
QoS-Based Elasticity for Service Chains
in Distributed Edge Cloud Environments

Valeria Cardellini1 , Tihana Galinac Grbac2(B) , Matteo Nardelli1 ,
Nikola Tanković3 , and Hong-Linh Truong4

1 University of Rome Tor Vergata, Rome, Italy
{cardellini,nardelli}@ing.uniroma2.it

2 University of Rijeka, Rijeka, Croatia
tihana.galinac@riteh.hr

3 Juraj Dobrila University of Pula, Pula, Croatia
nikola.tankovic@unipu.hr
4 TU Wien, Vienna, Austria

hong-linh.truong@tuwien.ac.at

Abstract. With the emerging IoT and Cloud-based networked systems
that rely heavily on virtualization technologies, elasticity becomes a dom-
inant system engineering attribute for providing QoS-aware services to
their users. Although the concept of elasticity can introduce significant
QoS and cost benefits, its implementation in real systems is full of chal-
lenges. Indeed, nowadays systems are mainly distributed, built upon sev-
eral layers of abstraction, and with centralized control mechanisms. In
such a complex environment, controlling elasticity in a centralized man-
ner might strongly penalize scalability. To overcome this issue, we can
conveniently split the system in autonomous subsystems that implement
elasticity mechanisms and run control policies in a decentralized manner.
To efficiently and effectively cooperate with each other, the subsystems
need to communicate among themselves to determine elasticity deci-
sions that collectively improve the overall system performance. This new
architecture calls for the development of new mechanisms and efficient
policies. In this chapter, we focus on elasticity in IoT and Cloud-based
systems, which can be geo-distributed also at the edge of the networks,
and discuss its engineering perspectives along with various coordination
mechanisms. We focus on the design choices that may affect the elas-
ticity properties and provide an overview of some decentralized design
patterns related to the coordination of elasticity decisions.

1 Introduction

Elasticity is a quality attribute that is widely used in virtual environments
together with the “as a service” paradigm to deal with on-demand changes.
Although elasticity is multi-dimensional [27,72], in most cases, elasticity tech-
niques just focus on offering elastic resources on demand and dynamically provi-
sion them to fluctuating workload needs based on the “pay-per-use” concept [23].

c© The Author(s) 2018
I. Ganchev et al. (Eds.): Autonomous Control for a Reliable Internet of Services, LNCS 10768, pp. 182–211, 2018.
https://doi.org/10.1007/978-3-319-90415-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90415-3_8&domain=pdf
http://orcid.org/0000-0002-6870-7083
http://orcid.org/0000-0002-4351-4082
http://orcid.org/0000-0002-9519-9387
http://orcid.org/0000-0003-3936-1244
http://orcid.org/0000-0003-1465-9722


QoS-Based Elasticity for Service Chains in Edge Cloud Environments 183

In this sense, elasticity mechanisms automatize the process of reconfiguring vir-
tualized resources, mostly at infrastructural levels, at runtime with the goal of
sustaining offered Quality of Service (QoS) levels and optimizing resource cost.

Due to its usefulness, there are many works that have addressed issues
related to elasticity [23]. However, most of them discuss elasticity in specific
environments, such as Cloud systems in centralized, large-scale data centers
(e.g., [46]), edge/fog-based systems (e.g., [54]), network function virtualization
(NFV) (e.g. [67]), except a few works that consider Internet of Things (IoT)
Cloud systems, e.g., [70]. In this chapter, we investigate how distributed systems
can be efficiently executed in the emerging context resulting from the conver-
gence of IoT, NFV, edge systems, and Clouds. More precisely, our goal is to
survey elasticity needs, mechanisms, and policies for geo-distributed systems run-
ning over multiple edge/fog1 and Cloud infrastructures. Furthermore, we present
several design patterns that help to efficiently decentralize and coordinate the
elasticity control of such systems. The main contributions of this chapter are the
following:

– We present how the emerging computing paradigms and technologies help to
realize elastic systems, which can execute with guaranteed QoS even in face
of changing running conditions.

– We survey the key elasticity properties and techniques that have been pre-
sented so far in the related literature. Specifically, we survey the approaches
that enable elasticity at different stages of the system life time, distinguishing
between design-time and runtime.

– Motivated by the scalability limitation of distributed complex systems, we
propose different coordination patterns for decentralized elasticity control.
The latter represent architectural design guidelines that help to oversee large
scale systems with the aim to improve performance and reliability without
compromising scalability.

– We describe the main challenges of nowadays systems so to identify research
directions that are worth of investigation, in order to develop seamlessly elas-
tic systems that can operate over geo-distributed and Cloud-supported edge
environments.

The rest of the chapter is organized as follows. In Sect. 2 we provide an
overview about elasticity. In Sect. 3 we briefly present the large-scale distributed
systems we focus on in this chapter, that is systems of IoT, NFV and Clouds
and discuss their elasticity coordination needs. In Sect. 4 we provide an overview
of optimization approaches used to take elasticity choices. In Sect. 5 we present
some design patterns that can be used in distributed edge Cloud environments
to coordinate elasticity decisions in a decentralized fashion. In Sect. 6 we discuss
some research challenges for elasticity control. We conclude the chapter in Sect. 7
with some final remarks.

1 From our point of view, in this chapter we consider edge computing as interchange-
able with fog computing, although we are aware that some differences exist [53].



184 V. Cardellini et al.

2 Overview of Elasticity

Elasticity has become one of the key attributes of self-adaptive software systems.
Although it has been and is widely investigated, there is no unique consensus
related to elasticity definition. The most frequently used definition of elasticity
has been formulated by Herbst et al. [36] as follows: “Elasticity is the degree to
which a system is able to adapt to workload changes by provisioning and depro-
visioning resources in an autonomic manner, such that at each point in time the
available resources match the current demand as closely as possible”. The elastic-
ity quality attribute is tightly related to the scalability and efficiency attributes.
Scalability addresses a typically static system attribute related to the ability
of a system to adjust its resources to changing load. However, volatile software
environments demand a continuous adaptation process [78], which yields con-
siderable additional costs if applied manually. Another, closely related quality
attribute is efficiency, that is related to the amount of the resources consumed
to process traffic needs. Traditionally, these terms were related to a static sys-
tem configuration and not considered in terms of dynamical system architecture
models.

With the emergence of virtualization technologies, especially lightweight ones
such as containers [12] and unikernels [13], there are new automation possibili-
ties no longer related to the physical scaling of system resources, but rather to
the dynamic adaptation of the system to deal with changing environment condi-
tions. System/application components can scale out according to traffic needs to
accommodate changes in the traffic volumes and avoid SLA violations, and can
scale in to save energy and costs caused by over–dimensioning. Virtualization
technologies have opened new possibilities to system automation and implemen-
tation of elastic attribute into dynamic systems. However, when implemented
in real systems, the beneficial effects of elasticity can be limited mainly by the
speed of the system adaptation process and by the precision in aligning the allo-
cated virtual resources to the temporal resource demands. Therefore, dynamic
adaptation models have also to consider limitations of real systems to adapt
timely and precisely.

The main aim of dynamic adaptation models is to exploit optimization algo-
rithms that guide elastic decisions at runtime, as traffic changes for the best QoS
and cost gains, while considering a large combinatorial set of architectural design
options that are no longer manageable by human designers [77]. Optimization
solutions can be categorized according to several key aspects [4]:

– Which software attributes are to be optimized? Every software attribute for
which a representing quantifiable model can be provided is a candidate to
be used in the quality evaluation function. Quality attributes also include
economical attributes, such as associated costs [10], among which operational
infrastructure costs prevail in the Cloud era [27]. According to the selected
quality attributes, optimization approaches can be single- or multi-objective.

– What design choices are considered under optimization? In order to pro-
vide an automatized optimization process, a machine-readable format of the



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 185

software architecture is required. These can vary from formal models, UML
models, or models in different architectural languages such as ADL. On top
of that model, there must also exist an unambiguous definition of what com-
binatorial, categorical or ordinal variables are to be considered in forming an
optimization search space. These definitions may also yield additional design
constraints, which exclude some of the combinations due to some architectural
constraints (e.g., applying certain architectural style). In literature, these vari-
ables are referred as architectural degrees of freedom (DoF) [42].

– In which phase does optimization take place? According to this dimension,
solutions vary from design-time optimization to runtime optimization meth-
ods. In design-time approaches, the system is first modeled in the desired
language where optimization is performed on derived models according to
specific quality attributes. These can include block diagrams, Markov chains,
queuing networks, Petri nets with quality attributes predicted by using a
computer simulation or analytical models when they are available in closed
form. Runtime approaches are generally simpler due to stringent execution
speed and overhead constraints, so they often consider optimizing only a
single attribute or they naively combine several attributes using the simple
additive weighting (SAW) method [39].

A thorough literature review of existing optimization methods used in soft-
ware architectures was performed in [4]; therefore, we analyze only research
works that have been conducted afterwards. We focus on emerging systems of
IoT, virtual network functions, and distributed Clouds. We also give special
attention to optimization in the domain of distributed system environments and
classify existing works according to the phase of execution. Furthermore, we con-
sider decentralized coordination design patterns that can be employed to realize
a distributed elasticity control where elasticity decisions have to be taken at
multiple layers.

3 Systems of IoT, NFV and Clouds and Their Elasticity
Coordination Needs

Research works related to elastic architectures and applications spawn multi-
ple areas, ranging from embedded systems and information systems design, to
software performance engineering and quality attributes [4]. A general observa-
tion from all involved research communities is that system complexity generally
increases and, as such, it is hard to manage and scale, is expensive to maintain
and change. A general trend is to define new system architectural models that
decompose complex system architectures into smaller and easily self-manageable
objects, e.g., microservices [26]. These new system architectures are based on vir-
tualization and automatic software provisioning and configuration technologies
to enable dynamic system models that can autonomously adapt to face varying
operating conditions.

Emerging systems and services are and will be characterized by the inte-
gration and convergence of different paradigms and technologies that span from



186 V. Cardellini et al.

IoT, virtual network functions, distributed edge/fog computing, and Cloud com-
puting [73]. We briefly review the main features of some of these paradigms and
technologies prior to analyze their coordination needs.

NFV is a new network architecture framework where network functions,
which traditionally used dedicated hardware (e.g., network appliances), are
implemented in software that runs on top of general purpose hardware, exploit-
ing virtualization technologies. Virtual network functions can be interconnected
into simple service compositions (called chains) to create more complex com-
munication services. Component network functions in the service chain can be
scaled either vertically or horizontally (i.e., either acquiring more powerful com-
puting resources or spawning more replicas of the same virtual network function
and load balancing among them).

Edge and fog computing paradigms provide a distributed computing and stor-
age infrastructure located at the edges of the network, resulting in low latency
access and faster response times to application requests. These paradigms turn
out to be particularly effective in moving computation and storage capabilities
closer to data production sources (e.g., IoT devices) and data consumption des-
tinations, which are heavily dispersed and typically located at the edges of the
network. Therefore, they can better meet the requirements of IoT applications
with respect to the use of a conventional Cloud [64].

Dealing with elasticity for such emerging systems is important and chal-
lenging. However, elasticity techniques that have been separately studied for
virtualized systems mainly in large-scale and centralized Cloud data centers or
less frequently in distributed edge/fog environments, may not be sufficient to
efficiently manage more complex environments that arise from the convergence
of IoT, NFV and Clouds. Figure 1 outlines the concept view of such virtual-
ized systems, built atop various views on IoT Cloud [44,70]. With such systems,
it is crucial to have an end-to-end elasticity [71], requiring a strong elasticity
coordination between the IoT, NFV and Clouds. For example, let us consider
how elasticity coordination would help to prepare at best the Cloud to serve data
from the edge. Currently, most of the times, the Cloud does not really care about
the edge - if more data come, the Cloud reacts and provisions more resources.
However, if the elasticity demands from the edge were known and propagated
to the Cloud in advance, the Cloud could be able to provision resources in a
more effective way. This can be done when we consider that we control on both
sides - edge and Cloud. On the one hand, the end-to-end elasticity requires us to
work horizontally across IoT, NFV, and Cloud. On the other hand, each system
might have different layers, as shown in Fig. 1 and discussed in [65]. Therefore,
it is crucial to coordinate elasticity both horizontally and vertically across lay-
ers and across subsystems. This leads to our focus on models and techniques to
control and manage elasticity.

The following key elasticity properties and techniques are crucial to us to
understand:

– Which types of elasticity properties are suitable for which layers (resources,
data, service, network)?



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 187

Fig. 1. System of IoT, virtual network functions and Cloud (adapted from [44]).

– Which elasticity control techniques are suitable for which parts (edge, net-
work, or data center) and which models are useful for coordinating them?

– How to connect elasticity coordination between software engineering view and
system engineering view?

4 Existing Solutions – Pros and Cons

4.1 Software Attributes and Design Choices

For a successful software optimization it is important to select appropriate soft-
ware attributes that reflect the users perception of the quality. The most promi-
nent software attribute is performance as it is the subject of most optimization
techniques. Performance expresses timings involved around different computa-
tion paths. There are many metrics that express software performance with most
important being: response time, throughput, and utilization [40].

Another common attribute that is optimized is reliability: the system ability
to correctly provide a desired functionality during a period of time in the given
context. Another term closely related to reliability is availability: the percentage
of time a system is up and running to serve requests [10]. Both these terms are
contained in dependability attribute: overall probability that system will produce
desired output under specified performance, thus overall user confidence that
system will not fail in normal operation.

System costs can also be considered as a business quality attribute [10].
They can be divided to design-time costs: development costs, licensing, hard-
ware acquiring, and maintenance costs as well as runtime costs: operational
infrastructure costs and energy costs.



188 V. Cardellini et al.

Design choices that are considered in optimization process should not alter
any functionality of the end-system, but affect only its quality attributes. Choices
can be software related or deployment related [42] and are categorized in Table 1.

4.2 Design-Time Approaches

Historically, design-time optimization solutions were oriented to embedded sys-
tems because of their stringent extra-functional properties (EFPs) requirements.
For that purpose, ArcheOpteryx tool [3] is an Eclipse plug-in that implements
AADL specifications [30] and employs multi-objective evolutionary heuristics for
approximating optimal solution of embedded component-based systems. Specif-
ically, ArcheOpteryx optimizes communication cost between components in two
ways: it optimizes data transmission reliability formed around total frequency
of component interactions against network connection reliability; and commu-
nication overhead due to limited network bandwidth and delays. Another rep-
resentative solution from the automotive domain is EAST-ADL language [74],
inspired by MARTE modeling language [59]. EAST-ADL also employs genetic
algorithms (GAs) with multi-objective selection procedure NSGA-II [25], quite
common in all multi-objective approaches. Quality is evaluated using fault-tree
models for safety analysis and the MAST analysis tool was used to derive mean
system response times. Component life-cycle cost was also one of the objectives.

Recently, the focus of design-time optimization shifted towards information
systems, as systems became more complex and at the same time more reli-
able with stricter EFP requirements regulated through service-level agreements
(SLAs). The majority of research works employs search heuristics through vari-
ous multi-objective evolutionary algorithms. Li et al. [45] applied a model-based
methodology to size and plan enterprise application under SLAs, considering
response time and cost as optimization quality attributes. They modeled a multi-
tier enterprise application with a closed queuing network model and applied an
evolutionary algorithm to evaluate different configurations. They parametrized
queue network models by measuring the real system and applied exponential
arrival and service times. Mean Value Analysis was used to obtain the response
time in a stationary state. A similar approach was also employed in [60], where
multi-objective evolutionary algorithms have been used to optimize performance
and reliability of system expressed through AADL models. Menascé et al. [48]
proposed to optimize performance and availability of service-based information
systems by applying a hill-climbing optimization method. Overall system is rep-
resented as a service-activity model which models execution sequence of dif-
ferent services. The PerOpteryx tool [43] applied a Palladio Component Model
(PCM) [11] for predicting the performance of various architecture configurations
of component-based information applications. Optimized attributes also included
system performance and cost. Industrial case study of PerOpteryx tool was con-
ducted in [32]. The underlying PCM model is automatically transformed to
Layered Queue Models (LQM) [66] with predicted values obtained using a simu-
lation. PerOpteryx also applies multi-objective genetic algorithm with NSGA-II



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 189

Table 1. Possible software and deployment design choices

Software design choices

Selection of components Wherever functionality is encapsulated
within interchangeable components like in
component-based or service-based
architectures a set of compatible
components can be expresses with different
quality properties. In component-based
system such selection is often available only
at design-time, while service-based systems
enable services to be selected in run-time

Component configuration parameters Often components provide further
configuration parameters that affect their
delivered quality. This is especially the case
in component-based architectures. For
example, in a component that processes and
compresses input data, a compression ratio
can be altered which can balance the
output quality over processing performance.
Parameters can also be non-numerical, like
selection of compression algorithms or
supported encryption algorithms in SSL
communication. Such parameters also
include the multiplicity of logical resources
like limits for allowed number of threads or
database connections or state the priorities
for certain actions in concurrent processing
scenarios. These all affect overall delivered
component quality and thus can be subject
to optimization

Deployment design choices

Allocation Allocation is defined by a mapping from
software components to available hardware
resources. Each component can be allowed
on only a single resource or deployed across
several resources. Components can possess
certain allocation constraints that need to
be satisfied such as minimal amount of
RAM required. Distributed systems are
very sensitive to allocation as it affects
quality attributes like response time,
throughput, reliability and availability of
system. Performance is affected with the
communication overheads between
components allocated on different servers,
where reliability suffers if components are
deployed on same servers which requires a
careful balance

(continued)



190 V. Cardellini et al.

Table 1. (continued)

Deployment design choices

Replication Replication design choice states the number of deployed
component instances required. Replication affects reliability
and overall performance. When component replication is
present, additional components are required like
load-balancers for balancing workload between several
components or switches that route traffic from primary
components to fail-over components in passive replication
scenarios. Replication design freedom is the key run-time
parameter in elastic systems as it altered to continually adapt
maximal component processing capacity to current workload
requirements

Resource selection When performing software component allocation to hardware
resources a number of different configuration options is
present: selecting appropriate disk storage, type of CPU/GPU,
etc. In embedded systems these are predetermined at
design-time but for elastic information systems they can be
varied in runtime as well in reconfiguration process. Resource
selection primarily affect costs and performance attributes but
can also affect dependability attributes. Resource selection can
be achieved at different granularity levels. Sometimes selection
refers to individual hardware components, but more often it
refers to selecting pre-configured available resource types, like
selecting virtual machine type from Cloud provider. In the
case of selecting whole servers, resource selection can also
provided software packages like OS, pre-installed tools and
platforms etc.

Resource parameters Selected resources, both hardware and software, can have
many tunable parameters that can be altered at
selection/installation time, or sometimes even at runtime. At
selection, resources can be chosen based on different
parameters (e.g., CPU clock-rate, number of cores, amount of
RAM) and during installation different platform parameters
can be altered (e.g., virtual memory available, TCP stack
parameters, JVM configuration). If supported, some
parameters can also be altered during runtime

Resource provider When selecting resources, different competing providers can be
chosen. Differences lay in hardware offers, pricing amount,
pricing model options, and offered SLAs. Greatest benefit from
choosing diverse resource providers is increase in system
reliability and prevention of vendor lock-in

Resource location In the era of IoT, edge computing and latency critical
applications, resource location is also an important factor to
optimize. Data center location, whether Cloud data center or
micro edge/fog data center, impacts largely on network
latencies, especially in distributed mobile systems



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 191

selection method. By employing simulation, a more sophisticated set of mea-
sures, such as percentiles which are often agreed in SLAs, can be obtained. A
faster evaluation method that can also predict performance measures beyond
mean values is fluid analysis [69]. Pérez and Casale [57] suggested a method for
deriving fluid models LQN networks obtained through PCM models. Fluid mod-
els are described by a set of ordinary differential equations that approximate the
evolution of Markovian models, in their case closed class queue networks. Malek
et al. [47] proposed a method for optimizing availability, communication secu-
rity, latency, and energy consumption that are influenced from various deploy-
ments of a distributed information system. They applied both Mixed-Integer
Nonlinear Programming (MINLP) algorithms and genetic algorithms to solve
the derived optimization problems. They also provided guidelines on strengths
and weaknesses of both approaches. There is also a semi-automatized approach
which employs formalized expert knowledge used to suggest different solutions
to recurrent problems, like performance bottlenecks as presented in [7]. In [8]
anti-patterns are mitigated using a fuzzy approach so that each anti-pattern is
labeled with a probability of occurrence. Similar efforts tailored for Cloud envi-
ronments have been also proposed [62]. Perez-Palancin et al. [58] suggested a
framework for analyzing trade-offs between system cost and adaptability. They
modeled service adaptability through several metrics based on the number of
used components for providing a given service and the total number of compo-
nents offering such service.

There are also recent solutions that are specialized for dealing with dynami-
cally used logical resources such as elastic Cloud infrastructure. These solutions
must take into account the dynamics of used resources over time, which was not
supported in before-mentioned approaches. The SPACE4CLOUD project [31]
resulted in a design-time tool for predicting costs and performance of certain
Cloud information system topology expressed in PCM. In order to enable fully
automated search over design space, the SPACE4CLOUD tool was combined
with PerOpteryx evolutionary heuristics in a separate study [20]. Evangelinou
et al. [19,29] further developed such a tool to provide a methodology for migrat-
ing existing enterprise applications to Cloud by selecting an optimal deploy-
ment topology that takes topology cost and performance into account. To enable
faster search, initial solutions for evolutionary algorithm are provided through
Mixed-Integer Linear Programming (MILP) algorithm. Evolutionary algorithms
are supplemented with local search heuristics. Like before, application topol-
ogy in SPACE4CLOUD is optimized for a specific workload intensity, typically
at peak. Andrikopoulos et al. [6] employed a graph-based model to represent
a Cloud application topology with a complementary method for selecting the
best topologies based only on operational infrastructure cost provided by simple
analytical models.

4.3 Runtime Approaches

In contrast to design-time approaches, runtime approaches continually variate
the chosen architecture DoFs in order to adapt to volatile environments while



192 V. Cardellini et al.

keeping the desired application attributes optimal. Runtime optimization is pri-
marily focused on, but not limited to, availability, performance, and cost quality
attributes and is considered the key characteristic of self-adaptive systems [24].
Since algorithms are running online at all times, they are forced to apply simpler
but very fast analytical models like simple aggregation functions (summation,
maximal and average values) or analytical models of M/M/1 queues. Research
efforts have been mostly oriented towards service-based [52] and Cloud systems.
Calinescu et al. [14] systematized a majority of runtime optimization research
involved in service-based systems, and based their approach around Discrete
Time Markov-Chain models. They provided a means to formally specify QoS
requirements, model-based QoS evaluation, and a MAPE-K cycle [38] for adap-
tation. Passacantando et al. [56] formulated runtime management of IaaS infras-
tructure from a SaaS Cloud provider viewpoint as a Generalized Nash Equi-
librium Problem (GNEP). SaaS providers strive to minimize the costs of used
resources, and in parallel IaaS providers tend to maximize profits. From per-
formance aspect, services are modeled as simple M/G/1 queues. A distributed
algorithm based on best-reply dynamics is used to compute the equilibrium peri-
odically. Gomez Saez et al. [61] provided a conceptual framework for achieving
optimal distribution of application that involves both runtime and design-time
processes. Nanda et al. [51] formulated the optimization problem for minimizing
the SLA penalty and dynamic resource provisioning cost. Their model defined
only single DoF expressed as number of virtual machines designated to each
application tier. Grieco et al. [33] proposed an algorithm for the continuous
redeployment of multi-tier Cloud applications due to system evolution. They
proposed an adaptation graph aimed to find the best composition of adaptation
processes satisfying a goal generated at runtime. Goals are defined as transi-
tions from original to destination state. Recently, the SPACE4CLOUD tool was
extended to provide optimal runtime scaling decisions limited to replication DoF
[34], while Moldovan et al. [49] provided a cost model for resource replication
that is more aligned with public Cloud offerings.

4.4 Other Relevant Research

The third group of works we consider is not directly targeting optimization itself,
but exploit techniques and mechanisms that are relevant for further optimiza-
tion. A mapping study that identifies relevant research around modeling QoS
in Cloud is in [9]. Copil et al. [22] provided general guidelines to build elastic
systems in Cloud, IoT, or hybrid human-computer context. A research agenda
for implementing optimization tools for data-intensive applications has been pre-
sented in [18,21]; the main concepts to consider are volume, velocity, and loca-
tion of data. Kistowski et al. [41] proposed to model incoming workload intensity
using time-series decomposition to identify seasonal, trend and noise components
which could yield in more robust optimization techniques. Andrikopoulos et al.
[5] proposed a GENTL language for modeling multi-Cloud applications as the
foundation for any optimization of its deployment. They argued that GENTL
contains the right amount of abstraction that captures essential concepts of



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 193

multi-Cloud applications. Similar claim and model are also the result of research
by Wettinger et al. [75], where a concept of deployment aggregate is introduced
to automate deployment of Cloud applications. Etxeberria et al. [28] argued
there is a large amount of uncertainty present in performance results and pro-
posed a technique to tame such uncertainty, while Nambiar et al. [50] highlighted
all challenges involved in model-driven performance engineering and proposed
a more modular approach to modeling performance. Pahl and Lee [55] demon-
strated the application of more lightweight virtualization solutions in the context
of edge computing. Such virtualization capabilities should also be integrated in
architecture optimization techniques.

A systematic mapping study on software architectural decisions like docu-
menting decisions or functional requirements is provided in [68]. It identifies a
recent increase in interest involved around architectural decisions. Considering
all research involved on architecture optimization with these conclusions, there
is a need for further incentives in closing the gap between human and automated
processes around architecture formation and optimization.

5 Coordination Patterns for Decentralized Elasticity
Control

An elastic system has the ability to dynamically adjust the amount of allocated
resources to meet variations in workload demands [2,23]. To realize an elastic
system, we need to perform several operations aimed to observe the system evo-
lution, determine the scaling operations to be performed, and finally reconfigure
the system (if needed). A prominent and well-known reference model to orga-
nize the autonomous control of a software system is MAPE [24,63]. It includes
four main components, namely Monitor, Analyze, Plan, and Execute, which are
responsible for the key functions of self-adaptation, and specifically of elasticity.

The Monitor component collects data about the controlled system and the
execution environment. Furthermore, the Monitor component specifies the inter-
action mode (e.g., push, pull) and the interaction frequency (e.g., time-based,
event-based) that starts the control loop. Afterwards, the Analyze component
processes the harvested data, so to identify whether adapting the system (e.g.,
scaling out the number of system resources) can be beneficial for its performance.
During this phase, the costs related to the reconfiguration (e.g., due to the migra-
tion and/or replication of the resource and its state) should be also taken into
account, because as a side effect the reconfiguration could impact negatively on
the system performance. For example, too much frequent reconfigurations that
require data movement and/or freezing the application can determine a QoS
degradation (e.g., in terms of availability).

If some adaptation action is needed, the Plan component is triggered and is
responsible for: determining which system component needs to be reconfigured;
identifying whether the number of resources (e.g., computing, network, storage)
needs to be increased or decreased; and computing the number of resources to
be added/removed/migrated and, if required, their new location. As soon as the



194 V. Cardellini et al.

reconfiguration strategy is computed, the Execute component puts it in action.
According to the controlled system, enacting a reconfiguration can be translated,
e.g., in updating routing rules, in replicating processing elements, in migrating
state information and component code.

When the controlled system is geographically distributed (e.g., Fog comput-
ing, distributed Cloud computing) or when it includes a large number of compo-
nents (e.g., IoT devices, network switches), a single MAPE loop, where decisions
are centralized on a single component, may not effectively manage the elastic-
ity. As described by Weyns et al. in [76], different patterns to design multiple
MAPE loops have been used in practice by decentralizing the functions of self-
adaptation. In this section, we customize the patterns proposed in [76] aiming to
provide some guidelines for the development of systems that control the elastic-
ity of geographically distributed resources. The distributed system components
running the MAPE loop can be arranged in a hierarchical architecture (Sect. 5.1)
or in a flat architecture (Sect. 5.2). In the first case, MAPE loops are organized
in a hierarchy, where some control loops supervise the execution of subordinate
MAPE loops. In the latter case, MAPE loops are peers one another; as such,
they can work autonomously or coordinate their execution by exchanging control
messages.

5.1 Hierarchical Patterns

In this section, we present three patterns that organize the MAPE loops in a
hierarchy, where a higher-level control loop manages subordinated control loops.

Master-Worker Pattern. When a system includes a large number of compo-
nents, having a (single) centralized component that performs elasticity decisions
might easily become the architecture bottleneck. To overcome this issue, the sys-
tem can be organized so to decentralize some of the MAPE operations, exploiting
the ability of distributed components to run control operations. Nevertheless, the
system may need to perform the monitoring and planning operations locally at
each distributed component, e.g., because of special equipment, size of exchanged
data, specificity of operations. On the other hand, to preserve a consistent view of
the system and meet global guarantees while keeping the system simple, the lat-
ter can include a centralized entity which coordinates the elasticity decisions. As
such, it can easily prevent unneeded reconfigurations or conflicting scaling oper-
ations. Differently from a completely centralized approach, this design pattern
relieves the burden of the central component, which now oversees only a subset
of the MAPE phases, by including and integrating multiple, decentralized con-
trol cycles, in charge of performing locally some control activities. Specifically,
this pattern is well suited when the distributed entities to be controlled have
monitoring and actuating capacity and can change their behavior according to
external decisions (e.g., machines in smart manufacturing, SDN devices, Virtual
Network Functions).



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 195

Pattern: A master-worker pattern structures the system in a two-level hierar-
chical architecture. At the highest level, a single master component oversees the
analysis and planning of scaling operations. At the lowest level, multiple indepen-
dent components run the distributed Monitor and Execute operations. Figure 2
provides a graphical representation of this pattern. Each distributed Monitor
component communicates with a centralized Analyze component by providing
aggregated (or high-level) information on the nodes, which can be used to steer
some elasticity action on the system. Should a scaling operation be performed,
the centralized component plans an adaptation strategy, which consists in deter-
mining the resources to be scaled and the magnitude of the scaling operation.
The planned decision is sent back to the distributed nodes, which will ultimately
enact them. Observe that, by centralizing the Analyze and Plan components,
this pattern facilitates the implementation of efficient scaling policies that aim
at achieving global objectives and guarantees. On the other hand, sending the
collected monitoring information to the master component and distributing the
subsequent scaling actions may impose a significant communication overhead.
Moreover, the centralized component that runs the Analyze and Plan phases
may become a bottleneck in case of large-scale distributed systems.

Fig. 2. Hierarchical MAPE: master-worker pattern.

Example: SDN-switches are in charge of forwarding data as requested by the
SDN controller. To guarantee performance, a SDN controller can allocate net-
work path to route traffic with specific QoS requirements. For example, a path
can be dedicated to a specific data-intensive and latency-sensitive application,
or multiple paths can be used in parallel to increase the bandwidth in specific
network segments. The allocation of resources can be changed at run-time, by
monitoring and analyzing the network, so to plan a strategy for reallocating
resources (i.e., network paths). In this setting, an elastic system can include
components that realize MAPE control cycles at two different levels. At the
lowest level, SDN devices run the Monitor and Execute components of MAPE,
whereas at the higher level, the SDN controller runs the Analyze and Plan com-
ponents. A SDN controller retrieves network information (e.g., link utilization)
from distributed SDN-enabled devices. By analyzing this information, the con-
troller can plan to scale network resources, aiming to improve or reduce the
bandwidth capacity of a network (logical) path between two communicating



196 V. Cardellini et al.

devices. To scale the capacity of a network path, the SDN controller can allocate
multiple parallel paths to route data. Afterwards, the distributed SDN devices
can enact the new forwarding rules, and reroute packets accordingly.

Regional Planning Pattern. A large scale system can be organized in multi-
ple, distributed, and loosely coupled parts (or regions), which cooperate to real-
ize a complex integrated system. Computing and performing scaling decisions on
this system might be challenging, because we would like to control elasticity of
subsystems within a single region as well as the elasticity of the overall system
distributed across multiple regions. Typical scenarios involve federated infras-
tructures, where networks, Cloud infrastructures, or Cloud platforms should be
controlled to realize an elastic system. In this context, scaling operations within
regions may aim to optimize resource allocation, while adaptations between
regions may optimize load distribution or improve communications under par-
ticular conditions. For example, in the Fog environment, an elastic system can
improve and reserve fast communications links from resources at the edge of the
network to the Cloud, in response to emergency events (e.g., earthquakes, floods,
tsunami).

Pattern: In the regional planning pattern, represented in Fig. 3, the system is
organized in regions. A region has a two-level hierarchical structure, where the
top level includes a Plan component (a regional planner), and the lower level
includes components performing the four MAPE phases. The regional planner
collects the necessary information from the underlying subsystems, so to deter-
mine when and how to scale the system components. Moreover, regional plan-
ners interact with one another to coordinate adaption actions that span multiple
regions. Within each region, the Monitor component observes the region subsys-
tem, the local Analyze component elaborates the collected data and reports the
outcomes to the regional planner. Leveraging on the collected information, the
latter can plan a scaling operation that involves a single region or that spans
across multiple regions. In the latter case, the regional planner might interact
with other regional planners to coordinate the scaling operation. Once they agree
on a scaling strategy, they can enact the adaptation by activating the Execute
components of the respective regions. This pattern is well suited when regions
are under different ownership, because the MAPE loop of a region exposes only
limited information (i.e., the outcome of the analysis phase), without providing
raw data (which result from the monitoring components). Similarly, once the
scaling strategy is devised, the region is responsible of enacting the required
adaptation actions; as such, the implementation details can be hidden to the
regional planner.

Example: In a Fog computing environment, near-edge micro data centers sup-
port the execution of distributed applications by providing computing resources
near to the users (or to data sources). In a wide area, these micro data centers
can be managed by different authorities (e.g., university campus, IT company)
and usually expose Cloud-like APIs, which allows to allocate and release micro-
computing resources as needed [53]. The combination of Fog and Cloud allows



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 197

Fig. 3. Hierarchical MAPE: regional pattern.

the provisioning of resources with different computational and network capabil-
ities, thus opening a wide spectrum of approaches to realize system elasticity.
For example, a system can be scaled within a region, using multiple resources
belonging to the same infrastructure (i.e., Fog, Cloud), or can be scaled across
multiple regions, so to take advantage of their different features (e.g., the com-
putational power of Cloud resources, the reduced network delays of near-edge
devices). In general, separate Fog/Cloud data centers can be regarded as differ-
ent regions, possibly under different ownership domains. Within each region, the
system runs a MAPE control cycle which comprises only the Monitor, Analyze,
and Execute components. Relying on these components, the system can monitor
resource utilization as well as incoming workload variations, and trigger scaling
operations. In such a case, the regional planner, which can run inside or outside
the region (e.g., in the Cloud), is invoked. When the planner determines the scal-
ing strategy, it can decides to offload some computation to other regions (i.e.,
by possibly acquiring resources in the Cloud) or to change resource allocation
within the region under its control.

Hierarchical Control Pattern. When the complexity of a distributed system
increases, also controlling its elasticity might involve complex machinery. In this
case, a classic approach to rule the system complexity relies on the divide et
impera principle, according to which the system is split in different subsystems,
which can be more easily controlled. To steer the adaptation of the overall system
behavior, another control loop coordinates the evolution of each subsystem. The
resulting system includes multiple control loops, which work at different time
scales and manage different resources or different kinds of resources. In this
context, control loops need to interact and coordinate their actions to avoid
conflicts and provide certain guarantees about elasticity.

Pattern: The hierarchical control pattern provides a layered separation of con-
cerns to manage the elasticity of complex systems. According to this pattern,



198 V. Cardellini et al.

the adaptation logic is embedded in a hierarchy of MAPE loops. Layers of the
hierarchy oversee different concerns at a different level of abstraction and, pos-
sibly, by working at a different time scale. Usually, each layer includes a MAPE
loop which comprises all the four control steps. However, different sub-patterns
can be obtained by customizing the hierarchical MAPE and the way the hier-
archical layers interact with one another. As regards the latter, a wide range
of opportunities can be elaborated: on the one side, a higher level component
works without a direct interaction with lower levels; on the other side, a higher
level component (e.g., Monitor) recursively interrogates the lower level compo-
nents (e.g., Monitors) to perform its tasks. Figure 4 illustrates the hierarchical
control pattern, where the Monitor and Execute components strictly cooperate
with the lower levels components, whereas the Analyze and Plan components
work autonomously for each level. This approach is well suited for a system
where multiple but dependent levels of control can be easily identified, such as
distributed applications (or services), which are made as a combination of small,
elastic building blocks.

Fig. 4. Hierarchical MAPE: hierarchical control pattern.

Example: Data Stream Processing (DSP) applications are a prominent app-
roach for processing Big Data; indeed, by processing data on-the-fly (i.e., without
storing them), they can produce results in a near real-time fashion. A DSP appli-
cation is represented as directed acyclic graph, where data sources, operators,
and final consumers are interconnected by logical links, where data streams flow.
Each operator can be regarded as a black-box processing element that receives
incoming streams and generates new outgoing streams. To seamlessly process
huge amount of data, DSP applications usually exploit data parallelism, which
consists in increasing or decreasing the number of instances for the operators [37].
Multiple instances of the same operator can be executed over multiple computing
nodes, thus increasing the amount of incoming data processed in parallel.

To control the elasticity of DSP applications in a scalable and distributed
manner, a DSP system can include multiple MAPE control loops, organized
according to the hierarchical control pattern [17]. We consider a two layered
approach with separation of concerns and time scale between layers, where the
higher level MAPE loop controls subordinate MAPE components. At the lower



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 199

level and at a faster time scale, an operator manager is the distributed entity
in charge of controlling the replication degree of a single DSP application oper-
ator through a local MAPE loop. It monitors the system logical and physical
components used by the operator and then, by analyzing the monitored data,
determines whether a local operator scaling action is needed. In positive case,
the lower-level analyze component issues an operator adaptation request to the
higher layer. At the higher level and at a slower time scale, an application man-
ager is the centralized entity that coordinates the elasticity of the overall DSP
application through a global MAPE loop. First, it monitors the global appli-
cation behavior. Then, it analyzes the monitored data and the reconfiguration
requests received by the multiple operator managers, so to decide which reconfig-
urations should be granted. Afterwards, the granted decisions are communicated
to each operator manager, which can, finally, execute the operator adaptation
actions. The higher level control loop has a more strategic view of the applica-
tion evolution, therefore it coordinates the scaling operations. Since performing
a scaling operation introduces a temporary application downtime, the global
MAPE loop limits the number of reconfigurations when they are not needed
(e.g., when the application performance requirements are satisfied). Conversely,
when the application performance is approaching a critical value (e.g., maximum
response time), the global MAPE loop is more willing to grants reconfigurations,
so to quickly settle the performance issues.

Such hierarchical design of the elasticity control allows to overcome the sys-
tem bottleneck represented by the centralized components of the MAPE loop in
the master-slave pattern (e.g., see [16] for its application to elastic data stream
processing), especially when the system is composed by a multitude of processing
entities scattered in a large-scale geo-distributed environment.

5.2 Flat Patterns

We now discuss two patterns that organize the MAPE loops in a flat structure,
where multiple control loops cooperate as peers to manage the elasticity of a
distributed system. Due to the lack of central coordination, designing a stable
scaling strategy is challenging, although the resulting control architecture makes
the system highly scalable.

Coordinated Control Pattern. Sometimes controlling the elasticity of a sys-
tem in a centralized component is unfeasible. Such a lack of feasibility may arise
for several reasons, among which the scale of the system and the presence of
multiple ownership domains. As regards the former issue, a large scale system
makes difficult (or impractical) to quickly move all the monitored data to a sin-
gle node, which is prone to become the system bottleneck. Nevertheless, in such
a context, we still need to develop a system which can control the system elas-
ticity so to meet certain QoS attributes. In this case, multiple MAPE loops can
be employed so to control the distributed system. Each control loop supervises
one part of the system; the resulting control loops must also coordinate with
one another as peers so to reach, if needed, some joint adaptation decision about
elasticity.



200 V. Cardellini et al.

Pattern: The coordinated control pattern employs multiple MAPE loops, which
are disseminated within the system. Each loop is in charge of controlling one part
of the system. To compute scaling decisions, the phases of each loop can coordi-
nate their operation with corresponding phases of other peer loops. The pattern
does not provide regulations on the number of peer loops that should coordinate
with one another: in some implementations peers are completely autonomous; in
others, the cooperation is restricted to neighbor peers; and in some others all the
peers communicate one another. Figure 5 provides a graphical representation of
this pattern. For example, the distributed Analyze components exchange infor-
mation so to determine whether some part of the system needs to perform a scal-
ing decision. Then, after planning the reconfiguration, the distributed Execute
components exchange messages to synchronize the adaptation actions, which
should be performed without compromising the application integrity.

Fig. 5. Flat MAPEs: coordinated control pattern.

Example: This pattern can be useful to control elasticity when the system spans
multiple ownership domains with no trustworthy authority to control adaptation.
We consider the example of a monitoring application that manages smart power
plugs (i.e., a special kind of IoT device) disseminated on multiple cities. We fur-
ther assume that these IoT devices reside under different authority domains, e.g.,
one for each city (or neighborhood). To support the proper execution of the mon-
itoring application, the nowadays network and computing infrastructure should
adapt itself to support the varying load imposed by the application. Specifically,
the IoT devices continuously emit a varying load of data that should be pushed
towards the core of the Internet, so to reach Cloud data centers, where the
applications extract meaningful information (e.g., predict energy consumption,
identify anomalies). The communication between IoT devices and the Cloud
is often mediated by IoT gateways, which allow to overcome the heterogene-
ity of the two parts, in terms of connectivity, energy power, and availability.
To properly control this distributed infrastructure, a MAPE control loop can
be installed within each authority domain, so to elastically scale the number of
resources needed to realize the communication between the involved parties (i.e.,
smart power plugs, Cloud). In this case, the Monitor component of the MAPE
loop collects data on the working conditions of IoT devices. These data are ana-
lyzed so to determine whether new IoT gateways should be allocated to meet the



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 201

application requirements. Since allocating a gateway imposes a monetary cost,
the multiple MAPE loops can coordinate their action so to limit the execution
costs and do not exceed the allocated budget. Ultimately, when a scaling action
is granted, the Execute component starts a new IoT gateway on the authority
domain specified by the Plan component.

Information Sharing Pattern. Some large scale systems comprise distributed
peers which cooperatively work to accomplish tasks. In particular, each peer is
able of performing some tasks (e.g., it offers services), but could require an inter-
action with other peers to carry out these tasks (e.g., to solve service dependen-
cies). Examples of this scenario come from the pervasive computing domain like
ambient intelligence or smart transportation systems, where peers work together
to reach some common goals. Each distributed peer can locally take scaling
decisions. Nevertheless, since a local adaptation may influence the other system
components, taking scaling decisions require some form of coordination that can
be reached by sharing information among system components.

Pattern: The information sharing pattern is a special case of coordinated con-
trol pattern, where the interaction between the decentralized MAPE control
loops involves only the Monitor phase (see Fig. 6). The pattern does not strictly
regulate the way peers interact with one another: for example, when the sys-
tem comprises a large number of peers, only a subset of them (i.e., neigh-
bors) exchange monitoring information. The following MAPE phases operate
on (approximately) the same view of the system, thus allowing the Analyze,
Plan, and Execute phases to be performed locally. On the one hand, this pat-
tern helps to realize scalable and elastic systems. On the other hand, since there
is no explicit coordination among peers (i.e., they operate autonomously), con-
flicting or sub-optimal scaling actions can be enacted; in the worst case, the
system enters in an unstable state, where adaptation actions are continuously
applied.

Fig. 6. Flat MAPEs: information sharing pattern.



202 V. Cardellini et al.

Example: Relying on this pattern, the system can elastically acquire and release
resources in a fully decentralized manner, leveraging only on monitoring informa-
tion which is shared among the distributed controllers. We consider the problem
of executing long-running workflow of services in a fully decentralized system.
The system comprises peers that run and expose some services. A peer can
receive requests of service workflow execution; a service workflow is a graph of
abstract services (i.e., definition of required services) that needs to be resolved
in a set of concrete services (i.e., implementation of abstract services). To real-
ize the service choreography, each peer needs to discover the services offered
by other peers, together with their utilization level, so to determine the best
mapping that satisfy the workflow requirements (e.g., minimum response time,
maximum throughput). Similarly to the approach presented in [15], the system
can employ the information sharing pattern to share, among peers, knowledge
about the services offered by peers and their utilization state. Relying on this
information, at run-time, the service choreography can be adapted so to auto-
matically scale the number of concrete services to be used to run the workflow.
Aside the shared monitoring information, the scaling decisions are performed
locally to each peer.

6 Challenges and Future Perspectives

Although many research efforts have investigated how to efficiently achieve elas-
ticity, most of them relies on a centralized Cloud environment. With the diffu-
sion of the edge/fog computing, we have witnessed a paradigm shift with the
execution of complex systems over distributed Cloud and edge/fog computing
resources, which brings system components closer to the data, rather than the
other way around. This new environment, which offers geo-distributed resources,
promises to open new possibilities for realizing elasticity, thanks to the coopera-
tion of computing resources at different levels of the overall infrastructure (i.e.,
at the network edge and in the network core). Nevertheless, the full potential-
ities, together with the challenges, of this distributed edge cloud environments
are still, to the best of our knowledge, largely unexplored.

We identify several main challenges and research directions that could benefit
from further investigation, so to bring improvements to the current state of
the art.

Strategies for Decentralization. Thanks to their widespread adoption, IoT
devices act as geo-distributed data sources that continuously emit data. The most
diffused approaches for processing these data rely on a centralized Cloud solu-
tion, where all the data are collected in a single data center, processed, and ulti-
mately sent back to (possibly distributed) information consumers. Although the
Cloud offers flexibility and elasticity, such a centralized solution is not well suited
to efficiently handle the increased demand of real-time, low-latency services with
distributed IoT sources and consumers. As envisioned by the convergence of
edge/fog and Cloud computing resources, this diffused environment can support
the execution of distributed applications by increasing scalability and reducing



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 203

communication latencies. Nevertheless, in this context, computing resources are
often heterogeneous and, most importantly, can be interconnected by network
links with not negligible communication latencies. In this geo-distributed infras-
tructure, a relevant problem consists in determining, within a set of available
distributed computing resources, the ones that should execute each component
of the distributed application, aiming to optimize the application QoS attributes.
Nevertheless, most of the existing deployment solutions have been designed to
work in centralized environment, where network latencies are (almost) zero. As
such, these policies cannot be easily adapted to run in the emerging environ-
ment. To the best of our knowledge, efficient approaches to deploy applications
in distributed hybrid edge Cloud environments are still largely unexplored.

Infrastructure-awareness. The convergence of distributed edge/fog environ-
ments with Cloud environments results in a great variety of resources, whose
peculiar features can be exploited to perform specific tasks. For example,
resources located at the network edges, which are usually characterized by a
medium-low computing capacity and possibly limited battery, can be used by
a monitoring system to filter and aggregate raw data as soon as they are gen-
erated. Conversely, clusters of specialized machines (e.g., [1]) can be exploited
to efficiently perform machine learning tasks. Most of the existing distributed
systems, which manage data coming from decentralized sources, are infrastruc-
ture oblivious, i.e., their deployment neglects the peculiar characteristics of the
available computing and networking infrastructure. In the IoT context, where
huge amount of data have to be moved between geo-distributed resources, inef-
ficient exploitation of resources can strongly penalize the resulting performance
of distributed applications. To deliver efficient and flexible solutions, next gen-
eration systems should consider, as key factor, the physical connection and the
relationship among infrastructural elements.

Elasticity in the Emerging Environment. The combination of edge/fog and
Cloud computing results in a hierarchical architecture, where multiple layers are
spread as a continuum from the edge to the core of the network. The presence
of multiple layers, each with different computational capabilities, opens a wide
spectrum of approaches for realizing elasticity. For example, we could scale hori-
zontally the application components, so to use multiple resources that belong to
the same infrastructural layer (i.e., edge, Cloud); alternatively, we could employ
resources belonging to multiple layers, so to take advantage of their different
features (e.g., the computational power of Cloud servers, the closeness of edge
devices). Moreover, the presence of multiple degrees of freedom raises concerns
regarding the coordination among the different scaling operations. When is it
more convenient to use resources from the same layer? When should we employ
resources from multiple layers? Can communication delays obfuscate the benefit
of operating with resources belonging to multiple layers?

The Cost of Elasticity. Reconfiguring an application at runtime involves the
execution of management operations that enact the deployment changes while
preserving the application integrity. The latter is a critical task especially when
the application includes components that cannot be simply restarted on a new



204 V. Cardellini et al.

location, but require, e.g., to export and import on the new location some inter-
nal state. Therefore, together with long term benefits, adapting the application
deployment also introduces some adaptation costs, usually expressed in terms
of downtime, that penalize the application performance in the short period.
Because of these costs, reconfigurations cannot be applied too frequently. A key
challenge is to wisely select the most profitable adaptation actions to enact, so
to identify a suitable trade-off, in terms of performance, between application
elasticity and adaptation costs.

Multi-dimensional Elasticity. Besides resource elasticity, we can identify dif-
ferent elasticity dimensions, as envisioned by Truong et al. [72]. Examples of
other dimensions are cost, data, and fault tolerance. Indeed, during the execu-
tion of a complex distributed system, the cost of using computing resources or
the benefits coming from the output of the system may change at runtime. Simi-
larly, the quality of data can be elastically managed, in a such a way that when it
is too expansive to produce results with high quality, we can tune the system to
temporary degrade result quality, in a controlled manner, so to save resources.
For example, this could be helpful during congestion periods, when we might
accept to discard a wisely selected subset of the incoming data. As regards fault
tolerance, for some kinds of applications, we might be willing to sacrifice fault
tolerance during congestion periods so to perform computation with reduced
costs. As expected, finding an optimal trade-off between the different elasticity
dimensions strongly depends on the application at hand and, in general, is not
an easy task.

Resource Management. The resulting infrastructure is complex: multiple
heterogeneous resources are available at different geo-distributed locations; dis-
tributed applications expose different QoS attributes and requirements; and dif-
ferent elasticity dimensions can be controlled. Moreover, the elastic adaptation of
applications might require infrastructure-awareness, that enables to conveniently
operate at different levels of the computing infrastructure.

To rule this complexity, a new architectural layer should be designed so to
support the execution of (multiple) applications over a continuum set of edge/fog
and Cloud resources. This intermediate layer can be implemented as a distributed
resource manager, which should be able to efficiently control the allocation of
computing and network resources, by conveniently exposing different views of
the infrastructure. On the one hand, the resource manager allows to fairly exe-
cute multiple applications by better exploiting the presence of resources. On the
other hand, by taking care of managing the computing infrastructure, it enables
distributed applications to more easily control their elasticity.

A side effect of the introduction of a resource manager is the need of designing
standardized interfaces between the applications and the decentralize resources.
To the best of our knowledge, today there are no standard mechanisms that allow
resources to announce their availability to host software components as well as
for distributed applications to smoothly control edge/fog and Cloud resources.

Accountability, Monitoring, and Security. Together with the specific chal-
lenges previously identified, we have several other more general challenges.



QoS-Based Elasticity for Service Chains in Edge Cloud Environments 205

They regard the accountability of resource consumption, the monitoring of elas-
tic applications/systems, and security aspects that arise from multi-tenancy and
data distribution across several locations.

We need to investigate methodologies for the accountability, because in the
envisioned edge/fog computing environment, users can flexibly share their spare
resources to host applications. The hybrid resource continuum from edge/fog
to Cloud calls for studying dynamic pricing mechanisms, similar to the spot
instance pricing from Amazon EC2 service2.

The ability of monitoring the elasticity of a system/application deployed in
a large-scale, dispersed and multi-provider hybrid environment requires inves-
tigation. How to quantify and measure the elasticity of a complex distributed
system? As regards elasticity, we can quantify its performance by considering
the number of missing or superfluous adaptations over time, the durations in
sub-optimal states, and the amount of over-/under-provisioned resources [35].
However, how to measure such quantities in a dispersed, large-scale environ-
ment with multiple providers turns out to be challenging.

Similarly to Cloud computing, we need to identify (or develop) efficient busi-
ness models that support and encourage the diffusion of trusted computing
resources and the elasticity requirements for such business models. One of the
most important challenge arises from the lack of central controlling authorities in
the edge/fog computing environment, which makes it difficult to assert whether
a device is hosting an application component. Security aspects are of key impor-
tance, because nowadays the value of data is very high and an infrastructure
that does not guarantee stringent security properties will be hardly adopted.
Similarly for the accountability issue, the decentralization of the emerging envi-
ronment requires to deal with the lack of a central security authority. Sophisti-
cated yet lightweight security mechanisms and policies should be introduced, so
to create a disseminated trustworthy environment.

7 Conclusions

In this chapter, we presented an analysis of QoS-based elasticity for service
chains in distributed edge Cloud environments. Firstly, we introduced the elas-
ticity concept that arises in emerging systems of systems, which are complex,
distributed, and based on various virtualization technologies. Then, we focused
on IoT and Cloud systems, in whose context we elaborated the need and meaning
of elasticity.

A key ingredient of elasticity is the optimization technique aiming to optimize
some QoS attributes. Firstly, we identified the key attributes that are frequently
optimized with elasticity. Then, we introduced a software engineering viewpoint
to model elasticity as one of the system attributes. In that respect, elasticity
mechanisms can be implemented in the system design phase to model software
systems that exploit at best elasticity during runtime. Furthermore, elasticity

2 https://aws.amazon.com/ec2/.

https://aws.amazon.com/ec2/


206 V. Cardellini et al.

involves a runtime choice for the best optimal solution and such a selection
has also to be properly designed. Therefore, we reviewed the research works
on modeling elasticity in the context of design and runtime choices aiming to
provide the best elasticity model and optimal solution.

In distributed environments, elasticity mechanisms may arise not only at
different layers of system abstraction, but also within each segment of the dis-
tributed system that, as a whole, has to deliver service to the end users. There-
fore, key elements for running QoS-aware service compositions are the coordi-
nation mechanisms; the latter have to be efficiently implemented in order to
deliver high-level user-experience. In this chapter, we also provided a review of
several design patterns for decentralized coordination, aiming to realize elasticity
in complex systems.

Finally, we discussed the challenges related to designing elasticity mecha-
nisms in geo-distributed environments. Software engineering decisions and coor-
dination mechanisms among segments of distributed systems need further inves-
tigation based on empirical evidence from the real technical environments.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., et al.: TensorFlow: a system for large-
scale machine learning. In: Proceedings of USENIX OSDI 2016, pp. 265–283 (2016)

2. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing:
state of the art and research challenges. IEEE Trans. Serv. Comput. PP, 1 (2017).
https://doi.org/10.1109/TSC.2017.2711009

3. Aleti, A., Björnander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: an extendable
tool for architecture optimization of AADL models. In: Proceedings of 2009 ICSE
Workshop on Model-Based Methodologies for Pervasive and Embedded Software,
pp. 61–71 (2009)

4. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013)

5. Andrikopoulos, V., Reuter, A., Gómez Sáez, S., Leymann, F.: A GENTL approach
for cloud application topologies. In: Villari, M., Zimmermann, W., Lau, K.-K.
(eds.) ESOCC 2014. LNCS, vol. 8745, pp. 148–159. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44879-3 11

6. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal dis-
tribution of applications in the cloud. In: Jarke, M., Mylopoulos, J., Quix, C.,
Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 75–90. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07881-6 6

7. Arcelli, D., Cortellessa, V., Trubiani, C.: Antipattern-based model refactoring for
software performance improvement. In: Proceedings of ACM SIGSOFT QoSA
2012, pp. 33–42 (2012)

8. Arcelli, D., Cortellessa, V., Trubiani, C.: Performance-based software model refac-
toring in fuzzy contexts. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS,
vol. 9033, pp. 149–164. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46675-9 10

9. Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F., Wang, W.: Quality-of-service
in cloud computing: modeling techniques and their applications. J. Int. Serv. Appl.
5(1), 11 (2014). https://doi.org/10.1186/s13174-014-0011-3

https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1007/978-3-662-44879-3_11
https://doi.org/10.1007/978-3-319-07881-6_6
https://doi.org/10.1007/978-3-319-07881-6_6
https://doi.org/10.1007/978-3-662-46675-9_10
https://doi.org/10.1007/978-3-662-46675-9_10
https://doi.org/10.1186/s13174-014-0011-3


QoS-Based Elasticity for Service Chains in Edge Cloud Environments 207

10. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Reading (2012)

11. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

12. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

13. Bratterud, A., Walla, A.A., Haugerud, H., Engelstad, P.E., Begnum, K.:
IncludeOS: a minimal, resource efficient unikernel for cloud services. In: Proceed-
ings of IEEE CloudCom 2015, pp. 250–257 (2015)

14. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Soft. Eng. 37(3), 387–409 (2011)

15. Caporuscio, M., D’Angelo, M., Grassi, V., Mirandola, R.: Reinforcement learning
techniques for decentralized self-adaptive service assembly. In: Aiello, M., Johnsen,
E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 53–68.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44482-6 4

16. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Optimal operator
deployment and replication for elastic distributed data stream processing. Concurr.
Comput. (2017). https://doi.org/10.1002/cpe.4334

17. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Towards hierarchical
autonomous control for elastic data stream processing in the fog. In: Heras, D.B.,
Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp. 106–117. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75178-8 9

18. Casale, G., Ardagna, D., Artac, M., Barbier, F., et al.: DICE: quality-driven devel-
opment of data-intensive cloud applications. In: Proceedings of 7th International
Workshop on Modeling in Software Engineering, pp. 78–83. IEEE Press (2015)

19. Ciavotta, M., Ardagna, D., Gibilisco, G.P.: A mixed integer linear programming
optimization approach for multi-cloud capacity allocation. J. Syst. Softw. 123,
64–78 (2017)

20. Ciavotta, M., Ardagna, D., Koziolek, A.: Palladio optimization suite: QoS opti-
mization for component-based cloud applications. In: Proceedings of 9th EAI Inter-
national Conference on Performance Evaluation Methodologies and Tools, pp. 170–
171 (2016)

21. Ciavotta, M., Gianniti, E., Ardagna, D.: D-SPACE4Cloud: a design tool for big
data applications. In: Carretero, J., Garcia-Blas, J., Ko, R.K.L., Mueller, P.,
Nakano, K. (eds.) ICA3PP 2016. LNCS, vol. 10048, pp. 614–629. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49583-5 48

22. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Continuous elasticity: design
and operation of elastic systems. it-Inf. Technol. 58(6), 329–348 (2016)

23. Coutinho, E.F., de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza,
J.N.: Elasticity in cloud computing: a survey. Ann. Telecomm. 70(7), 289–309
(2015)

24. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

25. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

26. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. CoRR abs/1702.07149 (2017)

https://doi.org/10.1007/978-3-319-44482-6_4
https://doi.org/10.1002/cpe.4334
https://doi.org/10.1007/978-3-319-75178-8_9
https://doi.org/10.1007/978-3-319-49583-5_48
https://doi.org/10.1007/978-3-642-35813-5_1


208 V. Cardellini et al.

27. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
IEEE Int. Comput. 15(5), 66–71 (2011)

28. Etxeberria, L., Trubiani, C., Cortellessa, V., Sagardui, G.: Performance-based
selection of software and hardware features under parameter uncertainty. In: Pro-
ceedings of ACM QoSA 2014, pp. 23–32. ACM (2014)

29. Evangelinou,A.,Ciavotta,M.,Ardagna,D.,Kopaneli,A.,Kousiouris,G.,Varvarigou,
T.: Enterprise applications cloud rightsizing through a joint benchmarking and opti-
mization approach. Future Gener. Comput. Syst. 78, 102–114 (2018)

30. Feiler, P., Gluch, D., Hudak, J.: The architecture analysis and design language
(AADL): an introduction. Technical report. CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2006)

31. Franceschelli, D., Ardagna, D., Ciavotta, M., Di Nitto, E.: Space4cloud: a tool for
system performance and costevaluation of cloud systems. In: Proceedings of 2013
International Workshop on Multi-cloud Applications and Federated Clouds, pp.
27–34. ACM (2013)

32. de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study
of performance and cost design space exploration. In: Proceedings of ACM/SPEC
ICPE 2012, pp. 205–216 (2012)

33. Grieco, L.A., Colucci, S., Mongiello, M., Scandurra, P.: Towards a goal-oriented
approach to adaptable re-deployment of cloud-based applications. In: Proceedings
of CLOSER 2016, pp. 253–260. SciTePress (2016)

34. Guerriero, M., Ciavotta, M., Gibilisco, G.P., Ardagna, D.: A model-driven DevOps
framework for QoS-aware cloud applications. In: Proceedings of SYNASC 2015, pp.
345–351. IEEE (2015)

35. Herbst, N., Becker, S., Kounev, S., Koziolek, H., Maggio, M., Milenkoski, A.,
Smirni, E.: Metrics and benchmarks for self-aware computing systems. Self-Aware
Computing Systems, pp. 437–464. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-47474-8 14

36. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it is,
and what it is not. In: Proceedings of 10th International Conference on Autonomic
Computing, ICAC 2013, pp. 23–27 (2013)

37. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2014)

38. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing - degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)

39. Hwang, C., Yoon, K.: Multiple criteria decision making. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, New York (1981)

40. Jain, R.: The Art of Computer Systems Performance Analysis, vol. 491. Wiley,
New York (1991)

41. Kistowski, J.V., Herbst, N.R., Kounev, S.: Modeling variations in load intensity
over time. In: Proceedings of 3rd International Workshop on Large Scale Testing,
LT 2014. ACM (2014)

42. Koziolek, A.: Automated Improvement of Software Architecture Models for Per-
formance and Other Quality Attributes. Ph.D. thesis, Karlsruhe Institute of Tech-
nology (2011)

43. Koziolek, A., Koziolek, H., Reussner, R.: PerOpteryx: automated application of
tactics in multi-objective software architecture optimization. In: Proceedings of
ACM SIGSOFT QoSA-ISARCS 2011, pp. 33–42 (2011)

44. Le, D., Narendra, N.C., Truong, H.L.: HINC - harmonizing diverse resource infor-
mation across IoT, network functions, and clouds. In: Proceedings of 4th Inter-
national Conference on Future Internet of Things and Cloud, FiCloud 2016, pp.
317–324 (2016)

https://doi.org/10.1007/978-3-319-47474-8_14
https://doi.org/10.1007/978-3-319-47474-8_14


QoS-Based Elasticity for Service Chains in Edge Cloud Environments 209

45. Li, H., Casale, G., Ellahi, T.N.: SLA-driven planning and optimization of enterprise
applications. In: Proceedings of 1st Joint WOSP/SIPEW International Conference
on Performance Engineering, pp. 117–128. ACM (2010)

46. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

47. Malek, S., Medvidovic, N., Mikic-Rakic, M.: An extensible framework for improving
a distributed software system’s deployment architecture. IEEE Trans. Software
Eng. 38(1), 73–100 (2012)

48. Menascé, D.A., Ewing, J.M., Gomaa, H., Malex, S., Sousa, J.A.P.: A framework
for utility-based service oriented design in SASSY. In: Proceedings of 1st Joint
WOSP/SIPEW International Conference on Performance Engineering, pp. 27–36.
ACM (2010)

49. Moldovan, D., Truong, H.L., Dustdar, S.: Cost-aware scalability of applications in
public clouds. In: Proceedings of IEEE IC2E 2016, pp. 79–88 (2016)

50. Nambiar, M., Kattepur, A., Bhaskaran, G., Singhal, R., Duttagupta, S.: Model
driven software performance engineering: current challenges and way ahead. ACM
SIGMETRICS Perform. Eval. Rev. 43(4), 53–62 (2016)

51. Nanda, S., Hacker, T.J., Lu, Y.H.: Predictive model for dynamically provisioning
resources in multi-tier web applications. In: Proceedings of IEEE CloudCom 2016,
pp. 326–335 (2016)

52. Neto, P.A.S., Vargas-Solar, G., da Costa, U.S., Musicante, M.A.: Designing service-
based applications in the presence of non-functional properties: a mapping study.
Inf. Softw. Technol. 69, 84–105 (2016)

53. OpenFog Consortium: OpenFog reference architecture (2017). https://www.
openfogconsortium.org/ra/

54. Orsini, G., Bade, D., Lamersdorf, W.: Computing at the mobile edge: designing
elastic android applications for computation offloading. In: Proceedings of 8th IFIP
Wireless and Mobile Networking Conference, WMNC 2015, pp. 112–119, October
2015

55. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures-a technology
review. In: Proceedings of FiCloud 2015, pp. 379–386. IEEE (2015)

56. Passacantando, M., Ardagna, D., Savi, A.: Service provisioning problem in cloud
and multi-cloud systems. INFORMS J. Comput. 28(2), 265–277 (2016)

57. Pérez, J.F., Casale, G.: Assessing SLA compliance from Palladio component mod-
els. In: Proceedings of SYNASC 2013, pp. 409–416 (2013)

58. Perez-Palacin, D., Mirandola, R., Merseguer, J.: On the relationships between qos
and software adaptability at the architectural level. J. Syst. Softw. 87, 1–17 (2014)

59. Quadri, I.R., Gamatié, A., Boulet, P., Meftali, S., Dekeyser, J.L.: Expressing
embedded systems configurations at high abstraction levels with UML MARTE
profile: advantages, limitations and alternatives. J. Syst. Architect. 58(5), 178–194
(2012)

60. Rahmoun, S., Borde, E., Pautet, L.: Automatic selection and composition of model
transformations alternatives using evolutionary algorithms. In: Proceedings of 2015
European Conference on Software Architecture Workshops, ECSAW 2015, pp.
25:1–25:7. ACM (2015)

61. Sáez, S.G., Andrikopoulos, V., Leymann, F., Strauch, S.: Towards dynamic appli-
cation distribution support for performance optimization in the cloud. In: Proceed-
ings of IEEE CLOUD 2014, pp. 248–255 (2014)

https://www.openfogconsortium.org/ra/
https://www.openfogconsortium.org/ra/


210 V. Cardellini et al.

62. Sáez, S.G., Andrikopoulos, V., Wessling, F., Marquezan, C.C.: Cloud adaptation
and application (re-)distribution: bridging the two perspectives. In: Proceedings
of IEEE 18th International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations, pp. 163–172 (2014)

63. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

64. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing
in the context of internet of things. IEEE Trans. Cloud Comput. PP, 1 (2015)

65. Schatzberg, D., Appavoo, J., Krieger, O., Van Hensbergen, E.: Scalable elastic
systems architecture. In: Proceedings of ASPLOS RESoLVE Workshop, March
2011

66. Shoaib, Y., Das, O.: Web application performance modeling using layered queueing
networks. Electr. Notes Theor. Comput. Sci. 275, 123–142 (2011)

67. Szabo, R., Kind, M., Westphal, F.J., Woesner, H., Jocha, D., Csaszar, A.: Elastic
network functions: opportunities and challenges. IEEE Netw. 29(3), 15–21 (2015)

68. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software
architectural decisions-a systematic mapping study. Inf. Softw. Technol. 56(8),
850–872 (2014)

69. Tribastone, M.: Efficient optimization of software performance models via
parameter-space pruning. In: Proceedings of ACM/SPEC ICPE 2014, pp. 63–73
(2014)

70. Truong, H.L., Dustdar, S.: Principles for engineering IoT cloud systems. IEEE
Cloud Comput. 2(2), 68–76 (2015)

71. Truong, H.L., Dustdar, S.: Programming elasticity in the cloud. IEEE Comput.
48(3), 87–90 (2015)

72. Truong, H.L., Dustdar, S., Leymann, F.: Towards the realization of multi-
dimensional elasticity for distributed cloud systems. In: Proceedings of 2nd Inter-
national Conference on Cloud Forward, pp. 14–23 (2016). https://doi.org/10.1016/
j.procs.2016.08.276

73. Truong, H.L., Narendra, N.C.: SINC - an information-centric approach for end-to-
end IoT cloud resource provisioning. In: Proceedings of International Conference
on Cloud Computing Research and Innovations, ICCCRI 2016, pp. 17–24 (2016)

74. Walker, M., Reiser, M.O., Tucci-Piergiovanni, S., Papadopoulos, Y., et al.: Auto-
matic optimisation of system architectures using EAST-ADL. J. Syst. Softw.
86(10), 2467–2487 (2013)

75. Wettinger, J., Görlach, K., Leymann, F.: Deployment aggregates-a generic deploy-
ment automation approach for applications operated in the cloud. In: Proceedings
of IEEE 18th International Conference on Enterprise Distributed Object Comput-
ing Workshops and Demonstrations, EDOCW 2014, pp. 173–180 (2014)

76. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

77. Wu, W., Kelly, T.: Towards evidence-based architectural design for safety-critical
software applications. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) WADS
2006. LNCS, vol. 4615, pp. 383–408. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74035-3 17

78. Yoder, J.W., Johnson, R.: The adaptive object-model architectural style. In: Bosch,
J., Gentleman, M., Hofmeister, C., Kuusela, J. (eds.) Software Architecture. ITI-
FIP, vol. 97, pp. 3–27. Springer, Boston, MA (2002). https://doi.org/10.1007/978-
0-387-35607-5 1

https://doi.org/10.1016/j.procs.2016.08.276
https://doi.org/10.1016/j.procs.2016.08.276
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-540-74035-3_17
https://doi.org/10.1007/978-3-540-74035-3_17
https://doi.org/10.1007/978-0-387-35607-5_1
https://doi.org/10.1007/978-0-387-35607-5_1


QoS-Based Elasticity for Service Chains in Edge Cloud Environments 211

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	QoS-Based Elasticity for Service Chains in Distributed Edge Cloud Environments
	1 Introduction
	2 Overview of Elasticity
	3 Systems of IoT, NFV and Clouds and Their Elasticity Coordination Needs
	4 Existing Solutions – Pros and Cons
	4.1 Software Attributes and Design Choices
	4.2 Design-Time Approaches
	4.3 Runtime Approaches
	4.4 Other Relevant Research

	5 Coordination Patterns for Decentralized Elasticity Control
	5.1 Hierarchical Patterns
	5.2 Flat Patterns

	6 Challenges and Future Perspectives
	7 Conclusions
	References




