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Abstract We introduce various notions of q-pseudo-concavity for abstract CR manifolds,1
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1 Introduction29

The definition of q-pseudo-concavity for abstract CR manifolds of arbitrary CR-dimension30

and CR-codimension, given in [20], required that all scalar Levi forms corresponding to31

non-characteristic codirections have Witt index1 larger or equal to q . Important classes of32

homogeneous examples (see, for example, [1,3–5,33,35]) show that these conditions are in33

fact too restrictive and that weaker notions of q-pseudo-concavity are needed. For example,34

the results on the non-validity of the Poincaré lemma for the tangential Cauchy–Riemann35

complex in [10,23] only involve scalar Levi forms of maximal rank. In [21], the classical36

notion of 1-pseudo-concavity was extended by a trace condition that was further improved in37

[2,18,22]. These notions are relevant to the behavior of CR functions, being related to hypoel-38

lipticity, weak and strong unique continuation, hypoanaliticity (see [38]) and the maximum39

modulus principle.40

In this paper, we continue these investigations. A key point of this approach is the simple41

observation that the Hermitian-symmetric vector-valued Levi form L of a CR manifold M42

defines a linear form on T 1,1 M = T 1,0 M ⊗M T 0,1 M . Our notion of pseudo-concavity is the43

request that its kernel contains elements τ which are positive semidefinite. To such a τ, we can44

associate an invariantly defined degenerate elliptic real partial differential operators Pτ, which45

turns out to be related to the ddc operator of [32]. By consistently keeping this perspective, we46

prove in this paper some results on C∞ hypoellipticity, the maximum modulus principle, and47

undertake the study of boundary value problems for CR functions on open domains of abstract48

CR manifolds, testing the effectiveness of a new notion of weak two-pseudo-concavity by its49

application to the Cauchy problem for CR functions.50

The general plan of the paper is the following. In the next section, we define the notion51

of Z-structure that generalizes CR structures insofar that all formal integrability and rank52

conditions can be dropped, while our focus is CR functions, only considered as solutions of53

a homogeneous overdetermined system of first-order p.d.e.’s, and set the basic notation that54

will be used throughout the paper. In particular, we introduce the kernel [kerL] of the Levi55

form as a subsheaf of the sheaf of germs of semipositive tensors of type (1, 1).56

In Sect. 3, we show how the maximum modulus principle relates to C∞-regularity and57

weak and strong unique continuation of CR functions. We also make some comments on58

generic points of non-embeddable CR manifolds, where, by using our results of [38], we can59

prove, in Proposition 3.5, a result of strong unique continuation and partial hypoanaliticity60

(cf. [47]).61

In Sect. 4, we show that to each semipositive tensor τ in the kernel of the Levi form we62

can associate a real degenerate elliptic scalar p.d.o. of the second-order Pτ. Real parts of CR63

functions are Pτ-harmonic, and the modulus of a CR function is Pτ-subharmonic at points64
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where it is different from zero. Then, by using some techniques originally developed for the65

generalized Kolmogorov equation (cf. [25,26,29]), we are able to enlarge, in comparison66

with [2], the set of vector fields enthralled by Z. Thus, we can improve, by Theorem 4.2,67

some hypoellipticity result of [2], and, by Theorem 4.7, a propagation result of [22], for the68

case in which this hypoellipticity fails.69

In Sect. 5, we prove the CR analogue of Malgrange’s theorem on the vanishing of the70

top degree cohomology under some subellipticity condition. Our result slightly generalizes71

previous results of [9,30,31], also yielding a Hartogs-type theorem on abstract CR manifolds,72

to recover a CR function on a relatively compact domain from boundary values satisfying73

some momentum condition (Proposition 5.3).74

In Sect. 6, we use the ddc-operator of [32] to show that the operators Pτ are invariantly75

defined in terms of sections of [kerL] (Corollary 6.8). The Hopf Lemma for Pτ is used to76

deduce pseudo-convexity properties of the boundary of a domain where a CR functions has77

a peak point (Proposition 6.15). This leads to a notion of convexity/concavity for points of78

the boundary of a domain (Definition 6.4). Most of these notions can be formulated in terms79

of the scalar Levi forms associated with the covectors of a half-space of the characteristic80

bundle.81

Thus, in Sect. 7, we have found it convenient to consider properties of convex cones82

of Hermitian-symmetric forms satisfying conditions on their indices of inertia, which are83

preliminary to the definitions of the next section.84

In Sect. 8, we propose various notions of weak-q-pseudo-concavity, give some examples,85

and show in Proposition 8.7 that on an essentially 2-pseudo-concave manifold strong-1-86

convexity/concavity at the boundary becomes an open condition, i.e., stable under small87

perturbations. This is used in the last two sections to discuss existence and uniqueness for88

the Cauchy problem for CR functions, with initial data on a hypersurface.89

In Sect. 9, after discussing uniqueness in the case of a locally embeddable CR manifold,90

we turn to the case of an abstract CR manifold, proving, via Carleman-type estimates, that91

the uniqueness results of [13,21,22] can be extended by using some convexity condition (see92

Proposition 9.9). In Sect. 10, an existence theorem for the Cauchy problem is proved for93

locally embeddable CR manifolds, under some convexity conditions.94

2 CR-and Z-manifolds: preliminaries and notation95

Let M be a real smooth manifold of dimension m.96

Definition 2.1 A Z-structure on M is the datum of a C∞
M -submodule Z of the sheaf XC

M of97

germs of smooth complex vector fields on M . It is called98

• formally integrable if [Z, Z] ⊂ Z;99

• of CR type if Z ∩ Z = 0 (the 0-sheaf);100

• almost-CR if Z is of CR type and locally free of constant rank;101

• quasi-CR if it is of CR type and formally integrable;102

• CR if Z is of CR type, formally integrable and locally free of constant rank.103

A Z-manifold is a real smooth manifold M endowed with a Z-structure. Since C∞
M is a fine104

sheaf, Z can be equivalently described by the datum of the space Z(M) of its global sections.105

When M is a smooth real submanifold of a complex manifold X, then106

Z(M) = {Z ∈ XC(M) | Z p ∈ T 0,1
p X, ∀p ∈ M}107
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is formally integrable. Hence, Z(M) defines a quasi-CR structure on M , which is CR if the108

dimension of T 0,1
p X ∩ CTp M is constant for p ∈ M . This is always the case when M is a109

real hypersurface in X.110

A complex embedding (immersion) φ : M ↪→ X of a quasi-CR manifold M into a111

complex manifold X is a smooth embedding (immersion) for which the Z-structure on M is112

the pullback of the complex structure of X:113

Z(M) = {Z ∈ XC(M) | dφ(Z p) ∈ T 0,1
φ(p)X, ∀p ∈ M}.114

Example 2.1 Let M = {w = z1 z̄1 + i z2 z̄2} ⊂ C
3
w,z1,z2

= X. We can take the real and115

imaginary parts of z1, z2 as coordinates on M , which therefore, as a smooth manifold, is116

diffeomorphic to C
2
z1,z2

. The embedding M ↪→ C
3 yields the quasi-CR structure117

Z(M) = C∞(M)

[
z2

∂

∂ z̄1
+ i z1

∂

∂ z̄2

]
118

on M . Then, M \ {0} is a CR manifold of CR-dimension 1 and CR-codimension 2, while all119

elements of Z(M) vanish at 0 ∈ M .120

A Z-manifold M of CR type contains an open dense subset M̊ whose connected compo-121

nents are almost-CR for the restriction of Z. Likewise, any quasi-CR manifold M contains122

an open dense subset M̊ whose connected components are CR manifolds.123

We shall use Ω and A for the sheaves of germs of complex-valued and real-valued124

alternate forms on M (subscripts indicate degree of homogeneity). Starting with the case of125

an almost-CR manifold M , we introduce the notation:126

T 0,1 M =
⋃

p∈M

(
T 0,1

p M = {Z p | Z ∈ Z(M)}) ⊂ CT M, T 1,0 M = T 0,1 M,127

H M =
⋃

p∈M

(
Hp M = {Re Z p | Z p ∈ T 0,1

p M}) ⊂ T M,128

JM : Hp M → Hp M, X p + i JM X p ∈ T 0,1
p M, ∀X p ∈ Hp M,129

(partial complex structure),130

H = {Re Z | Z ∈ Z},131

πM : T M → T M/H M (projection onto the quotient),132

I(M) = {α ∈
⊕ν

h=1
Ωh(M, C) | α|T 0,1 M = 0}, (I is the ideal shea f ),133

H0 M =
⋃

p∈M

(
H0

p M = {ξ ∈ T ∗
p M | ξ(Hp M) = {0}}) ⊂ T ∗M,134

H1,1 M =
⋃

p∈M

(
H1,1

p M = convex hull of {(Z p ⊗ Z̄ p) | Z ∈ Z(M)}),135

H1,1,(r)M =
⋃

p∈M

(
H1,1,(r)

p M = {τ ∈ H1,1
p M | rank τ = r}).136

137

Note that T 0,1 M, T 1,0 M, H M, T M/H M, H0 M, H1,1 M, H1,1,(r)M define smooth138

vector bundles because we assumed that the rank n of Z is constant. This n is called the139

CR-dimension and the difference k = m − 2n the CR-codimension of M .140

For a general Z-manifold, we use the same symbols141

T 0,1 M, T 1,0 M, H M, T M/H M, H1,1 M, H1,1,(r)M142

for the closures of143

T 0,1 M̊, T 1,0 M̊, H M̊, T M̊/H M̊, H1,1 M̊, H1,1,(r)M̊144
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in T CM , T CM , T M , T M/H M , T CM ⊗M T CM , T CM ⊗M T CM , respectively.145

Example 2.2 For the M in Example 2.1, the fiber T 0,1
p M has dimension 1 at all points p of146

M̊ = M \ {0}, while T 0,1
0 M = C[∂/z̄1, ∂/∂ z̄2] has dimension 2. By contrast, as we already147

observed, all elements of Z(M) vanish at 0.148

If F is a subsheaf of the sheaf of germs of (complex-valued) distributions on M , an element149

f of F is said to be CR if it satisfies the equations Z f = 0 for all Z ∈ Z(M). The CR germs150

of F are the elements of a sheaf that we denote by FOM . We will simply write OM for C∞OM .151

We will assume in the rest of this section that M is an almost-CR manifold.152

The fibers of H1,1 M are closed convex cones, consisting of the positive semidefinite153

Hermitian-symmetric tensors in T 0,1 M ⊗M T 1,0 M . The characteristic bundle H0 M is the154

dual of the quotient T M/H M .155

Let us describe more carefully the bundle structure of H1,1,(r)M . Set V = T 0,1
p M and156

consider the non-compact Stiefel space Str (V ) of r -tuples of linearly independent vectors157

of V . Two different r -tuples v1, . . . , vr and w1, . . . , wr in Str (V ) define the same τp , i.e.,158

satisfy159

τp = v1 ⊗ v̄1 + · · · + vr ⊗ v̄r = w1 ⊗ w̄1 + · · · + wr ⊗ w̄r ,160

if and only if there is a matrix a = (ai
j ) ∈ U(r) (the unitary group of order r ) such that w j =161 ∑

j a
i
jvi . In fact, the span of v1, . . . , vr is determined by the tensor τp , so that w j =∑ j a

i
jvi162

for some a = (ai
j ) ∈ GLr (C) and163

r∑
i=1

wi ⊗ w̄i =
r∑

j=1

r∑
i,h=1

ai
j ā

h
j vi ⊗ v̄h =

r∑
i,h=1

⎛
⎝ r∑

j=1

ai
j ā

h
j

⎞
⎠ vi ⊗ v̄h164

165

shows that a ∈ U(r). Hence, H1,1,(r)M is the quotient bundle of the non-compact complex166

Stiefel bundle of r -frames in T 0,1 M by the action of the unitary group U(r). By using the167

Cartan decomposition168

U(r)× p(r) 
 (x, X) −→ x · exp(X) ∈ GLr (C),169

where p(r) is the vector space of Hermitian-symmetric r × r matrices, we see that H1,1,(r)M170

can be viewed as a rank r2 real vector bundle on the Grassmannian Grr (M) of r -planes of171

T 0,1 M . Thus, it is a smooth vector bundle when M is almost-CR.172

2.1 Scalar and vector-valued Levi forms173

The map174

Z p ⊗ Z̄ p −→ −πM (i[Z , Z̄ ]p), ∀p ∈ M, ∀Z ∈ Z(M), (2.1)175

extends to a linear map176

L : H1,1 M → T M/H M, (2.2)177

that we call the vector-valued Levi form. To each characteristic codirection ξ ∈ H0
p M , we178

associate the Hermitian quadratic form179

Lξ(Z p, Z̄ p) = L(Z p ⊗ Z̄ p) = −〈ξ|i[Z , Z̄ ]p〉, ∀Z ∈ Z(M).180

It extends to a convex function on H1,1
p M , which is the evaluation by the covector ξ of the181

vector-valued Levi form. Thus, the scalar Levi forms are182

Lξ(τ) = ξ(L(τ)), for p ∈ M, ξ ∈ H0
p M, τ ∈ H1,1

p M. (2.3)183
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The range �p M of the vector-valued Levi form is a convex cone of Tp M/Hp M , whose184

dual cone is185

�0
p M = {ξ ∈ H0

p M | Lξ ≥ 0}.186

Thus, we obtain187

Lemma 2.3 An element v ∈ Tp M/Hp M belongs to the closure or the range of the vector-188

valued Levi form if and only if189

〈v|ξ〉 ≥ 0, ∀ξ ∈ H0
p M such that Lξ ≥ 0. (2.4)190

��191

Remark 2.4 Note that �p M need not be closed. An example is provided by the quadric192

M = {Re z3 = z1 z̄1, Re z4 = Re(z1 z̄2)} ⊂ C
4: the cone �0 M is the union of the origin and193

of an open half-plane.194

It is convenient to introduce the notation:195

[kerL](q) = H1,1,(q)M ∩ ker L, [kerL] =
⊕

q≥0
[kerL](q)

, [kerL] =
⊕

q>0
[kerL](q).196

Definition 2.2 We call [kerL] the kernel of the Levi form.197

We note that this definition is at variance with a notion that appears in the literature (see, for198

example, [12]), where the kernel of the Levi form consists of the (1, 0)-vectors which are199

isotropic for all scalar Levi forms. These vectors are related to [kerL](1), which is trivial in200

several examples of CR manifolds which are not of hypersurface type and have a non-trivial201

[kerL].202

Let Y be a generalized distribution of real vector fields on M and p ∈ U open ⊂ M . The203

Sussmann leaf of Y through p in U is the set �(p;Y, U ) of points p′ which are ends of204

piecewise C∞ integral curves of Y starting from p and lying in U . We know that �(p;Y, U )205

is always a smooth submanifold of U (see [17]).206

Let H = {Re Z | Z ∈ Z}. A Z-manifold M is called minimal at p if �(p;H, U ) is an207

open neighborhood of p for all U open ⊂ M and p ∈ U . (This notion was introduced in [46]208

for embedded CR manifolds.) In the following, by a Sussmann leaf of Z we will mean a209

Sussmann leaf of H.210

A smooth real submanifold N of M (of arbitrary codimension �) is said to be non-211

characteristic, or generic, at p0 ∈ N , when212

Tp0 N + Hp0 M = Tp0 M. (2.5)213

If this holds for all p ∈ N , then N is a generic CR submanifold of M , of type (n− �, k + �),214

as T 0,1
p N = T C

p N ∩ T 0,1
p N and H0

p N = H0
p M ⊕ J ∗M (Tp N )0 for all p ∈ N .215

To distinguish from the Levi form L of M , we write LN for the Levi form of N .216

A Sussmann leaf for Z which is not open is characteristic at all points.217

More generally, when 	(M) is any distribution of complex-valued smooth vector fields218

on M , we say that N is 	-non-characteristic at p0 ∈ N if219

Tp0 N + {Re Z p0 | Z ∈ 	(M)} = Tp0 M. (2.6)220

In this terminology, non-characteristic is equivalent to Z-non-characteristic.221

We note that the 	-non-characteristic points make an open subset of N .222
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3 Hypoellipticity and the maximum modulus principle223

In [38], we proved that, for locally embedded CR manifolds, the hypoellipticity of its tan-224

gential Cauchy–Riemann system is equivalent to the holomorphic extendability of its CR225

functions. Thus, hypoellipticity may be regarded as a weak form of pseudo-concavity. The226

regularity of CR distributions implies a strong maximum modulus principle for CR functions227

(see [21, Theorem 6.2]).228

Proposition 3.1 Let M be a Z-manifold. Assume that all germs of CR distributions on M229

that are locally L2 are smooth. Then, for every open connected subset 
 of M, we have230

| f (p)| < sup
| f |, ∀p ∈ 
, for all non-constant f ∈ OM (
). (3.1)231

Proof We prove that an f ∈ OM (
) for which | f | attains a maximum value at some inner232

point p0 of 
 is constant. Assume that p0 ∈ 
 and | f (p0)| = sup
 | f |. If f (p0) = 0, then233

f is constant and equal to zero on 
.234

Assume that f (p0) �= 0. After rescaling, we can make f (p0) = | f (p0)| = 1.235

Let E be the space OM (
) endowed with the L2
loc topology. By the hypoellipticity assump-236

tion, E is Fréchet. Then, by Banach open mapping theorem, the identity map E → OM (
)237

is an isomorphism of topological vector spaces. In particular, for all compact neighborhoods238

K of p0 in 
, there is a constant CK > 0 such that239

|u(p0)|2 ≤ CK

∫
K
|u|2dλ, ∀u ∈ OM (
).240

Applying this inequality to f ν , we obtain that241

1 ≤
∫

K
| f |2νdλ ≤

∫
K

dλ.242

The sequence { f ν} is compact in OM (
), because, by the hypoellipticity assumption and243

the Ascoli-Arzelà theorem, restriction to a relatively compact subset of CR functions is a244

compact map. Hence, we can extract from { f ν} a sequence that converges to a CR function245

φ, which is nonzero because it has a positive square-integral on every compact neighborhood246

of p0. We note now that |φ| is continuous and takes only the values 1, at points where | f | = 1,247

and 0 at points where | f | < 1. Since φ �= 0, we have |φ| ≡ 1 on 
 and hence | f | ≡ 1 on 
.248

By applying the preceding argument to p → 1
2 (1 + f (p)), we obtain that |1 + f (p)| = 2249

on 
. Hence, Re f ≡ 1, which yields f ≡ 1, on 
. ��250

Under the assumptions of Proposition 3.1, a CR function f ∈ OM (
) is constant on a251

neighborhood of any point where | f | attains a local maximum.252

Then, we have253

Proposition 3.2 Assume that254

(i) all germs of CR distribution on M are smooth;255

(ii) the weak unique continuation principle for CR functions is valid on M.256

Then, any CR function f, defined on a connected open subset 
 of M, for which | f | attains257

a local maximum at some point of 
, is constant.258

We recall that the weak unique continuation principle (i i) means that a CR function259

f ∈ OM (
) which is zero on an open subset U of 
 is zero on the connected component of260

U in 
.261
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Definition 3.1 We say that M has property (H) if (i) holds, and property (WUC) if (i i) holds.262

We say that (H) (or (WUC)) holds at p if it holds when M is substituted by a sufficiently263

small open neighborhood of p in M .264

For a locally CR-embeddable CR manifold M , the implication (H) ⇒ (WUC) is a con-265

sequence of [38]. In fact, (H) implies minimality, which implies (WUC) when M is locally266

CR-embeddable (see [46,48]). In fact, in this case (H) implies the strong unique continuation267

principle for CR functions.268

Proposition 3.3 Assume that M is a CR submanifold of a complex manifold X and that M269

has property (H). Then, a CR function, defined on a connected open subset 
 of M and270

vanishing to infinite order at a point p0 of 
, is identically zero in 
.271

Proof Let f ∈ OM (
). It is sufficient to prove that the set of points where f vanishes to272

infinite order is open in 
. This reduces the proof to a local statement, allowing us to assume273

that the embedding M ↪→ X is generic. By Nacinovich and Porten [38], any CR function f274

extends to a holomorphic function f̃ , defined on a connected open neighborhood U of p in275

X. By the assumption that M ↪→ X is generic, f̃ is uniquely determined by the Taylor series276

of f at p in any coordinate chart and thus vanishes to infinite order at a point p′ ∈ U ∩ 
277

if and only if f does. Hence, f vanishes to infinite order at p if and only if f̃ vanishes278

on U , and this is equivalent to the fact that f vanishes identically on U ∩ 
. The proof is279

complete. ��280

When M is not locally embeddable, there should be smaller local rings of CR functions,281

so that in fact properties of regularity and unique continuation should even be more likely282

true. Let us shortly discuss this issue. Set283

T ∗
p

1,0 M = {ζ ∈ CT ∗
p M | ζ(Z) = 0, ∀Z ∈ T 0,1

p M}.284

Note that, with285

T ∗
p

0,1 M = T ∗
p

1,0 M = {ζ ∈ CT ∗
p M | ζ(Z̄) = 0, ∀Z ∈ T 0,1

p M},286

the intersection287

T ∗
p

1,0 M ∩ T ∗
p

0,1 M = CH0
p M288

is the complexification of the fiber of the characteristic bundle and therefore different from289

zero, unless Z is an almost complex structure. Differentials of smooth CR functions are290

sections of the bundle T ∗1,0 M . Thus, for a fixed p, we can consider the map291

OM,p 
 f −→ d f (p) ∈ T ∗
p

1,0 M. (3.2)292

Clearly, we have293

Lemma 3.4 A necessary and sufficient condition for M to be locally CR-embeddable at p294

is that (3.2) is surjective. ��295

We can associate with the map (3.2) a pair (νp, kp) of nonnegative integers, with296

kp = dimC{d f (p) | f ∈ OM,p} ∩ CH0
p M, and νp + kp = dimC{d f (p) | f ∈ OM,p}.297

The numbers νp and νp + kp are upper semicontinuous functions of p and hence locally298

constant on a dense open subset M̊ of M . Thus, we can introduce299

Definition 3.2 We call generic the points of the open dense subset M̊ of M , where νp and300

νp + kp are locally constant.301
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Proposition 3.5 Assume that M has property (H). Then, the strong unique continuation302

principle is valid at generic points p0 of M. This means that f ∈ OM,p0 is the zero germ if303

and only if it vanishes to infinite order at p0.304

Moreover, there are finitely many germs f1, . . . , fμ ∈ OM,p0 , vanishing at p0, such that,305

for every f ∈ OM,p0 , we can find F ∈ OCμ,0 such that f = F( f1, . . . , fμ).306

Proof By the assumption that p0 is generic, we can fix a connected open neighborhood U307

of p0 in M and functions f1, . . . , fμ ∈ O M (U ), vanishing at p0, such that d f1(p) ∧ · · · ∧308

d fμ(p) �= 0 for all p ∈ U and d f1(p), . . . , d fμ(p) generate the image of (3.2) for all p ∈ U .309

Then, by shrinking U , if needed, we can assume that310

φ : U 
 p −→ ( f1(p), . . . , fμ(p)) ∈ N ⊂ C
μ

311

is a smooth real vector bundle on a generic CR submanifold N of C
μ, of CR-dimension νp0312

and CR-codimension kp0 .313

In fact, we can assume that Re d f1, . . . , Re d fμ, Im(d f1), . . . , Im(d fν) are linearly inde-314

pendent on U . We can fix local coordinates x1, . . . , xm centered at p0 with x1, . . . , xμ+ν315

equal to Re f1, . . . , Re fμ, Im f1, . . . , Im fν . By the assumption, in these local coordinates316

Im fν+1, . . . , Im fμ are smooth functions of x1, . . . , xμ+ν and this yields a parametric rep-317

resentation of N as a graph of C
ν × R

μ−ν in C
μ, which is therefore locally a generic318

CR-submanifold of type (ν, μ − ν) of C
μ. The map φ : U → N is CR, and therefore, the319

pullback of germs of continuous CR function on N defines germs of continuous CR function320

on M . If M has property (H), then the C∞ regularity of their pullbacks implies the C∞
321

regularity of the germs on N . Thus, N also has property (H), and, since it is embedded in322

C
μ, by [38], all CR functions on an open neighborhood ω0 of 0 in N are the restriction of323

homomorphic functions on a full open neighborhood ω̃0 of 0 in C
μ, with ω0 = ω̃0∩N . Since324

fi = φ∗(zi ) for the holomorphic coordinates z1, . . . , zμ of C
μ, we obtain that all germs of325

CR functions at p0 ∈ M are germs of holomorphic functions of f1, . . . , fμ. This clearly326

implies the validity at p0 of the strong unique continuation principle. The proof is complete.327

��328

4 The kernel of the Levi form and the (H) property329

To a finite set Z1, . . . , Zr of vector fields in Z(M), we associate the real-valued vector field330

Y0 = 1

2i

r∑
j=1

[Z j , Z̄ j ]. (4.1)331

Any CR function u on M satisfies the degenerate-Schrödinger-type equation332

Su = 0, with (4.2)333

334

S= −iY0 + 1
2

r∑
j=1

(Z j Z̄ j + Z̄ j Z j ) = −iY0 +
2r∑

j=1

X2
j , (4.3)335

where X j = Re Z j , X j+r = Im Z j for 1 ≤ j ≤ r. In fact, by (4.1), we have336

S= 1
2

r∑
i=1

Z̄ j Z j ,337
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and thus the operator S belongs to the left ideal, in the ring of scalar linear partial differential338

operators with complex smooth coefficients, generated by Z(M).339

We note that S is of the second order, with a real principal part which is uniquely determined340

by τ = Z1 ⊗ Z̄1 + · · · + Zr ⊗ Z̄r ∈ �(H1,1 M), while a different choice of the Z j ’s would341

yield a new Y ′0, differing form Y0 by the addition of a linear combination of X1, . . . , X2r .342

If we assume that τ ∈ ker(L), then343

r∑
i=1

[Z j , Z̄ j ] = L̄0 − L0 (4.4)344

for some L ∈ Z(M), which is uniquely determined by τ modulo a linear combination with345

C∞ coefficients of Z1, . . . , Zr . Thus, the distributions of real vector fields346 ⎧⎪⎨
⎪⎩

Q1(τ) = 〈Re Z1, . . . , Re Zr , Im Z1, . . . , Im Zr 〉,
V1(τ) = L(Q1(τ)),

V2(τ) = L(Q1(τ)+ Re L0),

(4.5)347

are uniquely determined by τ and Z. By L(...), we indicate the formally integrable distribution348

of real vector fields, which is generated by the elements of the set inside the parentheses and349

their iterated commutators. Note that V1(τ) ⊆ V2(τ), and while Y0 = Im L0 ∈ V1(τ), the350

vector field X0 = Re L0 may not belong to V1(τ). We also introduce, for further reference,351

the distributions of complex vector fields352 {
�(τ) = 〈Z1, . . . , Zr 〉 and � = ⋃τ∈[kerL]�(τ),

�̃(τ ) = �(τ)+ 〈L0〉 and �̃ = ⋃τ∈[kerL]�̃(τ)
(4.6)353

When there is a τ ∈ [kerL](
open), we utilize (4.4) to show that the real and imaginary354

parts of CR functions or distributions on 
 ⊂ M are solutions of a real degenerate elliptic355

scalar second-order differential equation. Indeed, if f is a CR function, or distribution, in356


, then357

L0 f = 0, Z j f = 0 �⇒ (L̄0 + L0) f =
r∑

i=1

(Z j Z̄ j + Z̄ j Z j ) f.358

This is a consequence of the algebraic identities359

1
2

{
r∑

i=1

(Z j Z̄ j + Z̄ j Z j )− (L̄0 + L0)

}
=

r∑
i=1

Z̄ j Z j − L0 =
r∑

i=1

Z j Z̄ j − L̄0. (4.7)360

It terms of the real vector fields X0 = Re L0 and X j = Re Z j , Xr+ j = Im Z j , for361

1 ≤ j ≤ r , the linear partial differential operator of (4.7) is362

Pτ = −X0 +
2r∑

i=1

X2
j , (4.8)363

which has real-valued coefficients and is degenerate elliptic according to [8]. Thus, the real364

and imaginary parts of a CR function, or distribution, both satisfy the homogeneous equation365

Pτφ = 0.366

Actually, Pτ is independent of the choice of Z1, . . . , Zr in the representation of τ, as we367

will later show in Proposition 6.6, by representing Pτ in terms of the ddc operator on M . We368

also have (see [22]):369
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Lemma 4.1 If u ∈ OM (
), then370

Pτ|u| ≥ 0, on 
 ∩ {u �= 0}. (4.9)371

Proof On a neighborhood of a point where u �= 0, we can consistently define a branch372

of log u. This still is a CR function, and from the previous observation, it follows that373

Pτ(log |u|) = Pτ(Re log u) = 0 on 
 ∩ {u �= 0}. Hence,374

Pτ|u| = Pτ exp(log |u|) = |u|
(

Pτ(log |u|)+
r∑

i=1

|Z j (log |u|)|2
)

375

= |u|
r∑

i=1

|Z j (log |u|)|2 ≥ 0376

377

there. ��378

We can use the treatment of the generalized Kolmogorov equation in [25, §22.2] to slightly379

improve the regularity result of [2, Corollary 1.15]. Let us set380

V2 = L
(⋃

τ∈[kerL]V2(τ)
)

, Y = L(V2;H), (4.10)381

where we use L(V2;H) for the V2-Lie module generated by H, which consists of the linear382

combinations, with smooth real coefficients, of the elements of H and their iterated commu-383

tators with elements of V2:384

L(V2;H) = H + [V2, H] + [V2, [V2, H]] + [V2, [V2, [V2, H]]] + · · · (4.11)385

Note that V2 ⊂ L(V2;H) and that both V2 and Y are fine sheaves.386

Theorem 4.2 M has property (H) at all points p where {Yp | Y ∈ Y(M)} = Tp M.387

Before proving the theorem, let us introduce some notation. For ε > 0, we denote by Sε(M)388

the set of real vector fields Y ∈ X(M) such that for every p ∈ M , there is a neighborhood389

U open � M of p, a constant C ≥ 0, τ1, . . . , τh ∈ [kerL](M) and complex vector fields390

Z1, . . . , Z� ∈ Z(M) such that391

‖Y f ‖ε−1 ≤ C

⎛
⎝ h∑

j=1

‖Pτ j f ‖0 +
�∑

i=1

‖Z j f ‖0 + ‖ f ‖0

⎞
⎠ , ∀ f ∈ C∞

0 (U ). (4.12)392

The Sobolev norms of real order (and integrability two) in (4.12) are of course computed after393

fixing a Riemannian metric on M . Different choices of the metric yield equivalent norms394

(see, for example, [2,16] for technical details). Beware that the Z j in the right-hand side of395

(4.12) are not required to be related to those entering the definition of the Pτ j ’s. Set396

S(M) =
⋃

ε>0
Sε(M). (4.13)397

Theorem 4.2 will follow from the inclusion Y(M) ⊂ S(M).398

The following Lemmas 4.3 and 4.4 were proved in [2,21].399

Lemma 4.3 If τ ∈ [kerL](M) and Pτ = −X0 +∑2r
i=1 X2

i , then X1, . . . , X2r ∈ S1(M), and400

for every U open � M, there is a constant C > 0 and Z1, . . . , Z� ∈ Z(M) such that401

2r∑
i=1

‖Xi f ‖0 ≤ C

⎛
⎝‖ f ‖0 +

�∑
j=1

‖Z j f ‖0

⎞
⎠ , ∀ f ∈ C∞

0 (U ). (4.14)402
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Set V1 = L
(⋃

τ∈[kerL]V1(τ)
)

and403

L(V1;H) = H + [V1, H] + [V1, [V1, H]] + [V1, [V1, [V1, H]]] + · · · .404

Lemma 4.4 We have the inclusion L(V1;H) ⊂ S .405

To prove Theorem 4.2, we add the following lemma.406

Lemma 4.5 Let τ ∈ [kerL](M), with Pτ = −X0 +∑2r
i=1 X2

i . Then,407

[X0, Sε(M)] ⊂ Sε/4(M). (4.15)408

Proof Let Qτ = Pτ+c, for a suitable nonnegative real constant c, to be precised later.409

We decompose Qτ into the sum Qτ = Q′
τ + i Q′′

τ , where Q′
τ = 1

2 (Qτ + Q∗
τ) and Q′′

τ =410

1
2i (Qτ − Q∗

τ) are self-adjoint. In particular, Q∗
τ = Q′

τ − i Q′′
τ . We can rewrite Q′

τ as a sum411

Q′
τ = −∑2r

j=1 X∗
j X j + iT + c, for a p.d.o. T of order ≤ 1, whose principal part of order412

1 is a linear combination with C∞ coefficients of X1, . . . , X2r . Moreover, we note that413

Pτ−Pτ
∗ = Qτ − Q∗

τ . The advantage in dealing with Qτ instead of Pτ is that, for c positive414

and sufficiently large,415

(Qτ f | f )0 = (Q′
τ f | f )0 ≥ 0, ∀ f ∈ C∞

0 (U ). (�)416
417

This is the single requirement for our choice of c.418

In [2], it was shown that [Xi , Sε] ⊂ S ε
2

for i = 1, . . . , 2r and all ε > 0. Then, (4.15) is419

equivalent to the inclusion [Q′′
τ, Sε] ⊂ S ε

4
.420

Let Y ∈ Sε(M) and U open � M . We need to estimate ‖ [Q′′
τ, Y ] f ‖ ε

4−1 for f ∈ C∞
0 (U ).421

Let A be any properly supported pseudo-differential operator of order ε
2 − 1. We have422

i([Q′′
τ, Y ] f |A f ) = ((Q′

τ − Q∗
τ)Y f |A f )0 + ((Qτ − Q′

τ) f |Y ∗A f )0423

= (Q′
τY f |A f )0 − (Y f |Qτ A f )0 + (Qτ f |Y ∗A f )0 − (Q′

τ f |Y ∗A f )0.424
425

While estimating the summands in the last expression, we shall indicate by C1, C2, . . .426

positive constants independent of the choice of f in C∞
0 (U ).427

Let us first consider the second and third summands. We have428

|(Y f |Qτ A f )0| ≤ ‖Y f ‖ε−1‖Qτ A f ‖1−ε ≤ ‖Y f ‖ε−1 (‖AQτ f ‖1−ε + ‖ [A, Qτ] f ‖1−ε)429

≤ C1‖Y f ‖ε−1

⎛
⎝‖Qτ f ‖− ε

2
+
∥∥∥∥∥∥
⎡
⎣A,

2r∑
j=1

X2
j

⎤
⎦ f

∥∥∥∥∥∥
1−ε

+ ‖ f ‖− ε
2

⎞
⎠ .430

431

We have432 [
A,
∑2r

j=1
X2

j

]
= −

∑2r

j=1

(
2[X j , A]X j + [X j , [X j , A]]) .433

434

Since [X j , A] and [X j , [X j , A]] have order ε
2 − 1, and Pτ and Qτ differ by a constant, we435

obtain436

|(Y f |Qτ A f )0| ≤ C2 ‖Y f ‖ ε
2−1

(
‖Pτ f ‖− ε

2
+ ‖ f ‖− ε

2
+
∑2r

j=1
‖X j f ‖− ε

2

)
.437

Analogously, for the third summand we have, since (Y + Y ∗) has order zero,438

|(Qτ f |Y ∗A f )0| ≤ ‖Qτ f ‖0
(‖AY ∗ f ‖0 + ‖ [Y ∗, A] f ‖0

)
439

≤ C2 (‖Pτ f ‖0 + ‖ f ‖0)

(
‖Y f ‖ ε

2−1 + ‖ f ‖ ε
2−1

)
.440

441
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Next we consider442

|(Q′
τY f |A f )0| = |(Y f |Q′

τ A f )| ≤ |(Y f |AQ′
τ f )0| + |(Y f |[Q′

τ, A] f )0|.443
444

Let us first estimate the second summand in the last expression.445

We have Q′
τ =

∑2r
i=1 X2

i + R′0 for a first-order p.d.o. R′0 whose principal part is a linear446

combination of X1, . . . , X2r . Hence,447

[Q′
τ, A] = [R′0, A] +

∑
(2[Xi , A]Xi + [Xi , [Xi , A]]) ,448

449

with pseudo-differential operators [R′0, A], [Xi , A], [Xi , [Xi , A]] of order ≤ ( ε
4 − 1). Thus,450

we obtain451

|(Y f |[Q′
τ, A] f )0| ≤ C3‖Y f ‖ε−1

⎛
⎝‖ f ‖− ε

4
+

2r∑
j=1

‖X j f ‖− ε
4

⎞
⎠ .452

453

Because of (∗), we have the Cauchy inequality454

|(Q′
τ f1| f2)| ≤

√
(Q′

τ f1| f1) (Q′
τ f2| f2), for f1, f2 ∈ C∞

0 (U ).455

Hence,456

|(Y f |AQ′
τ f )0|2 = |(Q′

τ f |A∗Y f )0|2 ≤ (Q′
τ A∗Y f |A∗Y f )0(Q′

τ f | f )0,457

|(Q′
τ f |Y ∗A f )0| ≤ (Q′

τY ∗A f |Y ∗A f )0(Q′
τ f | f )0.458

We have, for the second factor on the right-hand sides,459

(Q′
τ f | f )0 = (Qτ f | f )0 ≤ ‖Qτ f ‖0‖ f ‖0 ≤ (‖Pτ f ‖0 + |c|‖ f ‖0)‖ f ‖0.460

Let us estimate the first factors. We get461

(Q′
τ A∗Y f |A∗Y f )0 = (Qτ A∗Y f |A∗Y f ) ≤ ‖Qτ A∗Y f ‖− ε

2
‖A∗Y f ‖ ε

2
462

≤ ‖A∗Y f ‖ ε
2

(
‖A∗Y Qτ f ‖− ε

2
+ ‖ [A∗Y, Qτ] f ‖− ε

2

)
463

≤ C3‖Y f ‖ε−1

(
‖Qτ f ‖0 + ‖ [A∗Y, Qτ] f ‖− ε

2

)
.464

465

We need to estimate the second summand inside the parentheses in the last expression. We466

note that467

[A∗Y, Qτ] = [A∗Y, Pτ] = −[A∗Y, X0] +
2r∑

j=1

(
2[A∗Y, X j ]X j + [X j , [A∗Y, X j ]]

)
.468

469

Since the operators [A∗Y, X0], [A∗Y, X j ], [X j , [A∗Y, X j ]] have order ε
2 , we obtain470

‖ [A∗Y, Qτ] f ‖− ε
2
≤ C4

⎛
⎝‖ f ‖0 +

2r∑
j=1

‖X j f ‖0

⎞
⎠ .471

Finally,472

(Q′
τY ∗A f |Y ∗A f )0 = (QτY ∗A f |Y ∗A f )473

≤ ‖Y ∗A f ‖ ε
2

(
‖Y ∗AQτ f ‖− ε

2
+ ‖ [Qτ, Y ∗A] f ‖− ε

2

)
474

≤ C5‖Y ∗A f ‖ ε
2

(
‖Qτ f ‖0 + ‖ [Qτ, Y ∗A] f ‖− ε

2

)
.475

476
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Since477

[Y ∗A, Qτ] = [Y ∗A, Pτ] = −[Y ∗A, X0] +
2r∑

j=1

(
2[Y ∗A, X j ]X j + [X j , [Y ∗A, X j ]]

)
478

479

and the operators [Y ∗A, X0], [Y ∗A, X j ], [X j , [Y ∗A, X j ]] have order ε
2 , we obtain that480

‖ [Qτ, Y ∗A] f ‖− ε
2
≤ C6

⎛
⎝‖ f ‖0 +

2r∑
j=1

‖X j f ‖0

⎞
⎠ .481

Moreover,482

Y ∗A = −AY + (Y + Y ∗)A + [A, Y ],483
484

with {(Y + Y ∗)A+[A, Y ]} of order ≤ ( ε
2 − 1), because Y + Y ∗ has order 0. Hence,485

‖Y ∗A f ‖ ε
2
≤ C7 (‖Y f ‖ε−1 + ‖ f ‖0) .486

Putting all these inequalities together, we conclude that487

|([X0, Y ] f |A f )0| ≤ C8

⎛
⎝‖ f ‖2

0 + ‖Y f ‖2
ε−1 + ‖Pτ f ‖2

0 +
2r∑

j=1

‖X j f ‖2
0

⎞
⎠ , ∀ f ∈ C∞

0 (U ).488

By taking A = �ε
2−1[X0, Y ] for an elliptic properly supported pseudo-differential operator489

�ε
2−1 of order ε

2 − 1, we deduce that490

‖[X0, Y ] f ‖ ε
4−1 ≤ C9

(
‖ f ‖0 + ‖Y f ‖ε−1 + ‖Pτ f ‖0 +

2r∑
i=1

‖Xi f ‖0

)
491

and therefore, since X1, . . . , X2r ∈ S1(M) and Y ∈ Sε(M), that [X0, Y ] ∈ S ε
4
. ��492

Corollary 4.6 We have493

L(V2; S) ⊂ S . (4.16)494

��495

Proof of Theorem 4.2 By the assumption, {Yq | Y ∈ S(M)} = Tq M for all q in an open496

neighborhood of p in M . Thus, there are p ∈ U open � M , τ1, . . . , τh ∈ [kerL](M),497

Z1, . . . , Z� ∈ Z(M) and C > 0 such that498

‖ f ‖ε ≤ C

⎛
⎝‖ f ‖0 +

h∑
j=1

‖Pτ j f ‖0 +
�∑

i=1

‖Zi f ‖0

⎞
⎠ , ∀ f ∈ C∞

0 (U ). (4.17)499

Let Pτj = −X0, j +∑2r j
s=1 X2

s, j , with Zs, j = Xs, j + i Xs+r j , j ∈ Z(M) for 1 ≤ s ≤ r j ,500

and let Z0, j be the vector field in Z(M) with Re Z0, j = X0, j . If A is a properly supported501

pseudo-differential operator, then502

[Pτj , A] = −[X0, j , A] +
2r j∑
s=1

(
2Xs, j , [Xs, j , A] + [[Xs, j , A], Xs, j ]

)
.503
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If A has order δ and is zero outside a compact subset K of U , and χ is a smooth function504

with compact support which equals one neighborhood of K , then we obtain505

‖Pτj A(χ f )‖0 ≤ ‖A(χ Pτj f )‖0 + ‖ [Pτj , A](χ f )‖0506

≤ C ′
⎛
⎝‖χ Pτj f ‖δ + ‖χ f ‖δ +

2r j∑
s=1

‖Xs[Xs, A](χ f )‖0

⎞
⎠507

≤ C ′′
(
‖χ Pτj f ‖δ + ‖χ f ‖δ +

r j∑
s=0

‖Zs, j [Xs, A](χ f )‖0

)
508

≤ C ′′′
(
‖χ Pτj f ‖δ + ‖χ f ‖δ +

r j∑
s=0

‖χZs, j f ‖δ

)
, ∀ f ∈ C∞(U ),509

510

for suitable positive constants C ′, C ′′, C ′′′, uniform with respect to f . By using similar511

argument to estimate ‖Zi A f ‖0, we obtain that512

‖A(χ f )‖ε ≤ const

⎛
⎝‖χ f ‖δ +

h∑
j=1

‖χPτ j f ‖δ +
�∑

i=1

‖χZi f ‖0

⎞
⎠ , ∀ f ∈ C∞(U ).513

This shows that for any pair of functions χ1,χ2 ∈ C∞
0 (U ) with supp(χ1) ⊂ {χ2 > 0}, we514

obtain the estimate515

‖χ1 f ‖ε+δ ≤ const

⎛
⎝‖χ2 f ‖δ +

h∑
j=1

‖χ2 Pτ j f ‖δ +
�∑

i=1

‖χ2 Zi f ‖0

⎞
⎠ , ∀ f ∈ C∞(U ),516

for some constant const = const(χ1,χ2) ≥ 0. By [15], this inequality is valid for all517

f ∈ W δ,2
loc (U ) with Pτj f, Zi f ∈ W δ,2

loc (U ), where W δ,2
loc (U ) is the space of distributions φ in518

U such that, for all χ ∈ C∞
0 (U ), the product χ · φ belongs to the Sobolev space of order δ519

and integrability two. This implies in particular that any CR distribution which is in W δ,2
loc (U )520

belongs in fact to W δ+ε,2
loc (U ), and this implies property (H). ��521

Let us consider the case where L(V2;H) does not contain all smooth real vector fields.522

In this case, we have a propagation phenomenon along the leaves of V2. Let τ ∈ [kerL](M),523

and X0, Y0, X1, . . . , X2r the vector fields introduced above for a given representation of524

τ = Z1⊗ Z̄1+· · ·+Zr⊗ Z̄r . As we already noticed, while Y0 = Im
∑[Zi , Z̄i ] belongs to the525

Lie subalgebra ofX(M)generated by X1, . . . , X2r , the real part X0 of L0 = X0+iY0 ∈ Z(M)526

may not belong to V1(τ). Thus, the following result improves [22, Theorem 5.2], where only527

the smaller distribution V1(τ) was involved.528

Theorem 4.7 Let 
open ⊂ M and assume that V2 has constant rank in 
. If f ∈ OM (
)529

and | f | attains a maximum at a point p0 of 
, then f is constant on the leaf through p0 of530

V2 in 
.531

Proof On the integral manifold N of V2 through p0 in 
, we can consider the Z′-structure532

defined by the span of the restrictions to N of the elements of �̂. Indeed, the CR functions533

on 
 restrict to CR functions for Z′ on the leaf N . By Corollary 4.6 and Theorem 4.2, the534

Z′-manifold N has property (H), and therefore, the statement is a consequence of Proposi-535

tion 3.1. ��536
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5 Malgrange’s theorem and some applications537

In this section, we state the obvious generalization of Malgrange’s vanishing theorem and its538

corollary on the extension of CR functions under momentum conditions, slightly generalizing539

results of [9,30,31] to the case where M has property (SH). In this section, we require that540

M is a CR manifold.541

We recall that the tangential Cauchy–Riemann complex can be defined as the quotient542

of the de Rham complex on the powers of the ideal sheaf (for this presentation, we refer to543

[19]): since dI ⊂ I, we have dI a ⊂ I a for all nonnegative integers a and the tangential544

CR-complex (Qa,∗, ∂̄M ) on a-forms is defined by the commutative diagram545

0 −−−−→ I a+1 −−−−→ I a −−−−→ Q a −−−−→ 0

d

⏐⏐# d

⏐⏐# ∂̄M

⏐⏐#
0 −−−−→ I a+1 −−−−→ I a −−−−→ Q a −−−−→ 0,

(5.1)546

where Q a is the quotient I a/I a+1. In turn, ∂̄M is a degree 1 derivation for a Z-grading547

Q a = ⊕n
q=0Q

a,q , where the elements of Qa,q are equivalence classes of forms having548

representatives in I a ∩AC
a+q .549

We denote by E the sheaf of germs of smooth complex-valued functions on M . The550

Qa,q are all locally free sheaves of E -modules, and therefore, we can form the cor-551

responding sheaves and cosheaves of functions and distributions. We will consider the552

tangential Cauchy–Riemann complexes (Da,∗, ∂̄M ) on smooth forms with compact sup-553

port, (E a,∗, ∂̄M ) = (Qa,∗, ∂̄M ) on smooth forms with closed support, (D ′a,∗
, ∂̄M ) on form554

distributions, (E ′a,∗
, ∂̄M ) on form distributions with compact support. We use the notation555

Hq(F a,∗(
), ∂̄M ) for the cohomology group in degree q on 
open ⊂ M , for F equal to556

either one of E , D, D ′, E ′.557

Proposition 5.1 If M has property (SH), and either M is compact or has property (WUC),558

then ∂̄M : E ′a,0
(M) −→ E ′a,1

(M) and ∂̄M : Da,0(M) −→ Da,1(M) have closed range for559

all integers a = 0, . . . , m.560

Proof We can assume that M is connected. It is convenient to fix a Riemannian metric on561

M , and smooth Hermitian products on the complex linear bundles Qa,q M corresponding to562

the sheaves Qa,q , to define L2 and Sobolev norms, by using the associated smooth regular563

Borel measure.564

By property (SH), we have a subelliptic estimate: for every K � M , we can find constants565

CK ≥ 0, cK > 0, εK > 0 such that566

‖∂̄M u‖2
0 + CK ‖u‖2

0 ≥ cK ‖u‖2
εK

, ∀u ∈ Da,0(K ). (5.2)567

In a standard way, we deduce from (5.2) that568

u ∈ D ′a,0
(M), ∂̄M u ∈ [Wr

loc]a,1(M) �⇒ u|K̊ ∈ [Wr+εK
loc ]a,1(K̊ ), ∀K � M, (5.3)569

and that for all K � M and real r , there are constants Cr,K ≥ 0, cr.K > 0 such that570

‖∂̄M u‖2
r + Cr,K ‖u‖2

r ≥ cr,K ‖u‖2
r+εK

,571

∀u ∈ {u ∈ E ′a,0
(M) | ∂̄M u ∈ [Wr ]a,1(M), supp(u) ⊂ K }. (5.4)572

573

This suffices to obtain the thesis when M is compact.574
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Let us consider the case where M is connected and non-compact. Let {uν} be a sequence in575

E ′a,0
(M) such that all ∂̄M uν have support in a fixed compact subset K of M and there is r ∈ R576

such that {∂̄M uν} ⊂ [Wr ](M), supp(∂̄M uν) ⊂ K for all ν and ∂̄M uν → f in [Wr ]a,1(M). We577

can assume that M\K has no compact connected component. Then, since M has property578

(WUC), it follows that supp(uν) ⊂ K for all ν, because the uν |M\K define elements of579

O M (M\K ) which vanish on a non-empty open subset of each connected component of580

M\K , and thus on M\K . Moreover, this also implies that (5.4) holds with Cr,K = 0. Then,581

{uν} is uniformly bounded in [Wr+ε]a,0(M) and hence contains a subsequence which weakly582

converges to a solution u ∈ [Wr+ε]a,0(M) of ∂̄M u = f .583

The closedness of the image of ∂̄M in Da,1(M) follows from the already proved result for584

E ′a,1
(M) and the hypoellipticity of ∂̄M on (a, 0)-forms. ��585

We remind that if M is embedded and has property (H), or is (abstract and) essentially586

pseudo-concave, then it has property (WUC).587

As in [9], one obtains588

Proposition 5.2 Assume that M is a connected non-compact CR manifold of CR-dimension589

n which has properties (SH) and (WUC). Then, Hn(E a,∗(M), ∂̄M ) and Hn(D ′a,∗
(M), ∂̄M )590

are 0 for all a = 0, . . . , m.591

Proof By Proposition 5.1, the sequences592

0 −−−−→ Da,0(M)
∂̄M−−−−→ Da,1(M),

0 −−−−→ E ′a,0
(M)

∂̄M−−−−→ E ′a,1
(M)

593

are exact and all maps have closed range.594

Assume that M is oriented. Then, we can define duality pairings between Da,q(M) and595

D ′n+k−a,n−q
(M) and between E ′a,q

(M) and E n+k−a,n−q(M), extending596

〈[α], [β]〉 =
∫

M
α ∧ β,597

where α ∈ Aa+q(M)∩I a(M) has compact support and is a representative of [α] ∈ Da,q(M)598

and β ∈ Am−a−q(M) ∩ I n+k−a(M) a representative of [β] ∈ E n+k−a,n−q(M). Then, by599

duality (see, for example, [43]) we obtain exact sequences600

0 ←−−−− D ′n+k−a,n
(M)

∂̄M←−−−− D ′n+k−a,n−1
(M),

0 ←−−−− E n+k−a,n(M)
∂̄M←−−−− E n+k−a,n−1(M),

601

proving the statement in the case where M is orientable.602

If M is not orientable, then we can take its oriented double covering π : M̃ → M , which603

is a CR-bundle with the total space M̃ being a CR manifold of the same CR dimension and604

codimension. From the exact sequences605

0 ←−−−− D ′n+k−a,n
(M̃)

∂̄M̃←−−−− D ′n+k−a,n−1
(M̃),

0 ←−−−− E n+k−a,n(M̃)
∂̄M̃←−−−− E n+k−a,n−1(M̃),

606

we deduce that statement for the non-orientable M by averaging on the fibers. ��607

We also obtain the analogue of the Hartogs-type theorem in [30].608
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Proposition 5.3 Let 
open � M be relatively compact, orientable, and with a piecewise609

smooth boundary ∂
. If u0 is the restriction to ∂
 of an (a, 0)-form ũ0 of class C 2 on M,610

with ∂̄ ũ0 vanishing to the second order on ∂
, and611 ∫
∂


u0 ∧ φ = 0, ∀φ ∈ ker(∂̄M : E n+k−a,n−1(M ′) → E n+k−a,n(M ′)),612

then there is u ∈ Qa,0(
) ∩ C 1(
̄) with ∂̄M u = 0 on 
 and u = u0 on ∂
.613

Proof We restrain for simplicity to the case a = 0. The general case can be discussed in an614

analogous way. If M is not orientable, then the inverse image of 
 in the double covering615

π : M̃ → M consists of two disjoint open subsets, both CR-diffeomorphic to 
. Thus, we616

can and will assume that M is orientable.617

Let E be a discrete set that intersects each relatively compact connected component of618

M \ 
̄ in a single point and M ′ = M \ E . Note that M ′ has been chosen in such a way that619

no connected component of M ′ \
 is compact.620

Extending ∂̄M ũ0 by 0 outside of 
, we define a ∂̄M -closed element f of E ′0,1
(M ′), with621

support contained in 
̄. The map ∂̄M : E ′0,0
(M ′) → E ′0,1

(M ′) has a closed image by622

Proposition 5.1. Hence, to get existence of a solution v ∈ E ′0,0
(M ′) to ∂̄Mv = f , it suffices623

to prove that f is orthogonal to the kernel of ∂̄M : E n+k,n−1(M ′) → E n+k,n(M ′). This is624

the case because625 ∫
M ′

f ∧ φ =
∫




(∂̄M ũ0) ∧ φ =
∫




(du0) ∧ φ =
∫

∂


u0φ −
∫




u0dφ626

for all φ ∈ E n+k,n−1(M ′) = AC
m−1(M ′)∩I n+k(M ′), and the last summand in the last term627

vanishes when dφ = ∂̄Mφ = 0. A v ∈ E ′0,0
(M ′) satisfying ∂̄Mv = f defines a CR function628

on M ′ \ 
̄ that vanishes on some open subset of each connected component of M ′ \ 
̄. Thus,629

for (WUC) and the regularity (5.3), which are consequences of (SH), the solution v is C 1
630

and has support in 
̄. In particular, it vanishes on ∂
 and therefore u = ũ0 − v satisfies the631

thesis. ��632

Remark 5.4 An analogue of this momentum theorem for functions on one complex variable633

states that a function u0, defined and continuous on the boundary of a rectifiable Jordan634

curve c, is the boundary value of a holomorphic function on its enclosed domain if and only635

if
∫

c u0(z)p(z)dz = 0 for all holomorphic polynomials p(z) ∈ C[z].636

6 Hopf lemma and some consequences637

In complex analysis, properties of domains are often expressed in terms of the indices of638

inertia of the complex Hessian of its exhausting function. Trying to mimic this approach in639

the case of an (abstract) CR manifold M , we are confronted with the fact that pluri-harmonicity640

and pluri-subharmonicity are well defined only for sections of a suitable vector bundle T (see641

[6,32,42]), which can be characterized in terms of 1-jets when M is embedded. We will642

avoid here this complication, by defining the complex Hessian ddcρ as an affine subspace of643

Hermitian-symmetric forms on T 1,0 M . As we did for the Levi form, we shall consider its644

extension to H1,1 M , and note that it is an invariantly defined function on [kerL]. Since a CR645

function canonically determines a section of T, we will succeed in making a very implicit646

use of the sheaf T of transversal 1-jets of [32].647

In this section, we shall consider the Pτ of Sect. 4, exhibit their relationship to the com-648

plex Hessian, and, by using the fact that they are degenerate elliptic operators, draw, from649
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their boundary behavior at non-characteristic points, consequences on the properties of CR650

functions on M.651

6.1 Hopf lemma652

The classical Hopf Lemma also holds for degenerate elliptic operators. We have, from [14,653

Lemma 4.3]:654

Proposition 6.1 Let 
 be a domain in M and u ∈ C 1(
̄, R) satisfy Pτu ≥ 0 on 
, for the655

operator Pτ = −X0 +∑2r
i=1 X2

j of (4.8). Assume that p0 ∈ ∂
 is a C 2 non-characteristic656

point of ∂
 for Pτ and that there is an open neighborhood U of p0 in M such that657

u(p) < u(p0), ∀p ∈ 
 ∩U. (6.1)658
659

Then,660

du(p0) �= 0. (6.2)661

The condition that ∂
 is non-characteristic at p0 for Pτ means that, if 
 is represented by662

ρ < 0 near p0, with ρ ∈ C 2 and dρ(p0) �= 0, then
∑2r

i=1|X jρ(p0)|2 > 0.663

Remark 6.2 If M has property (H), then (6.1) is automatically satisfied if u = | f |, for664

f ∈ OM (
) ∩ C 0(
̄), when u(p0) is a local maximum and f is not constant on a half-665

neighborhood of p0 in 
.666

Corollary 6.3 Let 
 be an open subset of M and f ∈ OM (
) ∩ C 2(
̄), p0 ∈ ∂
 with667

| f (p)| < | f (p0)|, ∀p ∈ 
. (6.3)668

If ∂
 is smooth and �-non-characteristic at p0, then d| f |(p0) �= 0.669

Proof By the assumption that ∂
 is �-non-characteristic at p0, the function u = | f | is, for670

some open neighborhood U of p0 in M , a solution of Pτu ≥ 0 on 
∩U, for an operator Pτ of671

the form (4.8), obtained from a section τ of [kerL](U ), and for which ∂
 is non-characteristic672

at p0.673

6.2 The complex Hessian and the operators ddc, Pτ674

Denote by A1 the sheaf of germs of smooth real-valued 1-forms on M , by J1 its subsheaf675

of germs of sections of H0 M and by I1 the degree 1-homogeneous elements of the ideal676

sheaf of M. The elements of I1 are the germs of smooth complex-valued 1-forms vanishing677

on T 0,1 M .678

Let 
 be an open subset of M .679

Lemma 6.4 If α ∈ A1(
), then we can find ξ ∈ A1(
) such that α+ iξ ∈ I1(
).680

Proof The sequence681

0 −−−−→ J1
i ·−−−−→ I1

Re−−−−→ A1 −−−−→ 0682

of fine sheaves is exact and thus splits on every open subset 
 of M . ��683

Ifρ si a smooth, real-valued function on
open ⊂ M , by Lemma 6.4, we can findξ ∈ A1(
)684

such that dρ + iξ ∈ I1(
). If Z ∈ Z(M), then dρ(Z) = −iξ(Z), dρ(Z̄) = iξ(Z̄), and we685

obtain686

Z Z̄ρ = Z(dρ(Z̄)) = i Z [ξ(Z̄)], Z̄ Zρ = Z̄(dρ(Z)) = −i Z̄ [ξ(Z)].687
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Hence,688

[Z Z̄ + Z̄ Z ]ρ = i(Z [ξ(Z̄)] − Z̄ [ξ(Z)]) = idξ(Z , Z̄)+ iξ([Z , Z̄ ]).689

We note that ξ is only defined modulo the addition of a smooth section η ∈J1(
) of the690

characteristic bundle H0 M , for which691

idη(Z , Z̄) = −iη([Z , Z̄ ]) = Lη(Z , Z̄), ∀Z ∈ Z(M).692

Definition 6.1 The complex Hessian of ρ at p0 is the affine subspace693

Hess1,1
p0

(ρ) = {idξp0
| ξ ∈ A1(
), dρ+ iξ ∈ I1(
)}. (6.4)694

Fix a point p0 where dρ(p0) /∈ H0
p0

M , i.e., ∂̄Mρ(p0) �= 0, and consider the level set695

N = {p ∈ U | ρ(p) = ρ(p0)}, in a neighborhood U of p0 in 
 where ∂̄Mρ(p) is never 0.696

Then N is a smooth real hypersurface and a CR-submanifold, of type (n−1, k+1).697

Lemma 6.5 For every p ∈ N, we have698

{ ξ|N | ξ ∈ T ∗
p M | dρ(p)+ iξ ∈ T ∗

p
1,0 M} ⊂ H0

p N . (6.5)699

The left-hand side of (6.5) is an affine hypersurface in H0
p N, with associated vector space700

H0
p M.701

Proof When Z ∈ Z(U ) is tangent to N , we obtain 0 = dρ(Z p) = −iξ(Z p) and hence702

ξ(Re Z p) = ξ(Im Z p) = 0 because ξ is real. This gives ξ|N ∈ H0
p N . The last statement is a703

consequence of the previous discussion of the complex Hessian. ��704

Definition 6.2 If ρ is a smooth real-valued function defined on a neighborhood 
 of a point705

p0 ∈ N and ξ ∈ A1(
) is such that dr + iξ ∈ I1(
), then we set706

ddcρp0(τ) := i
2 dξ(τ), ∀τ ∈ [kerL]p0 . (6.6)707

Let τ = Z1 ⊗ Z̄1 + · · · + Zr ⊗ Zr ∈ [kerL](
), with L̄0 − L0 = ∑r
i=1[Z j , Z̄ j ] and708

L0, Z1, . . . , Zr ∈ Z(
). Let ξ ∈ A1(
) be such that dρ+ iξ ∈ I1(
). Then,709

dρ(Z j )+ iξ(Z j ) = 0 �⇒ dρ(Z̄ j )− iξ(Z̄ j ) = 0710

⇒ idξ(Z j , Z̄ j ) = i
(

Z jξ(Z̄ j )− Z̄ jξ(Z j )− ξ([Z j , Z̄ j ])
)

711

= Z j dρ(Z̄ j )+ Z̄ j dρ(Z j )− iξ([Z j , Z̄ j ])712

= (Z j Z̄ j + Z̄ j Z j )ρ− iξ([Z j , Z̄ j ]).713

We recall that
∑r

i=1[Z j , Z̄ j ] = L̄0 − L0 = 2i Im L0, with L0 ∈ Z(
). We have714

(dρ+ iξ)(L0) = 0 �⇒ dρ(Re L0) = ξ(Im L0), dρ(Im L0) = −ξ(Re L0)715

and therefore716

2ddcρ(τ) =
r∑

i=1

idξ(Z j , Z̄ j ) =
r∑

i=1

(Z j Z̄ j + Z̄ j Z j )ρ− iξ

(
r∑

i=1

[Z j , Z̄ j ]
)

717

=
r∑

i=1

(Z j Z̄ j + Z̄ j Z j )ρ+ 2ξ(Im L0)718

=
r∑

i=1

(Z j Z̄ j + Z̄ j Z j )ρ− 2dρ(Re L0) = 2Pτρ.719

720

As a consequence, we obtain:721
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Proposition 6.6 If ρ is a real-valued smooth function on the open set 
 of M and τ ∈722

[kerL](
), then723

ddcρ(τ) = Pτρ on 
. (6.7)724

Corollary 6.7 The operator Pτ only depends on the section τ of [kerL] and is independent725

of the choice of the vector fields Z1, . . . , Zr ∈ Z in (4.7).726

Corollary 6.8 Let 
open ⊂ M. If ρ1, ρ2 ∈ C∞(
) are real-valued functions which agree to727

the second order at p0 ∈ 
, then728

ddcρ1(τ0) = ddcρ2(τ0), ∀τ0 ∈ [kerL]p0 . (6.8)729

In particular, ddcρ is well defined and continuous on the fibers of [kerL] for functions ρ which730

are of class C 2.731

Remark 6.9 There is a subtle distinction between ddcρ, which is the (1, 1)-part of an alternate732

form of degree two, and Hess1,1(ρ), which is the (1, 1)-part of a symmetric bilinear form.733

In fact, we multiplied by (i/2) the differential in (6.6) and identified the two concepts, as734

multiplication by i interchanges skew-Hermitian and Hermitian-symmetric matrices.735

We have:736

Lemma 6.10 Let ρ be a smooth real-valued function defined on a neighborhood of p0 ∈ M,737

with dρ(p0) �= 0 and N = {p | ρ(p) = ρ(p0)}. The following statements:738

(i) every h ∈ Hess1,1
p0

(ρ) has a nonzero positive index of inertia;739

(ii) there exists τ ∈ [kerL]p0 ∩ H1,1
p0

N such that ddcρp0(τ) > 0;740

(iii) the restriction of every h ∈ Hess1,1
p0

(ρ) to T 0,1
p0

N has a nonzero positive index of inertia;741

are related by742

(i i) ⇐⇒ (i i i) �⇒ (i).743

Set U− = {p ∈ U | ρ(p) < ρ(p0)}.744

Definition 6.3 We set745

H0
M,p0

(U−) =
⋃

λ>0
{ξ|N | ξ ∈ T ∗

p0
∂U− | λdρ(p0)+ iξ ∈ T ∗1,0

p M}. (6.9)746

This is an open half-space in H0
p N . Note that H0

M,p0
(U−) does not depend on the choice747

of the defining function ρ.748

6.3 Real parts of CR functions749

In this subsection, we try to better explain the meaning of ddc by defining a differential750

operator dc
λ which associates with a real smooth function a real one form. Its definition751

depends on the choice of a CR-gauge λ on M , but [dc
λ]’s corresponding to different choices752

of λ differ by a differential operator with values in J, so that all the ddc
λ agree with our ddc

753

on [kerL].754

A CR function (or distribution) f is a solution to the equation du ∈ I1. In this subsection,755

we study the characterization of the real parts of CR functions.756

Lemma 6.11 Let 
 be open in M. If M is minimal, then a real-valued f ∈ OM (
) is locally757

constant.758
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Proof A real-valued f ∈ OM (
) satisfies X f = 0 for all X ∈ �(M, H M) and therefore is759

constant on the Sussmann leaves of �(M, H M). ��760

We have an exact sequence of fine sheaves (the superscript C means forms with complex-761

valued coefficients)762

0 −−−−→ J C
1

α→(α,−α)−−−−−−→ I1 ⊕ Ī1
(α,β)→α+β−−−−−−−→ A C

1 −−−−→ 0. (6.10)763

In [32, §2A], the notion of a balanced real CR-gauge was introduced. It was shown that764

it is possible to define a smooth morphism765

λ : CT M −→ T ∗1,0 M (6.11)766

of C-linear bundles which defines a special splitting of (6.10): with767

λ̄ : CT M 
 α −→ λ(ᾱ) ∈ T ∗0,1 M, (6.12)768

we have769

α = λ(α)+ λ̄(α), ∀α ∈ A C
1 , (6.13)770

771

λ(α) = λ̄(α) = 1
2α, ∀α ∈ J C

1 . (6.14)772

Note that773

λ̄(I1) ⊂ J1, λ(Ī1) ⊂ J1, λ ◦ λ̄ = λ̄ ◦ λ.774

Explicitly, the splitting of (6.10) is provided by775

0 −−−−→ A C
1

α→(λ(α), λ̄(α))−−−−−−−−−→ I1 ⊕ Ī1
(α,β)→ λ̄(α)−λ(β)−−−−−−−−−−−→ J C

1 −−−−→ 0.776

Furthermore, we get777

A C
1 = ker λ̄⊕J C

1 ⊕ ker λ, I1 = ker λ̄⊕J C
1 , Ī1 = J C

1 ⊕ ker λ,778

λ(α) = α, ∀α ∈ ker λ̄, λ̄(α) = α, ∀α ∈ ker λ, λ(α) = λ̄(α) = 1
2α, ∀α ∈ J C

1 .779

Let us introduce the first-order linear partial differential operator780

dc
λ f = 1

i (λ(d f )− λ̄(d f )), ∀ f ∈ C∞(M). (6.15)781

We note that dc
λ is real: this means that dc

λu is a real-valued form when u is a real-valued782

function. Indeed, for a real-valued u ∈ C∞(M), we have783

dc
λu = 2 Im λ(du) = −2 Im( λ̄(du)).784

Lemma 6.12 We have ddc
λu ∈J2 for every u ∈ A0.785

Proof For any germ of real-valued smooth function u, the differential ddc
λu is real and we786

have787

i ddc
λu = d(λ(du)− λ̄(du)) = d(2λ(du)− du) = 2d λ(du) ∈ I2,788

= d(du − 2 λ̄(du) = −2d λ̄(du) ∈Ī2,789
790

so that ddc
λu ∈ I2 ∩Ī2 ∩A2 = J2. ��791
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Proposition 6.13 Let 
 be a simply connected open set in M. A necessary and sufficient792

condition for a real-valued u ∈ C∞(
) to be the real part of an f ∈ OM (
) is that there793

exists a section ξ ∈ J1(
) such that794

d[dc
λu + ξ] = 0 on 
. (6.16)795

If M is minimal, then ξ is uniquely determined.796

Proof Assume that (6.16) is satisfied by some ξ ∈ J1(
). Then, dc
λu + ξ = dv for some797

real-valued v ∈ C∞(
), and with f = u + iv, we obtain798

λ(du)− λ̄(du) = i[λ(dv)+ λ̄(dv)− ξ] �⇒ λ̄(d f ) = λ(du − idv)− iξ ∈ J C
1 (
)799

�⇒ d f ∈ I1(
) ⇐⇒ f ∈ OM (
).800
801

Assume vice versa that f = u + iv ∈ OM (
), with u and v real-valued smooth functions.802

Write d f = du + idv = α + ζ, with α ∈ I1(
), ζ ∈ J C
1 (
), and λ̄(α) = 0. From803

λ̄(du)+ i λ̄(dv) = 1
2 ζ �⇒ λ(du)− iλ(dv) = 1

2 ζ̄,804

we obtain805

idc
λu = λ(du)− λ̄(du) = iλ(dv)+ 1

2 ζ̄+ i λ̄(dv) = i dv − 1
2 (ζ− ζ̄)806

This is (6.16) with ξ = (i/2)(ζ− ζ̄).807

To complete the proof, we note that if ξ ∈ J1(
) and dξ = 0, then ξ = dφ for some808

real-valued function φ ∈ C∞(
). If ξp0
�= 0 for some p0 ∈ 
, then {φ(p) = φ(p0)} defines809

a germ of smooth hypersurface through p0 which is tangent at each point to the distribution810

H M , contradicting the minimality assumption. ��811

The Aeppli complex for pluri-harmonic functions on the CR manifold M is812

0 −−−−→ A0 ⊕J1
(u,ξ)→ddc

λu+dξ−−−−−−−−−→ J2
d−−−−→ J3

d−−−−→
· · · d−−−−→ Jm−1

d−−−−→ Jm −−−−→ 0.

813

We note that J1 = 0 if M is a complex manifold (we reduce to the classical case) and814

Jq = Aq for q > 0 if M is totally real. In general, the terms of degree ≥ k+2 make a815

subcomplex of the de Rham complex.816

6.4 Peak points of CR functions and pseudo-convexity at the boundary817

A non-characteristic point of the boundary of a domain, where the modulus a CR function818

attains a local maximum, is pseudo-convex, in a sense that will be explained below.819

Lemma 6.14 Let 
open ⊂ M and assume there is f ∈ OM (
) ∩ C 2(
̄) such that | f |820

attains a local isolated maximum value at p0 ∈ ∂
. If ∂
 is smooth, non-characteristic at821

p0, and moreover, d| f (p0)| �= 0, then there is a nonzero ξ ∈ H0
M,p0

(
) with L∂

ξ ≥ 0.822

Proof Let U be an open neighborhood of p0 in M , and ρ ∈ C∞(U, R) a defining function823

for 
 near p0, with U− = 
 ∩U = {p ∈ U | ρ(p) < 0}, and dρ(p) �= 0 for all p ∈ U .824

We can assume that f (p0) = | f (p0)| > 0 and exploit the fact that the restriction of825

u = Re f to ∂
 takes a maximum value at p0. Since d∂
u(p0) = 0, the real Hessian of u826

on ∂
 is well defined at p0, with827

hess(u)(X p0 , Yp0) = (XY u)(p0), ∀X, Y ∈ X(∂
),828
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and hess(u)(p0) ≤ 0 by the assumption that the restriction of u to ∂
 has a local maximum829

at p0. In particular, it follows that830

(Z Z̄u)(p0) = (Z̄ Zu)(p0) ≤ 0, ∀Z ∈ Z(∂
).831

Let v = Im f . Then, d f = du + idv, and the condition that d∂
u(p0) = 0 implies that832

(Zv)(p0) = 0 for all Z ∈ Z(∂
) and thus ξ = dv(p0) ∈ H0∂
. Moreover,833

(Zu)(p) = −i(Zv)(p), (Z̄u)(p) = i(Z̄v)(p), ∀Z ∈ Z(∂
), ∀p ∈ ∂
. (6.17)834
835

Hence,836

2Z Z̄u(p0) = (Z Z̄ + Z̄ Z)u(p0) = i(Z Z̄ − Z̄ Z)v(p0) = iξ(p0)([Z , Z̄ ])837
838

and thus the condition on the real Hessian of u implies that L∂

ξ ≥ 0. We note that du(p0)839

is different from 0 and proportional to dρ(p0). Indeed, near p0 we have840

| f | = u
√

1+ (v2/u2) � u
(
1+ 1

2 (v2/u2)
) = u + 0(2),841

since v(p0) = 0. Thus, d| f |(p0) = du(p0) �= 0.842

By the assumption that ∂
 is non-characteristic at p0, we have that du(p0) is nonzero843

and equal to λdρ(p0) for some λ > 0: therefore, ξ = dv(p0) ∈ H0
M,p0

(
), and this proves844

our claim. ��845

Proposition 6.15 Let 
 be an open subset of M, and assume that there is a CR function846

f ∈ OM (
) ∩ C 2(
̄) and a point p0 ∈ ∂
 such that:847

| f (p0)| > | f (p)|, ∀p ∈ 
, (a)848

∂
 is �-non-characteristic at p0. (b)849
850

Then, we can find 0 �= ξ ∈ H0
M,p0

(
) with L∂

ξ ≥ 0.851

[For the meaning of non-characteristic, see (2.6).]852

Proof To apply Lemma 6.14, we need to check that d| f |(p0) �= 0. By the assumption853

that ∂
 is �-non-characteristic at p0, there is an open neighborhood U of p0 in M and854

τ ∈ [kerL](U ) such that ∂
 is non-characteristic for Pτ at p0. Since Pτ| f | ≥ 0, by the855

Hopf lemma, d| f |(p0)| �= 0, and therefore, du(p0) is a positive multiple of dρ(p0). Then,856

ξ = d Im f (p0) ∈ H0
M,p0

(
) and we obtain the statement. ��857

For characteristic peak points in the boundary of 
, we have:858

Lemma 6.16 Let 
 be an open subset of M, and assume that there is a CR function f =859

u + iv ∈ OM (
) ∩ C 2(
̄), with u and v real valued, and p0 ∈ ∂
 such that:860

(a) v(p0) = 0, du(p0) ∈ H0
p0

N , u(p0) > u(p), ∀p ∈ 
,861

(b) 0 �= ξ = dv(p0).862

Then, ξ ∈ H0
p0

M and Lξ ≥ 0.863

Proof Set η = du(p0). Then, ξ = dv(p0) ∈ H0
p0

M , because d f (p0) = η + iξ is zero on864

Z(M), and hence ξ, vanishing on Z(M) and being real, belongs to H0
p0

M . The conclusion865

follows by the argument of Lemma 6.14, taking into account that this time all vectors in866

T 0,1
p0

M are tangent to ∂
 and that (6.17) is valid for Z ∈ Z(M) at all points where f is867

defined and C 1. ��868
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Proposition 6.15 suggest to introduce some notions of convexity/concavity for boundary869

points of a domain in M . Let 
 be a domain in M , p0 ∈ ∂
 a smooth point of ∂
, and ρ a870

defining function for 
 near p0.871

Definition 6.4 We say that 
 is at p0872

• strongly 1-concave if there is τ ∈ [kerL] ∩ H1,1
p0

∂
 such that ddcρp0(τ) < 0;873

• strongly 1-convex if there is τ ∈ [kerL] ∩ H1,1
p0

∂
 such that ddcρp0(τ) > 0.874

Points where the boundary is strictly 1-concave cannot be peak points for the modulus of875

CR functions.876

Proposition 6.17 Assume that M has property (H). Let 
 be a relatively compact open877

domain in M and N ⊂ ∂
 a smooth part of ∂
 consisting of points where ∂
 is smooth,878

�-non-characteristic and strongly 1-concave. Then,879

|u(p)| < sup
q∈∂
\N

|u(q)|, ∀p ∈ 
 ∪ N , (6.18)880

for every non-constant u ∈ OM (
) ∩ C 2(
̄).881

Proof Since M has property (H), by Proposition 3.1 we have | f (p)| < max∂
| f |, for all882

p ∈ 
 and all non-constant f ∈ OM (
). The statement then follows from Proposition 6.15,883

because | f | cannot have a maximum on N . ��884

6.5 1-convexity/concavity at the boundary and the vector-valued Levi form885

Let 
open ⊂ M have piecewise smooth boundary and denote by N the CR submanifold of886

type (n−1, k+1) of M consisting of the smooth non-characteristic points of ∂
. The quotient887

(T N ∩ H M)/H N ⊂ T N/H N is a real line bundle on N .888

The partial complex structure JM :H M → H M restricts to the partial complex structure889

on H N , and the tangent vectors v in (H M ∩ T N ) \ H N are characterized by the fact that890

JM (v) /∈ T N . Fix a point p0 ∈ N and a defining function ρ of 
 on a neighborhood U of891

p0 in N , so that 0 �= dρ(p0) is an outer conormal to 
 at p0. The elements ξ0 ∈ H0
M,p0


892

are defined, modulo multiplication by a positive scalar, by the condition that dρ(p0)+ iξ0 ∈893

T ∗1,0
p0

M . Since v + i JMv ∈ T 0,1
p0

M , we have894

0 = 〈(dρ(p0)+ iξ0), (v + i JMv)〉 = i〈dρ(p0), JMv〉 + i〈ξ0, v〉 − 〈ξ0, JMv〉895

�⇒ 〈ξ0, JMv〉 = 0, 〈ξ0, v〉 = −〈dρ(p0), JMv〉.896
897

The restriction ξ0|N is an element of H0
p0

N , with 〈ξ0, v〉 �= 0 if p0 is non-characteristic.898

Therefore, we have shown:899

Lemma 6.18 Let v = JMwp0 for an outer normal vector in p0 ∈ N ⊂ ∂
 to 
, with900

v ∈ Hp0 M. If [v] belongs to the range of the vector-valued Levi form LN , then 
 is strongly901

1-convex at p0.902

Vice versa, if 
 is strongly 1-convex at p0, then [v] belongs to the range of the vector-valued903

Levi form.904

As usual, we used [v] to denote the image of v in the quotient T N/H N .905

A similar statement holds for strong-1-concavity.906
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7 Convex cones of Hermitian forms907

In a CR manifold of arbitrary CR-codimension, the scalar Levi forms associate with each908

point a linear space of Hermitian-symmetric quadratic forms. Different notions of pseudo-909

concavity in [2,21,22] originate from the observation that the polar of a subspace of forms with910

positive Witt index contains positive definite tensors. As shown in Sect. 6, the analogue on a911

CR manifold M of the complex Hessian of a smooth real function yields an affine subspace of912

Hermitian-symmetric forms. Therefore, it was natural to associate with a non-characteristic913

point of the boundary of a domain in M an open half-space of Hermitian-symmetric forms. In914

this section, we describe some properties of duals of convex cones of Hermitian-symmetric915

forms, to better understand the notions of pseudo-concavity that are relevant to discuss the916

extensions of some facts of analysis in several complex variables to the case of CR manifolds.917

7.1 Convexity in Euclidean spaces918

(cf. [28,39]) Let us recall some notions of convex analysis. Let V be an n-dimensional919

Euclidean real vector space. A non-empty subset C of V is a convex cone (with vertex 0) if920

v1, v2 ∈ C, t1 > 0, t2 ≥ 0 �⇒ t1v1 + t2v2 ∈ C.921

The dual cone of C is922

C∗ = {ξ ∈ V | (v|ξ) ≥ 0, ∀v ∈ C}.923

By the Hahn-Banach theorem, one easily obtains:924

Lemma 7.1 For any non-empty convex cone C in V , we have C∗∗ = C̄.925

Proof If w /∈ C̄ , then, by the Hahn–Banach separation theorem we can find ξ ∈ V such926

that infv∈C (v|ξ) > (w|ξ). Since C is a cone, this implies that (v|ξ) ≥ 0 for all v ∈ C , i.e.,927

ξ ∈ C∗, and then (w|ξ) < 0 shows that w /∈ C∗∗. This proves that C∗∗ ⊂ C̄ . The opposite928

inclusion trivially follows from the definition. ��929

We call salient a convex cone which does not contain any real line: this means that if930

0 �= v ∈ C , then −v /∈ C . By Lemma 7.1, we have931

Lemma 7.2 A non-empty closed convex cone C is salient if and only if C∗ has a non-empty932

interior.933

Proof If C contains a vector subspace W , then C∗ is contained in the orthogonal W ∗ = W⊥,934

which is a proper linear subspace of V and therefore C∗ has an empty interior. Vice versa,935

if C∗ has an empty interior, then its linear span U is a proper linear subspace of V and936

W = U∗ = U⊥ is a linear subspace of V of positive dimension contained in C̄ = C . ��937

Lemma 7.3 Let C be a salient closed convex cone and W a linear subspace of V with938

W ∩ C = {0}. Then, we can find a hyperplane W ′ with W ⊂ W ′ and W ′ ∩ C = {0}.939

Proof For each v ∈ V , we write v = v′ + v′′ for its decomposition into the sum of its940

component v′ ∈ W and its component v′′ ∈ W⊥. We claim that the orthogonal projection C ′′
941

of C into W⊥ is still a closed salient cone. Closedness follows by the fact that ‖v′‖ ≤ C‖v′′‖942

for some C > 0 for all v ∈ C . To prove that C ′′ is salient, we argue by contradiction. Assume943

that C ′′ contains two opposite nonzero vectors±w′′. Then, there are w′+, w′− ∈ W such that944

123

Journal: 10231 Article No.: 0638 TYPESET DISK LE CP Disp.:2017/2/14 Pages: 39 Layout: Small



R
ev

is
ed

 P
ro

of

Weak q-concavity conditions for CR manifolds

w′++w′′, w′−−w′′ ∈ C . The sum of these two nonzero vectors is nonzero by the assumption945

that C is salient, but946

0 �= (w′+ + w′′)+ (w′− − w′′) = (w′+ + w′−) ∈ C ∩ W947

yields a contradiction.948

By Lemma 7.2, the interior of the dual cone of C ′′ in W⊥ is non-empty. This means that949

there is a ξ ∈ W⊥ with (v′′|ξ) > 0 for all v′′ ∈ C ′′ and hence (ξ|v) > 0 for all v ∈ C , since950

C ⊂ C ′′ + W . ��951

A closed convex cone C with C̊∗ = ∅ contains a linear subspace EC of V and is called a952

wedge with edge EC . Lemma 7.3 generalizes to the case of closed wedges.953

Lemma 7.4 If C is a closed wedge with edge EC and W a linear subspace of V with954

W ∩ C ⊂ EC , then there is a hyperplane W ′ with W ⊂ W ′ and W ′ ∩ C = EC .955

Proof C contains all affine subspaces v+ EC , for v ∈ C . If π :V → V/EC is the projection956

into the quotient, then π(C) is a pointed cone and π(W )∩π(C) = {0}. By Lemma 7.3, there957

is a hyperplane H in V/W with π(W ) ⊂ H and H ∩ π(C) = {0}. Then, W ′ = π−1(H) is958

a hyperplane in V which contains W and has C ∩ W ′ = EC . ��959

7.2 Convex cones in the space of Hermitian-symmetric forms960

Let us denote by Pn the n2-dimensional real vector space of n×n Hermitian-symmetric forms961

on C
n . It is a Euclidean space with the scalar product (h1|h2) =∑n

i, j=1h1(ei , e j )h2(e j , ei ),962

where e1, . . . , en is any basis of C
n . It will be convenient, however, to avoid fixing any963

specific scalar product on Pn and formulate our statements in a more invariant way, involving964

the dual P′n of Pn . It consists of the Hermitian-symmetric covariant tensors that we write965

as sums ±v1 ⊗ v̄1 ± · · · ± vr ⊗ v̄r , for v1, . . . , vr ∈ C
n . The identification of Pn with P′n966

provided by the choice of a scalar product on Pn allows us to apply the previous results of967

convex analysis in this slightly different formulation.968

A matrix corresponding to a Hermitian-symmetric form h has real eigenvalues. The num-969

ber of positive (resp. negative) eigenvalues is called its positive (resp. negative) index of970

inertia, the smallest of the two its Witt index, the sum of the two its rank.971

Set P̄+n = {h ≥ 0} and P+n = P̄+n \ {0}, P̊+n = {h > 0}, and, likewise, P̄−n = {h ≤ 0} and972

P−n = P̄−n \ {0}, P̊−n = {h < 0}. We shall use the simple973

Lemma 7.5

[P̄+n ]∗ = [P̊+n ]∗ =
⋃

r
{v1 ⊗ v̄1 + · · · + vr ⊗ v̄r | v1, . . . , vr ∈ C

n},974

{ψ ∈ P′n | ψ(h) > 0, ∀h ∈ P+n } = {v1 ⊗ v̄1 + · · · + vn ⊗ v̄n | 〈v1, . . . , vn〉 = C
n},975

{ψ ∈ P′n | ψ(h) > 0, ∀h ∈ P̊+n } = {v1 ⊗ v̄1 + · · · + vr ⊗ v̄r | r > 0, 〈v1, . . . , vn〉 = C
n}.976

Proposition 7.6 Let W be a convex closed cone, with vertex in 0, in Pn. Assume that every977

nonzero element of W has a nonzero positive index of inertia. Then, there is a basis e1, . . . , en978

of C
n such that979

n∑
i=1

h(ei , ei ) ≥ 0, ∀h ∈ W . (7.1)980
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Proof Both W and W+ = {h1 + h2 | h1 ∈ W , h2 ≥ 0} are proper closed convex cones in981

Pn . Since W+ does not contain any negative semidefinite nonzero form, its edge has empty982

intersection with P+n = {h ≥ 0, h �= 0}. By Lemma 7.4, we can find a ψ ∈ P′n such that983

ψ(h) ≥ 0, ∀h ∈ W+ and W+ ∩ {ψ = 0} = EW+ .984

In particular, ψ(h) > 0 for h ∈ P+n and hence, by Lemma 7.5, ψ is of the form ψ(h) =985 ∑n
i=1h(ei , ei ) for a basis e1, . . . , en of V . ��986

We obtain, as a corollary, the result of [21, Lemma 2.4], which motivated the definition987

of essential pseudo-concavity.988

Corollary 7.7 If W is a linear subspace of Pn such that each nonzero element of W has a989

positive Witt index, then there exists a basis e1, . . . , en of C
n such that990

∑n

i=1
h(ei , ei ) = 0,∀h ∈ W .991

Proposition 7.8 Let W be a relatively open convex cone with vertex at 0 of Pn, and such992

that every element h of W has a nonzero positive index of inertia. Then, the elements of P̄−n993

which are contained in W are all degenerate.994

All the elements of maximal rank in W ∩ P̄−n have the same kernel, which has a positive995

dimension r and a basis e1, . . . , er such that996

r∑
i=1

h(ei , ei ) > 0, ∀h ∈ W . (7.2)997

Proof Let P̊−n = {h ∈ Pn | h < 0}. Then, W and P̊−n are disjoint relatively open convex998

cones of Pn with vertex in 0 and therefore (see, for example, [44, Thorem 2.7]) are separated999

by a hyperplane, defined by a linear functional ψ, which is positive on W and negative1000

on P̊−n . Being negative on P̊−n , by Lemma 7.5, ψ has the form (7.2). This implies that all1001

elements of W ∩ P̄−n are degenerate. Since W ∩ P̄−n is a cone, all its elements of maximal1002

rank belong to its relative interior and have the same kernel, say U ⊂ C
n , whose positive1003

dimension we denote by r . In fact, for a pair of negative semidefinite forms h1, h2, we1004

have ker (h1 + h2) = ker h1 ∩ ker h2. The statement follows by applying Proposition 7.6 to1005

W |U = {h|U | h ∈ W }, which is a closed cone in Pr in which all nonzero elements have a1006

nonzero positive index of inertia. In fact, if there is a nonzero h ∈ W whose restriction to U1007

is seminegative, and h0 is an element of maximal rank in the cone W ∩ P̄−n , then, for C > 01008

and large, h + Ch0 would be a negative definite element in W ∩ P̄−n . ��1009

Proposition 7.9 Let W be a cone in Pn, with the property that all its elements of maximal1010

rank have a nonzero positive index of inertia. Then, all forms in W ∩ P̄−n are degenerate;1011

those of maximal rank have all the same kernel, of dimension r > 0, which contains a basis1012

e1, . . . , er such that1013
r∑

i=1

h(ei , ei ) ≥ 0, ∀h ∈ W . (7.3)1014

Proof Let P̊+n = {h ∈ Pn | h > 0}. Then, W + P̊+n is an open cone in Pn such that all its1015

elements have a nonzero positive index of inertia.1016

Since W + P̊+n ∩ P̄−n = (W + P̄+n ) ∩ P̄−n = W ∩ P̄−n , we know from Proposition 7.8 that1017

all elements of maximal rank in W ∩ P̄−n have the same kernel U , which is a subspace of C
n

1018
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of positive dimension r and contains a basis e1, . . . , er for which1019

r∑
i=1

h(vi , vi ) > 0, ∀h ∈ W + P̊+n .1020

This implies (7.3). ��1021

Analogous results can be given to characterize cones of Hermitian forms having some given1022

amount of positive (or negative) eigenvalues. In this case, we need to consider the behavior of1023

the restriction of forms to subspaces of C
n . We use the notation Grh(Cn) for the Grassmannian1024

of complex linear h-planes of C
n .1025

Proposition 7.10 Let W be a proper closed convex cone in Pn, with vertex in 0 and q an1026

integer with 0 < q ≤ n. Assume that every nonzero form in W has a positive index of inertia1027

≥ q. Then, for every V ∈ Grn−q+1(C
n), we can find a basis v1, . . . , vn−q+1 of V such that1028

n−q+1∑
i=1

h(vi , vi ) ≥ 0. (7.4)1029

Proof It suffices to apply Proposition 7.6 to the restrictions to V ∈ Grn−q+1(C
n) of the forms1030

in W . By the assumption, h|V has a nonzero positive index of inertia for all h ∈ W \ {0}. ��1031

An analogous statement to Proposition 7.8 can be formulated for relatively open convex1032

cones of Hermitian forms with positive index of inertia ≥ q .1033

Proposition 7.11 Let W be a relatively open convex cone in Pn and assume that each h1034

in W has a positive index of inertia ≥ q, for an integer 0 < q ≤ n. Then, for every1035

V ∈ Grn−q+1(C
n), we can find an integer rV > 0 and linearly independent v1, . . . , vrV ∈ V1036

such that1037
rV∑

i=1

h(vi , vi ) > 0, ∀h ∈ W . (7.5)1038

Proof For every V ∈ Grn−q+1(C
n), the set W V = {h|V | h ∈ W } is a relatively open convex1039

cone of Pn−q+1 such that all of its elements h|V have a nonzero positive index of inertia. The1040

thesis follows by applying Proposition 7.8 to W |V . ��1041

Proposition 7.12 Let W be a convex cone in Pn such that the elements of maximal rank of1042

W have a positive index of inertia ≥ q (q is an integer with 0 < q ≤ n). Then, for every1043

V ∈ Grn−q+1(C
n) we can find an integer rV > 0 and linearly independent v1, . . . , vrV ∈ V1044

such that1045 ∑rV

i=1
h(vi , vi ) ≥ 0, ∀h ∈ W . (7.6)1046

Proof It suffices to apply Proposition 7.11 to W + P̊+n and note that (7.5) for all h ∈ W + P̊+n1047

implies (7.6) for all h ∈ W .1048

Remark 7.13 The positive integer rV of Propositions 7.11, 7.12 is the dimension of the kernel1049

of any form of maximal rank in W V ∩ P̄−n−q+1.1050
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8 Notions of pseudo-concavity1051

In [23], it was proved that the Poincaré lemma for the tangential Cauchy–Riemann complex1052

of locally CR-embeddable CR manifolds fails in the degrees corresponding to the indices of1053

inertia of its scalar Levi forms of maximal rank. On the other hand, in [18] it was shown that the1054

Lefschetz hyperplane section theorem for q-dimensional complex submanifolds generalizes1055

to weakly q-pseudo-concave CR submanifolds of complex projective spaces.1056

This suggests to seek for suitable weakening of the pseudo-concavity conditions to allow1057

degeneracies of the Levi form. A natural condition of weak 1-pseudo-concavity is to require1058

that no semidefinite scalar Levi form has maximal rank. Under some genericity assumption,1059

by using Proposition 7.12, this translates into the fact that [kerL] is non-trivial. Indeed, this1060

hypothesis implies maximum modulus and unique continuation results analogous to those for1061

holomorphic functions of one complex variable. We expect that properties that are peculiar to1062

holomorphic functions of several complex variables would generalize to CR functions under1063

suitable (weak) 2-pseudo-concavity conditions. This motivates us to give below a tentative1064

list of conditions, motivated partly by the discussion in Sect. 7 and partly by the results of1065

the next sections.1066

Notation 8.1 If V ⊂ Z is a distribution of complex vector fields on 
open ⊂ M , we use the1067

notation [kerL]V for the semipositive tensors
∑r

i=1 Zi ⊗ Z̄i of [kerL] with Zi ∈ V.1068

Definition 8.1 Let p0 ∈ M . We say that M is1069

(�s
p0

(q)): strongly q-pseudo-concave at p0 if all Lξ, with ξ ∈ H0
p0

M \ {0}, are nonzero and1070

have Witt index ≥ q;1071

(�w
p0

(q)): weakly q-pseudo-concave at p0 if its scalar Levi forms of maximum rank at p01072

have Witt index ≥ q;1073

(�e
p0

(q)): essentially q-pseudo-concave at p0 ∈ M if, for every distribution of smooth com-1074

plex vector fields V ⊂ Z, of rank n−q+1, defined on an open neighborhood U of1075

p0, we can find an open neighborhood U ′ of p0 in U and a τ ∈ [kerL]n−q+1
V (U ′).1076

(�e∗
p0

(q)): essentially∗-q-pseudo-concave at p0 ∈ M if, for every distribution of smooth1077

complex vector fields V ⊂ Z, of rank n−q+1, defined on an open neighborhood1078

U of p0, we can find an open neighborhood U ′ of p0 in U and a τ ∈ [kerL]V(U ′).1079

We drop the reference to the point p0 when the property is valid at all points of M .1080

We also consider the (global) condition1081

(�we(q)) For all p ∈ M and V ⊂ Z of rank n − q + 1 on a neighborhood U of p,1082 ⋃
p′∈U [kerL]V,p′ is a bundle with non-empty fibers and such that for every1083

sequence {pν} ⊂ M , converging to p ∈ M , every τ ∈ [kerL]V, p is a cluster1084

point of ∪ν[kerL]V, pν .1085

Recall that, according to the notation introduced on page 5, the elements of [kerL](U ′)1086

are different from zero at each point of U ′.1087

Remark 8.1 If q > 1, then ��
p0

(q) ⇒ ��
p0

(q−1) for � = s, w, e, e∗, and (cf. Proposition 7.61088

and [21, §2])1089

�w(q) ⇐ �s(q) ⇒ �e(q) ⇒ �e∗(q), for q ≥ 1.1090

Lemma 8.2 Assume that M is essentially q-pseudo-concave. Then, for every rank n−q+11091

distribution V ⊂ Z on an 
open ⊂ M, we can find a global section τ ∈ [kerL](n−q+1)
V (
).1092
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Proof By the assumption, for each p ∈ 
, there is an U open ⊂ 
 with p ∈ Up and1093

τp =∑n−q+1
i=1 Zi ⊗ Z̄i ∈ [kerL](n−q+1)(Up) with Zi ∈ V(Up). The global τ can be obtained1094

by gluing together the τp’s by a nonnegative smooth partition of unity on 
 subordinate to1095

the covering {Up}. ��1096

In the same way, we can prove1097

Lemma 8.3 Assume that M is essentially∗-q-pseudo-concave. Then, for every rank n−q+11098

distribution V ⊂ Z on an 
open ⊂ M, we can find a global section τ ∈ [kerL]V(
). ��1099

Example 8.4 Let Fh1,...,hr (C
m) ⊂ Gr h1(C

m) × · · · × Gr hr (C
m) denote the complex flag1100

manifold consisting of the r -tuples (�h1 , . . . , �hr ) with �h1 � · · · � �hr , for an increasing1101

sequence 1 ≤ h1 < · · · < hr < m. Here, as usual, �h is a generic C-linear subspace of1102

dimension h of C
m .1103

For an increasing sequence of integers 1 ≤ i1 < i2 < · · · iν < m, of length ν ≥1104

2, we define the CR-submanifold M of Fi1,i3,...(C
m) × Fi2,i4,...(C

m) consisting of pairs1105

((�i1 , �i3 , . . .), (�i2 , �i4 , . . .)) with �ih ⊂ �ih+1 for 0 < h < ν. Set1106

d0 = i1, d1 = i2 − i1, . . . , dh = ih+1 − ih, . . . dν−1 = iν − iν−1, dν = m − iν .1107

This M is a minimal (i.e., Z(M)+ Z(M), and their iterated commutators yield all complex1108

vector fields on M), compact CR manifold of CR-dimension n and CR-codimension k, with1109

n =
ν−1∑
i=0

di di+1, k = 2
∑

1≤i< j≤ν
j−i≥2

di d j ,1110

as was explained in [34, §3.1]. Then, with q = min1<i<νdi , our M is essentially, but not1111

strongly, q-pseudo-concave when ν ≥ 3, because the non-vanishing scalar Levi forms gen-1112

erate at each point a subspace of dimension 2
∑ν−2

i=1 di di+2 < k.1113

In [34], several classes of homogeneous compact CR manifolds are discussed, from which1114

more examples of essentially, but not strongly, q-pseudo-concave manifolds can be extracted.1115

Example 8.5 Let us consider the 11-dimensional real vector space W consisting of 4 × 41116

Hermitian-symmetric matrices of the form1117

h =
(

A B
B∗ −A

)
with A, B ∈ C

2×2, A = A∗, trace(A) = 0.1118

We claim that all non-singular elements of W have Witt index two. In fact, for an element1119

h of W , either A = 0, or A is non-degenerate. If A = 0, the matrix A is non-degenerate iff1120

det(B) �= 0, and in this case, the Witt index is two as the two-plane of the first two vectors1121

of the canonical basis of C
4 is totally isotropic. If A �= 0, a permutation of the vectors of the1122

canonical basis of C
4 transforms h into a Hermitian-symmetric matrix h′ with1123

h′ =
(

C D
D∗ −C

)
,1124

for a positive definite Hermitian-symmetric C ∈ C
2×2. By a linear change of coordinates in1125

C
2, the positive definite C reduces to the 2 × 2 identity matrix I2. This yields a change of1126

coordinates in C
4 by which h′ transforms into1127

h′′ =
(

I2 E
E∗ −I2

)
, with E ∈ C

2×2.1128
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For a matrix of this form, we have, for v,w ∈ C
2,1129

h′′
(

v

w

)
= 0 ⇔

{
v + Ew = 0,

E∗v − w = 0
⇔
{

v + E E∗v = 0,

w = E∗v
⇔
{

v = 0,

w = 0.
1130

1131

Therefore, all h′′ of this form are non-singular and their Witt index is independent of E and1132

equal to two. This shows that all h ∈ W with A �= 0 are non-singular with Witt index two.1133

Thus, the set of singular matrices of W is1134

{(
0 B

B∗ 0

)∣∣∣∣ det(B) = 0

}
,1135

which is the cone of the non-singular quadric of the 3-dimensional projective space.1136

If we take a basis h1, . . . , h11 of W , the quadric M of C
14 = C

4
z × C

11
w , defined by the1137

equations1138

Re(wi ) = hi (z, z), 1 ≤ i ≤ 11,1139

is a CR manifold of type (4, 11) which is weakly and weakly∗-2-pseudo-concave, but not1140

strongly or essentially 2-pseudo-concave.1141

We obtain examples of CR manifolds M = {(z, w) ∈ C
4 ×C

7 | Re(wi ) = hi (z, z), 1 ≤1142

i ≤ 7}, of type (4, 7) and strongly 2-pseudo-concave by requiring that h1, . . . , h7 be a basis1143

either of the subspace W ′ of W in which B is traceless and symmetric, or of the W ′′ in which1144

B is quaternionic.1145

Example 8.6 Let M be the minimal orbit of SU(p, p) in the complex flag manifold1146

F1,2p−2(C
2p), for p ≥ 3. Its points are the pairs (�1, �2p−2) consisting of an isotropic1147

line �1 and a (2p−2)-plane �2p−2 with �1 ⊂ �2p−2 ⊂ �⊥1 , where perpendicularity is taken1148

with respect to a fixed Hermitian-symmetric form of Witt index p on C
2p .1149

Then M is a compact CR submanifold of F1,2p−2(C
2p), of CR dimension (2p−3) and1150

CR codimension (4p−4), which is essentially 1-pseudo-concave and, when p > 3, weakly1151

and weakly∗-(p−2)-pseudo-concave, but not essentially 2-pseudoconcave.1152

8.1 Convexity/concavity at the boundary and weak pseudo-concavity1153

Let us comment on the notion of 1-convexity/concavity at a boundary point of a domain 
1154

of Sect. 6 in the light of the discussion on Hermitian forms of Sect. 7.1155

Let ρ be a real-valued smooth function on 
open ⊂ M and p0 a point of 
 with the1156

property that, for each idξp0
in H1,1

p0
(ρ), the restriction of idξp0

to the space {Z p0 ∈ T 0,1
p0

M |1157

Z p0
ρ = 0} has a nonzero positive index of inertia. The positive multiples of these Hermitian-1158

symmetric forms make a relatively open convex cone W in the space Pn−1 of Hermitian-1159

symmetric forms on T 0,1
p0

M ∩ ker dρ(p0). By Proposition 7.8, we can find an r > 0 and1160

τ0 ∈ H1,1,(r)
p0 M such that1161

idξ(τ0) > 0, ∀ξ ∈ A1(
), s.t. dρ(p0)+ iξp0
∈ T ∗1,0

p0
M.1162

Since H1,1
p0

(ρ) is affine with underlying vector space {Lη | η ∈ H0
p0

M}, it follows that1163

actually τ0 ∈ [kerL](r)
p0 . The same argument applies to the case of a nonzero negative index1164

of inertia.1165
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Thus, by Lemma 6.18, the condition for 
ρ(p0) = {p ∈ 
 | ρ(p) < ρ(p0)} to be strongly1166

(1)-convex, or strongly (1)-concave at p0 is that1167

∃τ0 ∈ [kerL]ker dρ, p0 such that

{
ddcρ(τ0) > 0, (strongly 1-convex),

ddcρ(τ0) < 0, (strongly 1-concave).
(8.1)1168

A glitch of the notion of strong-1-convexity (resp. -concavity) is that it is not, in general, stable1169

under small perturbations. This can be ridden out by adding the global assumption of essential-1170

2-pseudo-concavity of M . Set, for simplicity of notation, ρ(p0) = 0 and dρ(p0) �= 0.1171

Proposition 8.7 Suppose that M is essentially 2-pseudo-concave and that 
0 = {p ∈ 
 |1172

ρ(p) < 0} is strongly 1-concave at p0 ∈ ∂
0. Then,1173

(1) We can find τ0 ∈ [kerL](n−1)
ker dρ, p0

such that ddcρ(τ0) < 0;1174

(2) We can find an open neighborhood U of p0 in 
 such that at every p′ ∈ U the open set1175


ρ(p′) = {p ∈ 
 | ρ(p) < ρ(p′)} is smooth and strongly 1-concave at p′.1176

9 Cauchy problem for CR functions—uniqueness1177

In this section, we discuss uniqueness for the initial value problem for CR functions, with1178

data on a non-characteristic smooth initial hypersurface N ⊂ M .1179

Uniqueness is well understood when M is a CR submanifold of a complex manifold (see,1180

for example, [41]). Let 
 ⊂ M be an open neighborhood of a non-characteristic point p0 of1181

N , such that 
 \ N is the union of two disjoint connected components 
±.1182

Proposition 9.1 Assume that M is a minimal CR submanifold of a complex manifold X. If1183

f ∈ OM (
+)∩C 0(
̄+) and f |N vanishes on an open neighborhood of a non-characteristic1184

point p0 of N, then f ≡ 0 on 
+.1185

We have a similar statement for CR distributions.1186

Proposition 9.2 Assume that M is either a real-analytic CR manifold, or a CR submanifold1187

of a complex manifold X that is minimal at every point. Let N be a Z-non-characteristic1188

hypersurface of M, such that M \ N is the union of two disjoint connected open subsets M±.1189

Then, there is an open neighborhood U of N in M such that any CR distribution on M+1190

having vanishing boundary values on N, vanishes on U ∩ M+.1191

Proof An f ∈ D ′(M+) is CR if Z f = 0 in M+, in the sense of distributions, for all1192

Z ∈ Z(M). We say that f has zero boundary value on N if for each p ∈ N , we can find an1193

open neighborhood Up of p in M and a CR-distribution f̃ ∈ D ′(Up) which extends f |M+∩Up1194

and is zero on Up \ M̄+. Note that, since N is non-characteristic, all CR distributions defined1195

on a neighborhood of N admit a restriction to N .1196

The case where M is a real-analytic CR manifold reduces to the classical Holmgren1197

uniqueness theorem.1198

In the other case, where M is C∞ smooth, but is assumed to be minimal, we first choose1199

a slight deformation Nd of N such that Nd is contained in M+ and coincides with N near1200

p. Moreover, we can achieve that the CR orbit O(p, Nd) of p in Nd intersects Nd ∩ M+.1201

Since M+ is minimal at every point, CR distributions holomorphically extend to open wedges1202

attached to M+. In particular, this holds for the boundary value of f |M+
d

(M+
d being the side1203

of Nd containing M+) at any point of Nd ∩ M+.1204
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Using that wedge extension propagates along CR orbits, we get wedge extension from1205

Nd at p. Examining how the wedges are constructed by analytic disk techniques, one more1206

precisely obtains a neighborhood V of p in M+ and an open truncated cone C ⊂ C
n such that1207

f̃ holomorphically extends to WN = ⋃z∈V∩N (z + C), and f to W+ = ⋃z∈V∩M+(z + C).1208

The idea is to work with analytic disks attached to (deformations of) Nd and to nearby1209

hypersurfaces of M .1210

Since f̃ is the boundary value of f , the two extensions glue to a single function F ∈1211

O(WN ∪ W+). On the other hand, F is zero on WN (since f̃ vanishes near p) and thus on1212

W+, by the unique continuation of holomorphic functions. Finally f , being the boundary1213

value of F , has to vanish on N ∩ M+. ��1214

Remark 9.3 Thanks to the extension result proved in [27,37], see also [36], it suffices to1215

assume that M+ is globally minimal, i.e., that M+ consists of only one CR orbit.1216

For an embedded CR manifold with property (H), uniqueness results can be derived from1217

Proposition 3.3. Indeed, in this case, a CR function defined on a neighborhood in M of a1218

point p0 ∈ N and whose restriction to N has a zero of infinite order at p0, also has a zero of1219

infinite order at p0 as a function on M and then is zero on the connected component of p0 in1220

its domain of definition by the strong unique continuation principle.1221

The situation is quite different for abstract CR manifolds: there are examples of pseudo-1222

convex M on which there are nonzero smooth CR functions vanishing on an open subset (see,1223

for example, [40]). Here, for the pseudo-concave case, we give a uniqueness result which1224

is similar to those of [13,21,22], but more general, because we do not require the existence1225

of sections τ of [kerL](n), i.e., we drop the rank requirement, but we assume that the initial1226

hypersurface N is non-characteristic with respect to the subdistribution � of Z, which was1227

defined in Sect. 4.1228

In this context, we can slightly generalize CR functions by considering, for a given τ ∈1229

[kerL](M), functions f on M satisfying1230 {
f ∈ L2

loc(M), ∀Z ∈ �̃, Z f ∈ L2
loc(M) and ∃κZ ∈ L∞loc(M, R)

such that |(Z f )(p)| ≤ κZ (p)| f (p)| a.e. on M .
(9.1)1231

Condition (9.1), with Z(M) instead of �̃(τ), naturally arises when we consider CR sections1232

of a complex CR line bundle (see [21, §7]).1233

We note that the hypersurface N is non-characteristic at a point p0 with respect to the1234

distribution � if it is non-characteristic at p0 for �(τ) for some τ ∈ [kerL](M).1235

Proposition 9.4 Let 
open ⊂ M and N ⊂ ∂
 a smooth �-non-characteristic hypersurface1236

in M. Then, there is a neighborhood U of N in M such that any solution f of (9.1), which1237

is continuous on 
̄ and vanishes on N, is zero on U ∩
.1238

Proof We note that the assumption of constancy of rank in unessential and never used in1239

the proof of [22, Theorem 4.1]. We reduce to that situation by considering the �̃-structure1240

on M, defined by the distribution of (4.6), after we make the following observation. Since1241

the statement is local, we can assume that N splits M into two closed half-manifolds M±,1242

with 
 = M− and ∂
 = N . A continuous solution f of (9.1) in M− vanishing on N , when1243

extended by 0 on M+, defines a continuous solution f̃ of (9.1) in M with supp f̃ ⊂ M̄−. In1244

fact, since L ∈ �̃(M) is first order, L f̃ equals L f on M− and 0 on M+, as one can easily check1245

by integrating by parts and using the identity of weak and strong extensions of [15]. Hence,1246

f̃ still satisfies (9.1) and vanishes on an open subset of M . By proving Carleman estimates,1247
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similar to those in [21, Theorem 5.2], we obtain that f̃ vanishes along the Sussmann leaves1248

of �̃ transversal to N (see [17,22]). These leaves fill a neighborhood of N in M , where f̃1249

vanishes. This proves our contention. ��1250

Remark 9.5 Note that C
n × R

r is weakly pseudo-concave (but not essentially pseudo-1251

concave). Thus, we need the genericity assumption (2.5) to get uniqueness in this case.1252

The uniqueness for the non-characteristic Cauchy problem in the case of a single partial1253

differential operator of [11,45] may be considered a special case of this proposition, when1254

the CR dimension is one.1255

Uniqueness in the case where N can be characteristic for �, but not for Z, will be obtained1256

by adding a pseudo-convexity hypothesis.1257

First, we prove a Carleman-type estimate.1258

Lemma 9.6 Let τ be a section of [kerL] and ψ a real-valued smooth function on M. Then,1259

there is a smooth real-valued function κ on M such that1260

‖ exp(tψ)L0 f ‖2
0+

r∑
i=1

‖ exp(tψ)Zi f ‖2
0 ≥

∫
(2t · ddcψ(τ)+ κ) | f |2e2tψdμ,1261

∀ f ∈ C∞
0 (M), ∀t > 0. (9.2)1262

1263

Here the L2-norms and the integral are defined by utilizing the smooth measure dμ1264

associated with a fixed Riemannian metric on M .1265

Proof Let τ = ∑r
i=1 Zi ⊗ Z̄i ,

∑r
i=1[Zi , Z̄i ] = L̄0 − L0, with Zi , L0 ∈ Z(M). We will1266

indicate by κ1, κ smooth functions on M which only depend on Z1, . . . , Zr . For f ∈ C∞
0 (M),1267

and a fixed t > 0, set v = f ·exp(tψ). Integration by parts yields1268

r∑
i=1

‖Ziv − tvZiψ‖2
0 =

r∑
i=1

‖Z∗i v − tv Z̄iψ‖2
0 +

∫ r∑
i=1

[Zi , Z̄i ]v · v̄ dμ1269

+ Re
∫ (

κ0 +
∑r

i=1
2t (Zi Z̄iψ)

)
|v|2dμ,1270

1271

where the superscript star stands for formal adjoint with respect to the Hermitian scalar1272

product of L2(dμ). For the second summand in the right-hand side, we have1273

∫ r∑
i=1

[Zi , Z̄i ]v · v̄ dμ =
∫

L̄0v · v̄ dμ−
∫

L0v · v̄ dμ1274

= −
∫

L0v · v̄ dμ−
∫

v · L0v dμ−
∫

κ1|v|2dμ1275

= −2 Re
∫

L0v · v̄ dμ−
∫

κ1|v|2dμ1276

≥ −2‖L0v − tvL0ψ‖0‖v‖0 −
∫

(κ1 + 2t Re L0ψ)|v|2dμ1277

≥ −‖L0v − tvL0ψ‖2
0 −

∫
(1+ κ1 + 2t Re L0ψ)|v|2dμ.1278

1279
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Therefore, we obtain the estimate1280

‖L0v − tvL0ψ‖2
0 +

r∑
i=1

‖Ziv − tvZiψ‖2
01281

≥
∫ (

t[Zi Z̄i + Z̄i Zi ]ψ− 2t (Re L0)ψ− κ2
) |v|2 dμ =

∫
(2t Pτψ+ κ)|v|2dμ.1282

1283

By Proposition 6.6, this yields (9.2). ��1284

From the Carleman estimate (9.2), we obtain a uniqueness result under convexity condi-1285

tions, akin to the one of [24, §28.3] for a scalar p.d.o.1286

Proposition 9.7 Assume there is a section τ ∈ [kerL] and ψ ∈ C∞(M, R) such that1287

dψ(p0) �= 0, ddcψ(τ) > 0. (9.3)1288

Then, there is an open neighborhood U of p0 in M with the property that any solution f of1289

(9.1) which vanishes a.e. on U ∩ {p | ψ(p) > ψ(p0)} also vanishes a.e. on U. ��1290

Remark 9.8 In fact, it suffices to require that (9.1) is satisfied by the operators Z1, . . . , Zr , L0.1291

Let 
 be an open domain in M , and p0 ∈ ∂
 a smooth point of the boundary.1292

Proposition 9.9 If 
 is either �-non-characteristic or strictly 1-convex at p0 (according1293

to Definition 6.4), then any f satisfying (9.1) in 
, and having zero boundary values on a1294

neighborhood of p0 in ∂
, is 0 a.e. on the intersection of 
 with a neighborhood of p0 in M.1295

Proof With Pτ defined by (4.7), (4.8), and a real parameter s, we have1296

e−sψ Pτ(esψ) = s

(
1
2

r∑
i=1

(Zi Z̄i + Z̄i Zi )ψ− X0ψ

)
+ s2

r∑
i=1

|Ziψ|21297

= s ddcψ(τ)+ s2
r∑

i=1

|Ziψ|2.1298

1299

Thus, the condition of Proposition 9.7 is satisfied for a suitable τ ∈ [kerL] near p0 either1300

when ∂
 is �-non-characteristic at p0, by taking s % 1, or, in case ∂
 is �(τ)-characteristic1301

at p0, if ddcψ(τ)(p0) > 0. ��1302

Remark 9.10 We observe that strict 1-convexity at p0 implies that ∂
 is �̃-non-characteristic1303

at p0.1304

10 Cauchy problem for CR functions existence1305

In this section, we will investigate properties of CR functions on CR manifolds satisfying1306

weak 2-pseudo-concavity assumptions.1307

Proposition 10.1 Let 
 be an open subset of a CR manifold M enjoying property �we(2).1308

Assume that p0 is a smooth, strongly 1-convex, �-non-characteristic point of ∂
. Then, for1309

every relatively compact open neighborhood U of p0 in M, we can find an open neighborhood1310

U ′ of p0 in U such that1311

| f (p)| ≤ sup
U∩∂


| f |, ∀p ∈ U ′ ∩
, ∀ f ∈ OM (
) ∩ C 2(
̄), (10.1)1312

and strict inequality holds if f is not a constant on U ′ ∩
.1313
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Proof We can assume that 
 is locally defined near p0 by a real-valued ρ ∈ C∞(U ):1314

U ∩
 = {p ∈ U | ρ(p) < 0}, and ∃ Z ∈ �(U ) s.t. (Zρ)(p0) �= 0.1315

To make local bumps of ∂
 near p0, we fix smooth coordinates x centered at p0, that we1316

can take for simplicity defined on U, and, for a nonnegative real-valued smooth function1317

χ(t) ∈ C∞
0 (R), equal to 1 on a neighborhood of 0, set φε(p) = e−1/εχ(|x |/ε). Then, we1318

consider the domains1319

U−
ε = {p ∈ U | −φε(p) < ρ(p) < 0}.1320

There is ε0 > 0 such that U−
ε � U and the points of N ′′

ε = ∂U−
ε ∩
 are smooth and �-non-1321

characteristic for all 0 < ε ≤ ε0. In fact, N ′′
ε is a small deformation of N ′

ε = {φε > 0} ∩ ∂
,1322

which is smooth and �-non-characteristic for 0 < ε & 1.1323

We claim that, for sufficiently small ε > 0, the modulus | f |of any function f ∈ OM (U−
ε )∩1324

C 2(Ū−
ε ) attains its maximum on N . We argue by contradiction.1325

If our claim is false, then for all 0 < ε ≤ ε0 we can find pε ∈ N ′′
ε and1326

fε ∈ OM (U−
ε ) ∩ C 2(Ū−

ε ) with | f (pε)| > | f (p)| for all p ∈ U−
ε . In fact, �we(2) implies the1327

maximum modulus principle, and therefore, the maximum of | fε | is attained on the boundary1328

of U−
ε . By Proposition 6.15, this implies that there is ξε ∈ H0

M,pε
(U−

ε ) such that L
N ′′

ε

ξε
≥ 0.1329

By the strong-1-convexity assumption, there is τ0 ∈ [kerL]dρ⊥,p0
(see Notation 8.1) such1330

that ddcρ(τ0) > 0. For εν ↘ 0, the sequence {pεν } converges to p0. We can take a function1331

ρ̃ ∈ C∞(U ) such that ρ̃ agrees to the second order with (ρ+ φεν
) at pεν , for all ν, and with1332

ρ at p0.1333

We obtain a contradiction, because τ0 belongs to [kerL]
dρ̃⊥,p0

= [kerL]dρ⊥,p0
and there-1334

fore, by �we(2), is a cluster point of a sequence of elements τεν ∈ [kerL]
dρ̃⊥,pεν

=1335

[kerL]d(ρ+φεν )⊥,pεν
, and ddcρ̃(τεν ) = ddc(ρ+φεν

)(τεν ) ≤ 0 by Proposition 6.15 and Corol-1336

lary 6.8. In fact, ddc(ρ+ φεν′ )(τεν′ ) −→ ddcρ(p0)(τ0) when τεν′ −→ τ0. ��1337

Theorem 10.2 Let 
 be an open subset of a CR manifold M enjoying property �we(2)1338

and N a relatively open subset of ∂
, consisting of smooth, strongly 1-convex, �-non-1339

characteristic points. If M is locally CR-embeddable at all points of N , then we can find1340

an open neighborhood U of N in M such that for every f0 ∈ ON (N ), there is a unique1341

f ∈ OM (U ∩
) ∩ C∞(U ∩
) with f = f0 on N.1342

Proof The result easily follows from the approximation theorem in [7] and the estimate of1343

Proposition 10.1 ��1344
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