forecasted attribute values, if
obtained through statistical forecasting methods, are
estimates of expected values. The traveller’s forecasted
attribute values are obtained through exponential
smoothing methods, hence proxies of expected val-
ues. Thus the anticipated utilities can be assumed to
be proxies of expected utilities;

(iv) the traveller, at each diversion node, considers as
an action only that of choosing among all available
diversion links. Referring to the example depicted
in Figure 2, the state-action trees are simplified, as
reported in Figure 5, where at node B the only
possible action is a5, ; while at node F it is action a, 4.
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FIGURE 5: Example of reduced action tree of Figure 2.

5. Conclusions and Research Perspectives

This paper sought to overcome some limits of transit path
choice modelling, especially that concerning the use of an
objective optimal travel strategy for multiservice stochastic
networks, instead of subjective strategies. A path choice
model was therefore developed by using a dynamic sub-
jective travel strategy. Further, the model was defined in
the framework of a Markov decision problem. The optimal
subjective strategy can be considered as the solution of a sim-
plified MDPm with approximate transition probabilities and
approximate expected rewards. It takes into account service
occurrences and the information provided to travellers and
applies a diversion rule that considers some of the travellers’
cognitive limitations and simplifications.

Even if the proposed modelling framework requires
several model parameters, the new opportunities resulting
from the availability of a large quantity of data obtained from
automated data collecting allow model parameter estimation
and upgrading to be more easily achieved, for example, by
using the reverse assignment method recalled in the paper.
This same data availability helps to obtain new models of
travel strategy generation for different categories of users,
to be used as subjective travel strategies in assignment
models. Therefore, the next steps in this research will be the
setup and testing of an overall procedure, including inverse
assignment parameter estimation, on the test network. In the
near future, through a greater deployment of bidirectional
communication between travellers and information centres,
a suitable quantity of data will be available, making it possible,
at least in theory, to calibrate not only individual model
parameters, but also specific subjective strategy-based transit
path choice models.

Further research should explore master line hyperpath
modelling and the development of travel strategies within
theories other than that of expected utility. In addition, the
introduction of stochastic path choice models which take into
account user perception errors and analyst modelling errors
is another possible modelling improvement.
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The data used to support the findings of this study are
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