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Abstract

Motivation: Signaling and metabolic pathways are finely regulated by a network of protein phos-

phorylation events. Unraveling the nature of this intricate network, composed of kinases, target

proteins and their interactions, is therefore of crucial importance. Although thousands of kinase-

specific phosphorylations (KsP) have been annotated in model organisms their kinase-target net-

work is far from being complete, with less studied organisms lagging behind.

Results: In this work, we achieved an automated and accurate identification of kinase domains,

inferring the residues that most likely contribute to peptide specificity. We integrated this informa-

tion with the target peptides of known human KsP to predict kinase-specific interactions in other

eukaryotes through a deep neural network, outperforming similar methods. We analyzed the differ-

ential conservation of kinase specificity among eukaryotes revealing the high conservation of the

specificity of tyrosine kinases. With this approach we discovered 1590 novel KsP of potential clinic-

al relevance in the human proteome.

Availability and implementation: http://akid.bio.uniroma2.it

Contact: luca.parca@uniroma2.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein phosphorylation is a fast and reversible regulation mechan-

ism able to control the function and to regulate the activity of pro-

teins and their interactions in signaling and metabolic pathways

(Newman et al., 2013; Oliveira et al., 2012; Reimand and Bader,

2013; Sacco et al., 2012; Schwammle et al., 2014; Seet et al., 2006).

This post-translational modification is managed by a number of

domains that have been selected through evolution to ‘write’

(through kinases), ‘erase’ (through phosphatases) and ‘read’ phos-

phorylations (Seet et al., 2006) (e.g. the SH2 domain). Kinases rec-

ognize specific key proteins and their specific interactions are

rewired in cancer-related signaling pathways (Creixell et al., 2015a,

b; Ferrè et al., 2014; Palmeri et al., 2014). Alterations of signaling

networks with somatic mutations altering phosphorylation sites

have been shown to be present in the majority of tumors and to

involve known cancer genes with high conservation and functional

impact (Reimand et al., 2013). Among all the types of protein post-

translational modification, protein phosphorylation is currently the

most studied with more than 150 000 known modified protein

residues (Minguez et al., 2015). Around 500 human protein

kinases have been characterized (Manning et al., 2002b) and

analyzed to find common and specific traits in their mode of action
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(Creixell et al., 2015a; Mok et al., 2010; Zhu et al., 2005). Different

approaches, based on different sources of information (e.g. protein–

protein interactions, gene expression profiling and genetic interac-

tions) and methodologies (e.g. protein microarray) (Breitkreutz

et al., 2010; Fiedler et al., 2009; Linding et al., 2007; Newman

et al., 2013; Van Wageningen et al., 2010), have been developed for

the high-throughput identification of kinase-substrate relationships.

Despite these efforts and the amount of data generated, the network

connecting kinases and their target proteins through phosphoryl-

ation in a kinase-specific fashion is mostly unknown, with only

9159 known kinase-specific phosphorylations (KsP) in Homo sapi-

ens (Hornbeck et al., 2015). Moreover the numbers of annotated

kinases and kinase-specific targets decrease in less studied and anno-

tated organisms.

Different kinase-independent and kinase-specific methods have

been developed to complement experimental approaches, trying to

overcome their technical/biological limitations, in order to predict

phosphorylation sites, using evolutionary, sequence and structure

features elaborated with different approaches (e.g. Hidden Markov

Models (HMMs), Support Vector Machines, Bayesian decision the-

ory, Neural Networks), for example NetworKIN (Horn et al.,

2014), Musite Deep (Wang et al., 2017), GPS 2.0 (Xue et al., 2008),

iGPS (Song et al., 2012) and NetPhosK (Blom et al., 2004).

Although different in terms of availability and capability (e.g. kinase

coverage, input size, methodology and execution time etc.), the ma-

jority of the methods characterize peptides known to be targeted by

specific kinases using different features (e.g. amino-acid compos-

ition, sequence similarity, secondary structure, local charge state,

solvent accessibility, coexpression and protein–protein interaction

data). Kinases, and/or kinase families are generally used to label and

group their target peptides in order to build a predictive kinase-

specific, or kinase family-specific, model. An alternative approach is

presented by the Predikin method (Ellis and Kobe, 2011) which

takes into account the sequence of kinases, structural features of key

residues, termed ‘determinants’, identified by analyzing the structure

of a small set of kinases-target complexes and substrate specificities

determined by peptide library experiments. In this way the kinase

determinants are used to classify specific targets for each kinase.

However the a priori knowledge of the kinase specificity rules is

missing from the vast majority of the other methods.

Generally, these available methods rely on the assumption that

signaling interactions and kinase specificities rules are conserved

and shared in eukaryotes (Manning et al., 2002a) in order to predict

novel interactions in different organisms. These methods are usually

trained on one or few eukaryotes with the highest amount of experi-

mental data, in terms of kinases and known phosphosites, and then

applied to other organisms. Organism-specific variations in the kin-

ase specificity rules are expressed usually by kinase-specific groups

of phosphosites that are used in the training phase leaving the kinase

sequence out and therefore limiting the reach of a method. This

would require the complete annotation of kinases for each species,

which is a hard task especially in uncharacterized organisms.

With this in mind, we designed a method for the Automatic

Kinase-specific Interaction Detection (AKID) that merges the infor-

mation encoded in the kinase with the information encoded in the

target peptide. AKID is capable of automatically detecting protein

kinases in a given proteome (without any prior annotation), their

key residues for specificities, termed Determinants of Specificity

(DoS) and ultimately their target KsP sites. Differently from other al-

ready available methods, AKID does not require prior kinase anno-

tation and uses the Kinspect (Creixell et al., 2015a) approach, which

does not rely on structural data, to capture kinase DoS, which are

not necessarily in close contact with the binding site of the target

peptide. In this work we trained the proposed approach on a curated

training set of human KsP and tested it on proteomes belonging to

different organisms comparing the performance with other pub-

lished methods. We observed different performances of the method

on the different kinase groups, which we examined in depth from an

evolutionary perspective with the analysis of orthologous KsP in 45

different eukaryotes. Finally we show how the method can be used

to discover novel KsP of potentially high clinical relevance in the

human proteome.

We envision that these predicted KsP can shed more light on the

mechanisms underlying pathogenic conditions. In order to allow an

easy access of the method to researchers we developed a web inter-

face and a standalone software (available at http://akid.bio.uni

roma2.it).

2 Materials and methods

2.1 Identification of kinase domains
In order to identify the kinase domains in a given proteome, we used

the hmmer (Finn et al., 2015) package to build a HMM profile from

a manually curated MSA of 530 human kinase domain sequences

(Creixell et al., 2015a). We used this HMM to identify all the kinase

domains in the canonical proteome of all selected organisms (as

detailed below) obtained from Ensembl version 79. We used the

hmmscan function to scan the proteomes and identify the kinase

domains as the matches with P-value<0.05.

2.2 Identification of the kinase determinants of

specificity
We used the Kinspect method (Creixell et al., 2015a) to identify the

residues that are involved in determining the peptide specificity

across the kinases. By analyzing an alignment of human kinase

domains the authors of Kinspect were able to identify, and experi-

mentally validate, the subset of residues that better account for the

target peptide recognition (DoS) using a learning classifier system.

The alignment of the human kinases, mentioned above, was ana-

lyzed using Kinspect, highlighting 63 DoS residues. The kinase

domains that are identified in any eukaryotic proteome through the

HMM are then individually aligned to the same HMM using the

hmmer package (hmmalign function) and DoS are accordingly

mapped.

2.3 Training set
Phosphorylation sites, and known kinase–substrate interactions for

human, mouse, rat and yeast (respectively 9159, 1525, 763 and

3710 interactions) were downloaded from PhosphoSitePlus

(Hornbeck et al., 2015) and PhosphoGRID (Sadowski et al., 2013).

These known kinase-specific interactions were mapped on the

Ensembl proteome of the selected organisms using BLAST

(Camacho et al., 2009). For every peptide, a window of 67 residues

surrounding the phosphorylation site was extracted. Some of the

kinases involved in the known interactions had more than one kin-

ase domain (10 in H.sapiens, 7 in Mus musculus, 3 in Rattus norve-

gicus and 1 in Saccharomyces cerevisiae). We therefore excluded all

the interactions where the kinase had multiple kinase domains, since

PhosphositePlus and PhosphoGRID do not provide information

about which kinase domain is active and/or responsible for a known

kinase–substrate interaction. We obtained 12 570 interactions

(7809, 1306, 593 and 2862 for human, mouse, rat and yeast, re-

spectively). The human dataset has been selected to train AKID,

2 L.Parca et al.
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therefore we clustered the kinase domains in this dataset at 70% se-

quence identity with CD-hit (Li and Godzik, 2006). The final

human training set resulted in 6654 positive interactions involving

199 kinase domains. In order to better evaluate the method perform-

ance we added an equal number of negative interactions. The data-

set of negative interactions was built by associating kinases in the

positive dataset with randomly-selected phosphorylated peptides

from the human phosphoproteome annotated in PhosphositePlus or

PhosphoGRID. A secondary dataset, of equal size, has been created

with the negative interactions, involving peptides centered on S/T/Y

residues, selected randomly from the proteome regardless of their

phosphorylation annotation.

2.4 Sequence features encoding
The input of our method is composed of the kinase DoS and the resi-

dues of the target peptide converted using the orthogonal encoding.

More specifically, each kinase DoS and target peptide residue is

encoded into a string of 21 binary values, representing the 20 resi-

dues plus a gap position. The string position corresponding to the

residues or gap is set to 1 and the other 20 characters are set to 0.

Since 63 DoS and 15 peptide residues were considered, the binary

input for one interaction contains 1638 values.

2.5 Deep neural network training
Known human KsP were used to train the deep neural network

(DNN) underpinning the AKID algorithm in a 10-fold cross-valid-

ation. To find the best hyperparameters of the DNN, we performed

a grid search over batch-size (values explored: 100, 200, 400, 600,

800) and number of neurons for the first (from 10 to 1010 neurons

with an increase step of 200) and second hidden layer (one quarter,

half and three quarters of the first layer) while maintaining fixed the

default values of Maxout Function (softmax), Backpropagation

Rate (0.5), Activation Function (softplus, which is a smoothed ver-

sion of the rectified linear activation function), number of epochs

(10) learn rate (0.5) and Backpropagation Function (resilient back-

propagation). We employed an r-propagation algorithm with mean

squared error function and weight normalization. At each iteration,

all possible combinations of parameters were tested using receiver

operating characteristic (ROC) curves and area under the curve

(AUC) analysis (Supplementary Table S1A). The DNN training and

test were performed using R packages darch (https://cran.r-project.

org/web/packages/darch/index.html) and ROCR (Sing et al., 2005).

The hyperparameters with the best performance across our grid

search are as follows: 2 hidden layers respectively of 210 and 53

neurons and a batch-size of 400.

2.6 Evolutionary analysis
Using our dataset of 6654 known human KsP, we inferred the ortho-

logues of every kinase and target proteins in 45 eukaryotes. These

organisms were collected from different classes, representing organ-

isms both close and distant to H.sapiens (Supplementary Table

S1B). We identified orthologous proteins through the OMA

(Altenhoff et al., 2015) database, retaining only proteins with a 1:1

orthology relationship. Matching target peptides were mapped from

the global alignment [Needleman–Wunsch (Rice et al., 2000)] of the

human protein to its ortholog. Evolutionary distances between

organisms (divergence time) were collected from TimeTree (Kumar

et al., 2017). Threshold scores for phosphorylations targeting serine,

threonine and tyrosine (0.545, 0.517 and 0.34, respectively) were

selected as those maximizing the discrimination between true KsP

and false KsP recognition during the training phase (i.e. the score

threshold corresponding to the intersection between the density

curves of the scores of true and false KsP, Supplementary Fig. S1).

2.7 Prediction of KsP involved in pathogenic mutations
We collected 22 489 human genes from Ensembl (version 79). We

used the R BiomaRt package (Durinck et al., 2005) to retrieve the

missense mutations in all the protein isoforms associated to every

gene. Mutations were refined selecting only pathogenic mutations

associated with a Polyphen score below 0.5 involving phosphorylat-

able residues. Also mutations introducing phosphorylatable residues

were included in the set, which was given to AKID as input for the

KsP prediction. The semantic similarity between the GO terms asso-

ciated to a kinase and a target protein has been calculated through

the GoSemSim package. The shortest path connecting proteins

linked by predicted KsP was calculated through the physical

protein–protein interaction network from STRING (Szklarczyk

et al., 2017): only those interactions with a score of 900 or higher in

the ‘experimental’ channel were selected.

3 Results

We designed AKID as a method for the automatic detection of kin-

ases and their interacting targets with no a priori knowledge or func-

tional annotation. We tested the ability of the method to identify

kinase domains in the proteome of H.sapiens and other eukaryotes.

These domains were then analyzed with the Kinspect method in

order to identify the residues that are responsible for the target speci-

ficity, defined as DoS. Subsequently we trained and tested a DNN

by combining the DoS residues of human kinases and their known

target peptides (Supplementary Fig. S2).

3.1 Detection of kinase and determinants of specificity
We built a HMM from a manually curated multiple sequence align-

ment of 530 human kinase domains and used this HMM to identify

501 kinase domains in the human canonical proteome of which 496

are known and 5 have not been annotated as kinases. These kinases

were identified in the human proteome (22 486 proteins, see

Materials and methods) with a sensitivity of 0.94 and a specificity of

0.99 (Supplementary Table S1C). The 34 known kinases that were

not identified belong to the class of the atypical kinases and, as

expected, lack similarity with other kinase domains. The perform-

ance of the kinase domain detection was evaluated calculating the

Jaccard index between the mapped residues of the predicted

domains and the known residues belonging to the 496 kinase

domains, averaging 0.93 (Fig. 1a). The majority of the kinases with

a lower Jaccard index value (e.g. 15 kinases with <0.7) are again

atypical kinases or kinases that do not fall in any major group and

therefore can be hardly detected. The same HMM was used to de-

tect kinases in the proteome of other organisms (M.musculus,

R.norvegicus, Drosophila melanogaster, Caenorhabditis elegans,

S.cerevisiae) reaching an average Jaccard index of 0.92 and a specifi-

city of 0.99 on all the organisms while reaching a sensitivity of 0.92

in M.musculus and 0.96 in the other organisms (Fig. 1a and

Supplementary Table S1D). All these results show the high reliability

of AKID in the recognition of kinase domains in different eukaryotic

proteomes by only using human kinase data. Finally, we map the

DoS positions in all the identified kinase domains using the Kinspect

algorithm. The DoS residues are then used as part of the AKID input

together with the target peptide residues (see Materials and

methods).

Kinome-wide identification of phosphorylation networks 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty545/5055125 by U

niv D
egli Studi di R

om
e user on 10 Septem

ber 2018

Deleted Text: N
Deleted Text: N
Deleted Text: D
Deleted Text: N
Deleted Text: N
Deleted Text:  
Deleted Text: (MSE) 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
https://cran.r-project.org/web/packages/darch/index.html
https://cran.r-project.org/web/packages/darch/index.html
Deleted Text: E
Deleted Text: C
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
Deleted Text: S
Deleted Text: T
Deleted Text: T
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: E
Deleted Text: Determinants of Specificity (
Deleted Text: )
Deleted Text: deep neural network
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
Deleted Text: Hidden Markov Model (
Deleted Text: )
Deleted Text: S
Deleted Text: S
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
Deleted Text: A
Deleted Text: -
Deleted Text: less than 
Deleted Text: <italic>D</italic>
Deleted Text: <italic>.</italic>
Deleted Text: <italic>C.</italic>
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty545#supplementary-data
Deleted Text: E


3.2 Training of the AKID method
The training set contains 6654 non-redundant human KsP collected

from publicly available resources: 4086 phospho-serines, 1536 phos-

pho-threonines and 1032 phospho-tyrosines, involving 199 kinases

(each phosphorylating 33 sites on average). This dataset contains an

equal number of negative interactions (see Materials and methods)

and was used for the design and training of AKID with a DNN able

to classify KsP. The 15-residues long peptide centered on the phos-

phosite and the 63 kinase DoS residues are then combined into an

orthogonally encoded 78-residues long sequence forming the AKID

input (see Materials and methods section). The DNN was trained

and tested through a 10-fold cross-validation. A grid search was

conducted to optimize the key parameters of the neural network (see

Materials and methods section). An average AUC of 0.78 was

reached during the method test (Fig. 1b and Supplementary Table

S1E). Among the different kinase families tyrosine kinases per-

formed the best with an AUC of 0.93. On the other hand the TKL

family had an AUC of 0.58, reflecting the high diversity among the

TKL kinases, some of which can phosphorylate both serines/

threonines and tyrosines, and the fact that they are similar to

tyrosine kinases but lacking their characteristic motifs

(Supplementary Table S1F). Accordingly, we also observed different

trends regarding the residue targeted by the phosphorylation with

KsP targeting serines, threonines and tyrosines, having an AUC of

respectively 0.75, 0.75 and 0.91. We also performed an additional

training of the method using a secondary dataset where the negative

interactions are chosen randomly from the proteome, regardless of

the peptide being annotated as phosphorylated, and observed an

improved performance of AKID in recognizing real KsP (AUC of

0.84). This performance highlights how the task of recognizing real

KsP among phosphosites is more difficult than recognizing KsP from

unphosphorylated peptides.

3.3 Comparison of AKID with other available methods
H.sapiens is the organism with the highest number of known kin-

ase–target interactions (Hornbeck et al., 2015) and it constitutes

the ground of selection for the training of KsP prediction meth-

ods. Therefore, an independent validation of the method and

comparison with already available methods has been run on

other organisms. It has to be noted that in order to make a cor-

rect comparison between AKID and other methods a set of

shared kinases, and organisms, had to be selected depending on

the coverage of the other methods. We selected the iGPS (Song

et al., 2012), Predikin (Ellis and Kobe, 2011) and NetworKIN

(Horn et al., 2014) methods, as they are all similar in aims and

capabilities to AKID, and built datasets with shared features for

a fair comparison with AKID. We selected three different organ-

isms, M. musculus, R.norvegicus and S.cerevisiae, to independ-

ently validate AKID and compare it to the other methods. First,

we compared the kinase coverage of the different methods, test-

ing the ability of AKID in detecting kinase domains (see

Materials and methods section). iGPS covers, theoretically, all

the human and yeast kinases while AKID can detect, and can pre-

dict KsP for, the vast majority of the known kinases (93, 97 and

92% of human, mouse and yeast kinases, respectively), followed

by Predikin (64, 61 and 46%) and NetworKIN (21 and 55% of

respectively human and yeast) (Fig. 2a). The datasets where

AKID and the other methods have been compared include posi-

tive and negative KsP, selected in the same way as during the

training (see Materials and methods). The interactions in the test

datasets were filtered in order to avoid redundancy between test

and training sets. All the KsP involving peptides with more than

50% sequence identity with any of the peptides in the human

training dataset and all the kinases with more than one kinase

domain were removed.

(a) (b)

Fig. 1. Detection of kinase domains in eukaryotes and training of AKID. a: Distribution of Jaccard indexes representing the overlap between the identified (via

HMM) and annotated kinase domains in different eukaryotic organisms. b: Training of AKID through a 10-fold cross-validation. The 10 ROC curves are repre-

sented with light gray lines (summed up by a light gray area representing the 95% confidence interval), a black line represents the average performance of the

method during the training. A dashed black line represents random predictions (AUC of 0.5)
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3.3.1 iGPS

iGPS is a predictive algorithm that integrates information from

protein–protein interaction networks to reduce the amount of false

positives. The comparison between AKID and iGPS has been made

using a dataset composed of 538 known KsP in S.cerevisiae involv-

ing 50 kinases shared between the two methods and for which iGPS

was able to assign a score. All the tests have been repeated 10 times,

each time changing the background set of negative interactions

(Supplementary Table S2). AKID performed better with an average

AUC of 0.81, versus the 0.76 of iGPS (Fig. 2b).

3.3.2 NetworKIN

Similarly to iGPS, the NetworKIN algorithm (as part of the

KinomeXplorer platform) combines a neural network to

assign a phosphorylation to a specific kinase and a probabilistic

protein interaction network. The shared test dataset is

composed of 779 known kinase–target interactions in

S.cerevisiae involving 39 kinases, where AKID reached an AUC

of 0.78 versus 0.71 of NetworKIN (Fig. 2c and Supplementary

Table S3).

3.3.3 Predikin

Predikin is different from the other tested methods in that it takes

into account information regarding the kinase–peptide interaction,

making it similar in scope to our approach. Predikin identifies key

residues of a kinase, which are those that recognize the residues

around the phosphorylation sites (derived from a high-quality set of

kinase-substrate complex structures); in comparison, AKID does not

require spatial proximity to determine DoS residues on the kinase

and thus does not require structural data. A weighted frequency ma-

trix is then used to compare the query peptide with known target

peptides of kinases with similar substrate-determining residues. We

compared AKID and Predikin on three different datasets belonging

to three different organisms (Fig. 2d and Supplementary Table S4):

M.musculus (611 KsP involving 103 kinases), R.norvegicus (254

KsP involving 49 kinases) and S.cerevisiae (1212 known KsP involv-

ing 43 kinases). Apart from a comparable performance on the

mouse dataset (AUC of 0.73 versus Predikin AUC of 0.74), AKID

performs better than Predikin on the rat and yeast datasets (AUC of

0.81 and 0.71 versus Predikin AUC of 0.78 and 0.69, respectively).

The methods were also tested on a secondary test set, where

negative interactions involving peptides centered on S/T/Y residues

(a) (b)

(c) (d)

Fig. 2. Comparison between AKID and other published methods. a: Coverage of known kinases (collected from KinBase) identified by different methods in three

different organisms with the highest amount of known KsP. b–d: ROC curves, with AUC values, representing the comparison between AKID (continuous ROC

curves) and the other methods (dashed ROC curves) in different organisms (ROC curves with different colors)
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were randomly selected form the proteome regardless of their phos-

phosylation annotation. We observed an improvement in the per-

formance of every method, with AKID outperforming the other

methods, revealing how every method was able to better identify

real KsP among unmodified peptides instead of phosphorylated pep-

tides (Supplementary Table S5A). Although AKID and the compared

methods have been trained on human KsP and tested on different

organisms we compiled a human dataset composed of KsP, 374 real

KsP and an equal number of negative interactions (Supplementary

Table S5B), that have been curated with the same criteria as the

other datasets (see Materials and methods), recently collected in

PhosphoSite Plus in the latest release (May 2018). We measured an

AUC of 0.8 against the 0.78 of Networkin and an AUC of 0.76

against the 0.72 of iGPS (the differences in the performance of

AKID are due to the slightly different versions of the test sets, which

are dependent on the kinase coverage of each method). Considering

these results we can conclude that the integration of the information

of DoS residues on the kinase domain and the target peptide leads to

an improved encoding of the kinase specificity rules and to an

improved identification of KsP in different organisms.

3.4 Evolutionary conservation of known human

interactions in orthologous proteins
In order to investigate and explore the different AKID performan-

ces among the different kinase groups we analyzed the conserva-

tion of 6654 known human KsP across 45 eukaryotes. This

allowed us to analyze the evolution of the KsP in different organ-

isms. We searched for the ortholog of each human KsP in the other

organisms, requiring that both the kinase and the kinase-target

orthologs could be identified with a 1:1 orthology relationship in

order to reduce complexity (see Materials and methods). The

amount of human KsP identified orthologs ranges from the 60%

among mammalian organisms to the nearly 50% in reptiles,

amphibians and lobe-finned fishes, to the 0.1 and 0.3% in

C.elegans and S.cerevisiae, respectively (Supplementary Fig. S3A).

The different percentages of mapped KsP are not only due to ac-

tual evolutionary gain or loss of the KsP but also to incomplete an-

notation or complex orthology relationships (as can be seen

especially in yeast). As expected, the fraction of conserved ortholo-

gous KsP decreases with the increasing evolutionary distances

from H.sapiens (Supplementary Fig. S3B, red line). We divided the

human KsP into kinase groups and measured the conservation of

the phosphorylations of each group during evolution. Growth,

stress-response kinases and cell cycle-related kinases of the CMGC

group and kinases of the AGC group (cytoplasmic kinases regu-

lated by second messengers) are similarly conserved, as the average

of the kinases (Supplementary Fig. S3B, blue and gold line, respect-

ively). Phosphorylations related to the STE group, responsible for

the activation of MAPK family, are poorly conserved (50–60%

from mammalian through ray-finned fishes), suggesting that the

activation of the MAPK family is less constrained by evolution

with class-specific regulation mechanisms (Supplementary Fig.

S3B, green line). On the other hand, we observed a high degree of

conservation (>90%), from H.sapiens to Insecta, of KsP involving

tyrosine kinases (TK family, Supplementary Fig. S3B, purple line).

It has been observed that this group of kinases evolved recently

(Miller, 2012) and this may be one of the possible explanations for

the high conservation of KsP from H.sapiens to Insecta, also

explaining the high performance of AKID in recognizing KsP tar-

geting tyrosine residues. This analysis gives an evolutionary per-

spective on the reasons why AKID shows a variable ability in

capturing the target specificity rules that characterize different

groups of kinases, as we have observed during the training of the

method.

3.5 Large-scale prediction of pathogenic alteration of

phosphorylation sites
The method proposed in this work can be applied to large datasets

with the aim of discovering novel KsP in particular cellular condi-

tions and providing biological insights of clinical relevance. We col-

lected 22 057 missense pathogenic mutations from Ensembl and

selected 5714 pathogenic missense mutations changing serines,

threonines or tyrosines into non-phosphorylatable residues or

changing other residues into phosphorylatable ones. We did not con-

sider mutations affecting the residues surrounding the phosphoryl-

ation sites, as estimating the change of affinity of a kinase for a

mutated peptide is beyond the scope of this work. This kind of

mutations can have a range of different effects on the protein struc-

ture and function. Since we aim at selecting only those mutations

disrupting the phosphorylation-related events, with no harmful con-

sequences on the protein structure, we discarded mutations for

which Polyphen (Adzhubei et al., 2013) predicted a strong impact

on the protein structure (Polyphen score higher than 0.5). The pepti-

des hosting the remaining 1398 missense mutations were analyzed

with AKID against the human kinases, resulting in 1589 unique

novel predicted KsP with high score (3787 when accounting

for identical phosphopeptides in different protein isoforms),

targeted by pathogenic missense mutations that are remodeling

phosphorylation-related signaling pathways (Supplementary Table

S1G).

In order to provide an external validation of these predictions we

used GOSemSim (Yu et al., 2010), a method able to assess the se-

mantic similarity of GO terms between two proteins. In fact, we

observed that a predicted interaction involved a kinase and a target

protein that are more likely to have similar biological functions, and

to share same or similar cellular localizations, more than a pair of

random proteins (Mann–Whitney test P ¼ 3.4�10�4 for biological

function and P ¼ 3.2 �10�6 for cellular component). We calculated

the shorted path connecting the kinase and their predicted targets

in the human interactome (Szklarczyk et al., 2017); again we

observed the kinase and their predicted targets to be significantly

closer (Mann–Whitney test P < 0.05) than random pairs of proteins.

We think that this list contains novel kinase–target interactions of

high clinical relevance. It represents a valuable resource for follow-

up studies on how disease states are able to rewire the phosphoryl-

ation network between kinases and their targets.

3.6 AKID web server
We have developed a web server that allows an easy access to the

AKID method. The server accepts kinases and target proteins as user

input and scores the target residues most likely to be phosphorylated

by the input kinases. Kinases and targets can be provided by the user

in FASTA format or as UniProt ids, either in the form text area or

by uploading a text file. The server performs the additional step of

checking if each of the entered sequences is recognized as a kinase

by the algorithm and, if so, identifies the DoS in the kinase sequence.

If more than one kinase domain is found in a protein, the server will

treat the domains individually and identify their respective DoS.

As an alternative, entire kinomes from 55 organisms can be

selected; in this case kinase DoS are pre-calculated and stored. The

server can process up to 500 kinase-target couples, or up to 10 tar-

gets for a selected kinome in a single job. Once a job is started, a
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score for each DoS-target residue couple is computed. A visual out-

put is provided together with a tab-delimited csv file that associates

each couple with a probability score. If the input data comprises 1

kinome and 1 target, or up to 50 kinase-target couples, the server

provides access to more tools to visualize, browse and sort the out-

put data. The residue and kinase data views allow to easily find the

kinase(s) most likely to phosphorylate a specific residue, or the resi-

due(s) most likely to be the target of a specific kinase, respectively.

Details on the available views can be found in the ‘about’ page on

the web server. For large-scale predictions in which the amount of

data to be analyzed exceeds the acceptable load for the web server,

or a more custom analysis pipeline is desired, we provide a stand-

alone software that allows the implementation of the AKID method

on a Linux machine that can be found in the AKID web server at the

following address: http://akid.bio.uniroma2.it.

4 Discussion

Despite the thousands of phosphorylation sites discovered in large-

scale experiments every year, the information about the responsible

kinases is missing for the vast majority of them. A number of meth-

ods for the prediction of KsP have been developed to fill this gap.

The novelty of AKID stands in the integration of information char-

acterizing both the target peptide and the residues that are determin-

ing the specificity of a kinase, without requiring structural

information or a priori annotation of kinases in the proteome to be

analyzed. AKID has been trained on a curated set of 6654 known

human KsP events, reaching an average AUC of 0.78 in a 10-fold

cross-validation test. We compared AKID with other methods with

similar aims, capabilities and approaches on independent test sets in

different organisms. In terms of kinase coverage AKID is able to de-

tect the vast majority (>90%) of the kinome in different organisms

while others reached lower coverage (e.g. Predikin has its highest

coverage in H.sapiens with 64% of the kinases) or were not able to

identify known KsP for many kinases. AKID outperformed the other

methods, even those that were including protein–protein interaction

data into their predictive models. In terms of kinase coverage we

observed that atypical kinases, nucleoside diphosphate kinases

(NDK group) and other unconventional kinases could not be recog-

nized through the curated HMM we used, therefore not allowing

the prediction of their determinant residues used by AKID for the

prediction of KsP. Although they represent a small fraction of the

whole kinome not all of the members of these groups have shown

kinase activity. We noticed a differential performance of the method

depending on the kinase group considered. AKID could not success-

fully identify KsP associated to the TKL group (AUC of 0.58); this

kinase group is very diverse and although its kinases are all similar

to tyrosine kinases they lack the typical functional motifs (Manning

et al., 2002b). Moreover some of its members are dual-specificity

kinases and can phosphorylate tyrosines, serines and threonines.

This suggests that the specificity rules of this class cannot be easily

represented and identified through the AKID neural network. On

the other hand we noticed a very high performance of AKID in cor-

rectly recognizing human KsP involving tyrosine kinases (AUC of

0.93). Intrigued by the different scoring of phospho-tyrosines when

compared to KsP involving phospho-serines and phospho-threonines

(both with an AUC of 0.75), we analyzed the evolutionary compo-

nent of the specificity of these phosphorylations through the conser-

vation of known human kinases-specific phosphorylation and their

orthologs in 45 eukaryotes. Again we found a peculiar high conser-

vation of tyrosine phosphorylation from H.sapiens to Insecta. This

might be explained by the observation that the TK group evolved

later than other kinases (Miller, 2012) and has very clear and con-

served specificity determinant in both the kinase and target peptide

sides. Finally, we demonstrated the usefulness of the method by

scanning a whole set of phosphorylatable residues hit by pathogenic

mutations in the human proteome and deriving a list of predicted

KsP with high score. For this reason, we believe that AKID will be

of great value for the prioritization of KsP with a potentially high

clinical relevance.
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