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Abstract
We study the following synchronous process that we call repeated balls-into-bins. The process is started by assigning n balls
to n bins in an arbitrary fashion. In every subsequent round, one ball is extracted from each non-empty bin according to
some fixed strategy (random, FIFO, etc), and re-assigned to one of the n bins uniformly at random. We define a configuration
legitimate if itsmaximum load isO(log n).We prove that, starting from any configuration, the process converges to a legitimate
configuration in linear time and then only takes on legitimate configurations over a period of length bounded by any polynomial
in n, with high probability (w.h.p.). This implies that the process is self-stabilizing and that every ball traverses all bins within
O(n log2 n) rounds, w.h.p.

Keywords Balls into bins · Self-stabilizing systems · Markov chains · Parallel resource assignment

1 Introduction

1.1 The process and its motivations

We study the following repeated balls-into-bins process.
Given any n � 2, we initially assign n balls to n bins in
an arbitrary way. Then, at every round, from each non-empty
bin one ball is chosen according to some strategy (random,
FIFO, etc) and re-assigned to one of the n bins uniformly
at random. Every ball thus performs a sort of delayed ran-
dom walk over the bins and the delays of such random walks
depend on the size of the bin queues encountered during their
paths. It thus follows that these random walks are correlated.
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We study the impact of such correlation on the maximum
load.

Inspired by previous notions of (load) stability [1,2], we
study the maximum load M (t), i.e., the maximum number
of balls inside one bin at round t and we are interested in
the largest M (t) achieved by the process over a period of
any polynomial length. We say that a configuration is legiti-
mate if its maximum load isO(log n) and a process is stable
if, starting from any legitimate configuration, it only takes
on legitimate configurations over a period of poly(n) length,
w.h.p.1 We also investigate a probabilistic version of self-
stabilization [3,4]: we say that a process is self-stabilizing if
it is stable and if, moreover, starting from any configuration,
it converges to a legitimate configuration, w.h.p. The con-
vergence time of a self-stabilizing process is the maximum
number of rounds required to reach a legitimate configura-
tion starting from any configuration. This natural notion of
(probabilistic) self-stabilization has also been inspired by that
in [5] for other distributed processes.

The stability property, i.e. visiting only legitimate con-
figurations for a relatively-long period, has consequences
for other important aspects of this process. For instance, if
the process is stable, every ball can be delayed for at most
O(log n) rounds before leaving a node. Hence, we can get
good bounds on the progress of a ball, namely the number

1 We say that a sequence of events En , n = 1, 2, . . . holds with high
probability (w.h.p.) if P(En) = 1−O(1/nγ ) for some positive constant
γ > 0.
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of rounds the ball is selected from its current bin queue,
along a relatively-long period. Furthermore, we can eventu-
ally bound the parallel cover time, i.e., the time required for
every ball to visit all bins.

The process we study models a natural randomized solu-
tion to the fundamental task known as traversal [6,7], which
itself abstracts a number of crucial primitives in distributed
computing, such as (parallel) resource (or task) assignment.
In the basic case, the goal is to assign one resource in
mutual exclusion to all processors (i.e. nodes) of a distributed
system. This is typically described as a traversal process per-
formed by a token (representing the resource or task) over
the network. The process terminates when the token has vis-
ited all nodes of the system. Randomized protocols for this
problem [8] are efficient approaches when, for instance, the
network is prone to faults/changes and/or when there is no
global labeling of the nodes, e.g., the network is anonymous.

A simple randomized protocol is the one based on random
walks [5,8,9]: starting from any node, the token performs a
random walk over the network until all nodes are visited,
w.h.p. The first round in which all nodes have been visited by
the token is called the cover time of the random walk [8,10].
The expected cover time for general graphs is O(|V | · |E |)
(see, e.g., [11]). In particular, random walks are at the basis
of the first uniform self-stabilizing mutual exclusion protocol
achieving graph traversal in general graphs [5].

In distributed systems, we often are in the presence of
several resources or tasks that must be processed by every
node in parallel. This naturally leads to consider the multi-
token traversal problem. Here, n different tokens (resources)
are initially distributed over the set of nodes and every token
must visit all nodes of the network.

Similarly to the basic case, we propose a randomized solu-
tion based on (parallel) randomwalks. In order to visit nodes,
every token performs a random walk under the constraint
that every node can process and release at most one token
per round. Note that this constraint causes random walks to
become correlated. In particular, it is easy to see that, when
the graph is complete, the above protocol—based on parallel
random walks—is in fact equivalent to the repeated balls-
into-bins process analyzed in this paper. In such a scenario,
maximum load becomes a critical measure: not only does it
determine required buffer size at every node, it also affects
the progress of the tokens and thus the parallel cover time.

1.2 Our results

Weprovide a new, almost-tight analysis of the repeated balls-
into-bins process that significantly departs from previous
ones and show that the system is self-stabilizing. In The-
orem 1, we show that, for any arbitrarily-large constant c,
if the process starts from a legitimate configuration, then
the maximum load M (t) is O(log n) for all t = O(nc),

w.h.p. Moreover, starting from any configuration, the sys-
tem reaches a legitimate configuration within O(n) rounds,
w.h.p.

The above result strongly improves over the best previ-
ous bounds [12–14] and it is almost tight, since the classical
lower bound Ω(log n/ log log n) on the maximum load (see,
e.g., [11]) clearly applies also in our repeated setting. Our
result further implies that, under the FIFO queueing policy,
any ball performs Ω(t/ log n) steps of its individual random
walk over any sequence of t = poly(n) rounds w.h.p., so
the parallel cover time is O (

n log2 n
)
w.h.p. This is only a

log n factor away from the lower bound following from the
single-ball process.

As observed in Sect. 1.1, when the graph is complete, the
repeated balls-into-bins process is equivalent to the protocol
for the multi-token traversal task based on parallel random
walks. In this setting, our results imply that, starting from
any configuration, this task is completed w.h.p. with at most
a logarithmic slowdown w.r.t. the case of a single token.

We can also consider the adversarial model in which, in
some faulty rounds, an adversary can re-assign the tokens
to the nodes in an arbitrary way. Then, the self-stabilization
and the linear convergence time shown in Theorem 1 imply
that theO (

n log2 n
)
bound on the cover time still holds, pro-

vided that faulty rounds occur with a frequency no higher
than cn, for a sufficiently large constant c. Thus, the random
walk-based approach offers a simple solution to multi-token
traversal that has minimal overhead, works in anonymous
networks and is resilient to (possibly adversarial) faults.
Moreover, its performances (in terms of congestion and cover
time) are provably close to optimum.

To the purpose of analyzing the original process, we need
to consider another repeated balls-into-bins process, which
we call Tetris and which is of independent interest (see the
overview of our analysis in Sect. 3).

1.3 Related work

The repeated balls-into-bins process was first considered
in [13] (see there Lemma 2 in Subsection 3.1), [12] (see
there Theorem 4.1 in Sect. 4), and [14] (see there Lemma 6
in Subsection 3.1), since it describes the process of perform-
ing parallel random walks in the (uniform) gossip model
(also known as random phone-call model [15,16]) when
everymessage can contain at most one token.Maximum load
(i.e., node congestion), token delays, mixing and cover times
are here the most crucial aspects. We remark that the flavor
of these studies is different from ours: indeed, their main
goal is to keep maximum load and token delays logarithmic
over some polylogarithmic period. Their aim is to achieve a
fast mixing time for every random walk in the case of good
expander graphs. In particular, in [13], a logarithmic bound
is shown for the complete graph when m = O(n/ log n)
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random walks are performed over a logarithmic time inter-
val, while a similar bound is also given for some families
of almost-regular random graphs in [14]. A new analysis is
given in [12] for regular graphs and time intervals of arbi-
trary length, yielding the bound O (√

t
)
. Finally, after the

conference version of this paper [17], a probabilistic version
of the Tetris process, where the number of new balls arriv-
ing at each round is a random variable with expectation λn,
for some λ = λ(n) ∈ [0, 1], has been studied in [18].

Balls-into-bins processes have been extensively studied
in the area of parallel and distributed computing, mainly to
address balanced-allocation problems [19–21], PRAM sim-
ulation [22] and hashing [23]. In order to optimize the total
number of random bin choices used for the allocation, fur-
ther allocation strategies have been proposed and analyzed
(see, e.g., [24–28]). As previously mentioned, our notion of
stability is inspired by those studied in [1,2] where load bal-
ancing algorithms are analyzed in scenarios in which new
tasks arrive during the run of the system, and existing jobs
are executed by the processors and leave the system. An
adversarial model for a sequential balls-into-bins process has
been studied in [29]. We remark that, in the above previous
works, the goal is different from ours: each ball/task must be
allocated to one, arbitrary bin/processor (it is not a token-
traversal process).

To the best of our knowledge, the closest model to our
setting in classical queuing theory is the closed Jackson net-
work [30]. In this model, time is continuous and each node
processes a single token among those in its queue; processing
each token takes an exponentially distributed interval of time.
As soon as its processing is completed, each token leaves the
current node and enters the queue of a neighbor chosen uni-
formly at random. Notice that, since time is continuous, the
process’ events are sequential, so that the associated Markov
chain is much simpler than the one describing our parallel
process. In particular, the stationary distribution of a closed
Jackson network can be expressed as a product-formdistribu-
tion. It is noted in [31] that “[…] virtually all of the models
that have been successfully analyzed in classical queuing
network theory are models having a so-called product form
stationary distribution”. Because of the above considerations
regarding the difficulty of our process (especially the non-
reversibility of its Markov chain), the stationary distribution
is instead very likely not to exhibit a product-form distribu-
tion, thus laying outside the domain where the techniques
of classical queuing theory seem effective. We finally cite
the seminal work [32] on adversarial queuing systems: here,
new tokens (having specified source and destination nodes)
are inserted in the nodes according to some adversarial strat-
egy and a notion of edge-congestion stability is investigated.

Other closely related lines of work have investigated
similar problem in the setting with an infinite number of
bins [33,34]. Finally, [35] provided a general framework to

study the stabilization time of asynchronous balls-into-bins
processes, and [36] investigated the generalization of the 2-
choices balls-into-bins process in which at each round a ball
is re-launched by selecting d bins u.a.r. and placing the ball
in the one with the smallest load. The latter process has also
been applied to cover ball deletions [37].

2 Preliminaries

We recall that the repeated balls-into-bins process is
described as follows:

We are given any n � 2 balls and bins. Initially, balls
are assigned to bins in an arbitrary way. Then, in every
subsequent round, one ball is chosen from each non-
empty bin according to some strategy2 and re-assigned
to one of the n bins uniformly at random.

We are interested in the maximum load M (t), i.e., the max-
imum number of balls enqueued at the same bin round t
and we are interested in how M (t) evolves over time. To
the purpose of studying the maximum load of the repeated
balls into bins process, the state of the system is completely
characterized by the load of every bin. Formally, for each
bin u ∈ [n] let Q(t)

u be the r.v.3 indicating the number of
balls, i.e. the load, in u at round t . We writeQ(t) for the vec-

tor of these random variables, i.e., Q(t) =
(
Q(t)

u : u ∈ [n]
)
.

We write q = (q1, . . . , qn) for a (load) configuration, i.e.,
qu ∈ {0, 1, . . . , n} for every u ∈ [n] and ∑n

u=1 qu = n. We
define themaximum load of a configurationq = (q1, . . . , qn)
as

M(q) = max{qu : u ∈ [n]},

and, for brevity’ sake, given any round t of the process, we
define

M (t) = M
(
Q(t)

)
.

According to the above definition, we say that a configuration
q is legitimate ifM(q) � β ·log n, for some absolute constant
β > 0.

3 Self-stabilization of repeated balls into
bins

In this section, we prove the main result of this paper.

2 Our results are oblivious to the specific queueing strategy and we
make no assumptions about. It might be random, FIFO, etc.
3 We always use capital letters for random variables, lower case for
quantities, and bold for vectors.
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Theorem 1 Let c be an arbitrarily-large constant and let q
be any legitimate configuration. Let the repeated balls-into-
bins process start from Q(0) = q. Then, over any period
of length O(nc), the process visits only legitimate config-
urations, w.h.p., i.e., M (t) = O(log n) for all t = O(nc)
w.h.p. Moreover, starting from any configuration, the system
reaches a legitimate configurationwithinO(n) rounds, w.h.p.

The proof relies on the analysis of the behaviour of some
essential randomvariables describing the repeated balls-into-
bins process. In the next paragraph, we informally describe
the main steps of this analysis. Then in Sects. 3.2–3.4, we
prove the technical results required by such steps and, finally,
in Sect. 3.5 these technical results are combined in order to
prove Theorem 1.

3.1 Overview of the analysis

In the repeated balls-into-bins process, every bin can release
at most one ball per round. As a consequence, the random
walks performed by the balls delay each other and are thus
correlated in a way that can make bin queues larger than in
the independent case. Indeed, intuitively speaking, a large
load observed at a bin in some round makes “any” ball more
likely to spend several future rounds in that bin, because if
the ball ends up in that bin in one of the next few rounds,
it will undergo a large delay. This is essentially the major
technical issue to cope with.

The previous approach in [12] relies on the fact that, in
every round, the expected balance between the number of
incoming and outgoing balls is always non-positive for every
non-empty bin (notice that the expected number of incom-
ing balls is always at most one). This may suggest viewing
the process as a sort of parallel birth-death process [10].
Using this approach and with some further arguments, one
can (only) get the “standard-deviation” boundO(

√
t) in [12].

Our new analysis proving Theorem 1 proceeds along three
main steps.
(i)Wefirst show that, after the first round, the aforementioned
expected balance is always negative, namely, not larger than
−1/4. Indeed, the number of empty bins remains at least n/4
with (very) high probability, which is extremely useful since
a bin can only receive tokens from non-empty bins. This fact
is shown to hold starting from any configuration and over
any period of polynomial length.
(ii) In order to exploit the above negative balance to bound the
load of the bins, we need some strong concentration bound
on the number of balls entering a specific bin u along any
period of polynomial size. However, it is easy to see that,

for any fixed u, the random variables
{
Z (t)
u

}

t�0
counting the

number of balls entering bin u are not mutually independent,
neither are theynegatively associated, so thatwe cannot apply

standard tools to prove concentration (see “Appendix B” for
a counterexample).

To address this issue, we define a simpler repeated balls-
into-bins process as follows.

Tetris process. Starting from any configuration
with at least n/4 empty bins, in each round
– from every non-empty bin we pick one ball and
we throw it away, and
– we pick exactly (3/4)n new balls and we put
each of them independently and u.a.r. in one of the
n bins.

Using a coupling argument and our previous upper bound
on the number of empty bins, we prove that the maximum
number of balls accumulating in a bin in the original process
is not larger than themaximumnumber of balls accumulating
in a bin in the Tetris process, w.h.p.
(iii) TheTetris process is simpler than the original one since,
at every round, the number of balls assigned to the bins does
not dependon the system’s state in the previous round.Hence,

random variables
{
Ẑ (t)
u

}

t�0
counting the number of balls

arriving at bin u in the Tetris process are mutually indepen-
dent. We can thus apply standard concentration bounds. On
the other hand, differently from the approximating process
considered in [12], the negative balance of incoming and out-
going balls proved in Step (i) still holds, thus yielding amuch
smaller bound on the maximum load than that in [12].

In the remainder of this section, we formally describe the
above three steps, thus proving Theorem 1.

3.2 On the number of empty bins

We next show that the number of empty bins is at least a
constant fraction of n over a very large time-window, w.h.p.
This fact could be proved by standard concentration argu-
ments if, at every round, all balls were thrown independently
and uniformly at random. A little care is instead required in
our process to properly handle, at any round, “congested”
bins whose load exceeds 1. These bins will be surely non-
empty at the next round too. So, the number of empty bins at
a given round also depends on the number of congested bins
in the previous round.

Lemma 1 Let q = (q1, . . . , qn) be a configuration in a given
round and let X be the random variable indicating the num-
ber of empty bins in the next round. For any large enough n,
it holds that

P
(
X � n

4

)
� e−αn,

where α is a suitable positive constant.
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Proof Let a = a(q) and b = b(q) respectively denote the
number of empty bins and the number of bins with exactly
one token in configuration q. For each bin u of the a + b
bins with at most one token, let Yu be the random variable
indicating whether or not bin u is empty in the next round,
so that

X =
a+b∑

u=1

Yu and P(Yu = 1) =
(
1 − 1

n

)n−a

� e− n−a
n−1 ,

where in the last inequality we used the fact that 1 − x �
e− x

1−x . Hence we have that

E [X ] � (a + b)e− n−a
n−1 . (1)

The crucial fact is that the number of bins with two or more
tokens cannot exceed the number of empty bins, i.e. n− (a+
b) � a. Thus, we can bound the number of empty bins from
below,4 a � (n − b)/2, and by using that bound in (1) we
get

E [X ] � n + b

2
e− n+b

2(n−1) .

Now observe that, for large enough n a positive constant ε

exists such that

n + b

2
e− n+b

2(n−1) � (1 + ε)
n

4
, for every 0 � b � n.

It is easy to show that random variables Y1, . . . ,Ya+b are
negatively associated (e.g., see Theorem 13 in [38]). Thus
we can apply (see Lemma 7 in [38]) the Chernoff bound (6)
with δ = ε/(1 + ε) to X to obtain

P
(
X � n

4

)
� exp

(
− ε2

4(1 + ε)
n

)
.

��
From the above lemma it easily follows that, if we look

at our process over a time-window T = T (n) of polynomial
size, after the first round we always see at least n/4 empty
bins, w.h.p. More formally, for every t ∈ {1, . . . , T }, let Et
be the event “The number of empty bins at round t is at
least n/4”. From Lemma 1 and the union bound we get the
following lemma.

Lemma 2 Let q0 denote the initial configuration, let T =
T (n) = nc for an arbitrarily large constant c. For any large
enough n it holds that

4 Observe that this argument only works to get a lower bound on the
number of empty bins and not for an upper bound.

P

(
T⋂

t=1

Et |Q(0) = q0

)

� 1 − e−γ n,

where γ is a suitable positive constant.

Proof By using the union bound we obtain

P

(
T⋂

t=1

Et |Q(0) = q0

)

= 1 − P

(
T⋃

t=1

Et |Q(0) = q0

)

� 1 −
T∑

t=1

P
(
Et |Q(0) = q0

)
.

By conditioning on the configuration at round t−1, from the
Markov property and Lemma 1 it then follows that

P
(
Et |Q(0) = q0

)

=
∑

q

P
(
Et |Q(t−1) = q

)
P
(
Q(t−1) = q|Q(0) = q0

)

� e−αn .

Hence,

P

(
T⋂

t=1

Et |Q(0) = q0

)

� 1 − T e−αn � 1 − e−γ n,

for a suitable positive constant γ . ��

3.3 Coupling with TETRIS

Using a coupling argument and Lemma 2 we now prove that
themaximum load in the original process is stochastically not
larger than the maximum load in the Tetris process w.h.p.

In what follows we denote by W (t) the set of non-empty
bins at round t in the original process. Recall that, in the
latter, at every round a ball is selected from every non-empty
bin u and it is moved to a bin chosen u.a.r. Accordingly we
define, for every round t , the random variables

{
X (t+1)
u : u ∈ W (t)

}
, (2)

where X (t+1)
u indicates the newposition reached in round t+1

by the ball selected in round t frombinu. Notice that for every

non-empty bin u ∈ W (t) we have thatP
(
X (t+1)
u = v

)
= 1/n

for every bin v ∈ [n]. The random process
{
Q(t) : t ∈ N

}
is

completely defined by random variables X (t)
u ’s, indeed we

can write

Q(t+1)
v = max

{
Q(t)

v − 1, 0
}

+
∣∣∣
{
u ∈ W (t) : X (t+1)

u = v
}∣∣∣
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and

W (t+1) =
{
u ∈ [n] : Q(t+1)

u � 1
}

.

Analogously, for each bin u ∈ [n] in the Tetris process, let
Q̂(t)

u be the random variable indicating the number of balls in
bin u in round t . We next prove that, over any polynomially-
large time window, the maximum load of any bin in our
process is stochastically smaller than the maximum number
of balls in a bin of the Tetris process w.h.p. More formally,
we prove the following lemma.

Lemma 3 Let us start both the original process and the
Tetrisprocess from the sameconfigurationq = (q1, . . . , qn)
such that

∑n
u=1 qu = n and containing at least n/4 empty

bins. Let T = T (n) be an arbitrary round and let MT and
M̂T be respectively the random variables indicating themax-
imum loads in our original process and in theTetris process,
up to round T . Formally

MT = max
{
Q(t)

u : u ∈ [n], t = 1, 2, . . . , T
}

and

M̂T = max
{
Q̂(t)

u : u ∈ [n], t = 1, 2, . . . , T
}

.

Then, for every k � 0 it holds that

P(MT � k) � P
(
M̂T � k

)
+ T · e−γ n,

for a suitable positive constant γ .

Proof We proceed by coupling the Tetris process with the
original one round by round. Intuitively speaking the cou-
pling proceeds as follows:

– Case (i): the number of non-empty bins in the original
process is h � 3

4n. For each non-empty bin u, let iu
be the ball picked from u. We throw one of the 3

4n new
balls of the Tetris process in the same bin in which iu
ends up. Then, we throw all the remaining 3

4n − h balls
independently u.a.r.

– Case (ii): the number of non-empty bins is h > 3
4n. We

run one round of the Tetris process independently from
the original one.

By construction, if the number of non-empty bins in the orig-
inal process is not larger than 3

4n at any round, case (ii) never
applies and the Tetris process “dominates” the original one,
meaning that every bin in the Tetris process contains at
least as many balls as the corresponding bin in the original
one. Since from Lemma 2 we know that the number of non-
empty bins in the original process is not larger than 3

4n for

any time-window of polynomial size w.h.p., we thus have
that the Tetris process dominates the original process for
the whole time window w.h.p.

Formally, for t ∈ {1, . . . , T }, denote by B(t) the set of
new balls in the Tetris process at round t (recall that the
size of B(t) is (3/4)n for every t ∈ {1, . . . , T }). For any
round t and any ball i ∈ B(t), let X̂ (t)

i be the random vari-
able indicating the bin where the ball ends up. Finally, let{
U (t)
i : t = 1, . . . , T , i ∈ B(t)

}
be a family of i.i.d. random

variables uniform over [n].
At any round t ∈ {1, . . . , T }, the following two cases may

arise.
If |W (t−1)| � (3/4)n: Let B(t)

W be an arbitrary subset of B(t)

with size exactly |W (t−1)|, let f (t) : B(t)
W → W (t−1) be an

arbitrary bijection and set

X̂ (t)
i =

{
X (t)
i if i ∈ B(t)

W

U (t)
i if i ∈ B(t)\B(t)

W

(3)

If|W (t−1)| > (3/4)n: Set X̂ (t)
i = U (t)

i for all i ∈ B(t).
By construction we have that random variables

{
X̂ (t)
i : t ∈ {1, 2, . . . , T }, i ∈ B(t)

}

are mutually independent and uniformly distributed over [n].
Moreover, in the joint probability space for any k we have
that

P(MT � k) = P
(
MT � k, M̂T � Mt

)

+ P
(
MT � k, M̂T < MT

)

� P
(
M̂T � k

)
+ P

(
M̂T < MT

)
.

Finally, let ET be the event “There are at least n/4 empty
bins at all rounds t ∈ {1, . . . , T }” and observe that, from
the coupling we have defined, the event ET implies event

“M̂T � MT ”. HenceP
(
M̂T < MT

)
� P

(ET
)
and the thesis

follows from Lemma 2. ��

3.4 Analysis of the TETRIS process

Webegin by observing that in the Tetris process, the random
variables indicating the number of balls ending up in a bin
in different rounds are i.i.d. binomial. This fact is extremely
useful to give upper bounds on the load of the bins, as we
do in the next simple lemma, that will be used to prove self-
stabilization of the original process.

Lemma 4 From any initial configuration, in the Tetris pro-
cess every bin will be empty at least once within 5n rounds,
w.h.p.
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Proof Let u ∈ [n] be a bin with k � n balls in the initial
configuration. For t ∈ {1, . . . , 5n} let Yt be the random vari-
able indicating the number of new balls ending up in bin u
at round t . Notice that in the Tetris process Y1, . . . ,Y5n are
i.i.d. B ((3/4)n, 1/n) hence

E [Y1 + · · · + Y5n] = 15

4
n

and by applying Chernoff bound (7) with δ = 1/15 we get

P(Y1 + · · · + Y5n � 4n) � e−αn, where α = 1/180.

Now let Eu be the event “Bin u will be non-empty for all the
5n rounds”. Since when a bin is non-empty it loses a ball at
every round, event Eu implies, in particular, that

k − 5n + Y1 + · · · + Y5n � 0.

That is

Y1 + · · · + Y5n � 5n − k � 4n.

Thus

P(Eu) � P(Y1 + · · · + Y5n � 4n) � e−αn .

The thesis then follows from the union bound over all bins
u ∈ [n]. ��

We next focus on the maximum load that can be observed
in the Tetris process at any given bin within a finite inter-
val of time. We note that this result could be proved using
tools from drift analysis (e.g., see [39]). We provide here
an elementary and direct proof, that explicitly relies on the
Markovian structure of the Tetris process.

Let {Xt }t be a sequence of i.i.d. B ((3/4)n, 1/n) random
variables and let Zt be the Markov chain with state space
{0, 1, 2, . . . } defined as follows

Zt =
{
0 if Zt−1 = 0
Zt−1 − 1 + Xt if Zt−1 � 1

(4)

Observe that 0 is an absorbing state for Zt and let τ be the
absorption time τ = inf{t ∈ N : Zt = 0}. We first prove the
following lemma.

Lemma 5 For any initial starting state k ∈ Nandany t � 8k,
it holds that

Pk(τ > t) � e−t/144.

Proof Observe that

Pk(τ > t) = Pk(Zt > 0)

= P

(

k +
t∑

i=1

Xi − t > 0

)

= P

(
t∑

i=1

Xi > t − k

)

� P

(
t∑

i=1

Xi >
7

8
t

)

,

where in the last inequality we used hypothesis k < (1/8)t .
Since the Xi s are i.i.d. binomial B((3/4)n, 1/n), it follows
that

∑t
i=1 Xi is binomial B((3/4)nt, 1/n) and from Cher-

noff bound we get that

P

(
t∑

i=1

Xi >
7

8
t

)

= P

(
t∑

i=1

Xi >

(
1 + 1

6

)
3

4
t

)

� e− (1/6)2

3
3
4 t

= e−t/144.

��
Now we can easily prove the following statement on the
Tetris process.

Lemma 6 Let c be an arbitrarily-large constant, and let the
Tetris process start from any legitimate configuration. The
maximum load M̂ (t) is O(log n) for all t = O(nc), w.h.p.

Proof Consider an arbitrary bin u that is non-empty in the
initial legitimate configuration. Let Q̂(0) = O(log n) be its

initial load5 and let τ = inf
{
t : Q̂(t) = 0

}
be the first round

the bin becomes empty. Observe that, for any t � τ , Q̂(t)

behaves exactly as the Markov chain defined in (4). Hence,
from Lemma 5 it follows that for every constant ĉ such that
ĉ log n � 8Q̂(0) we have

PQ̂(0)

(
τ > ĉ log n

)
� n−ĉ/144. (5)

Thus, within O(log n) rounds the bin will be empty w.h.p.,
and since the load of the bin decreases of at most one unit
per round, the load of the bin isO(log n) for all such rounds
w.h.p.

Next, define a phase as any sequence of rounds that starts
when the bin becomes non-empty and ends when it becomes
empty again. Notice that, by using a standard balls-into-bins

5 We omit the subscript u in the remainder of this proof since clear from
context.
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argument, in the first round of each phase the load of the bin
will beO(log n/ log log n)w.h.p. Moreover, in any phase the
load of the bin can be coupled with the Markov chain in (4).
Hence, for any arbitrary large constant c we can choose the
constant ĉ in (5) large enough so that, by taking the union
bound over all phases up to round nc, the load of the bin is
O(log n) in all rounds t � nc w.h.p.

Finally, observe that for any bin that is initially empty the
same argument applies with the only difference that the first
phase for the bin does not start at round 0 but at the first round
the bin becomes non-empty. The thesis thus follows from a
union bound over all the bins. ��

3.5 Back to the original process: proof of Theorem 1

From a standard balls-into-bins argument (see, e.g., [11]),
starting from any legitimate configuration, after one round
the process still lies in a legitimate configuration w.h.p. and,
thanks to Lemma 1, there are at least n/4 empty bins w.h.p.
From Lemma 3 with T = O (nc), we have that the max-
imum load of the repeated balls-into-bins process does not
exceed themaximum load of the Tetris process in all rounds
1, . . . , T , w.h.p. Finally, the upper bound on the maximum
load of the Tetris process in Lemma 6 completes the proof
of the first statement of Theorem 1.

As for self-stabilization, given an arbitrary initial config-
uration, Lemma 4 implies that within O(n) rounds, all bins
have been emptied at least once, w.h.p. When a bin becomes
empty, Lemma 5 ensures that its load will beO(log n) over a
polynomial number of rounds. Hence, within O(n) rounds,
the system will reach a legitimate configuration, w.h.p. ��

4 On themulti-token traversal problem

Asmentioned in the introduction, the repeated balls-into-bins
process can also be seen as running parallel random walks
of n distinct tokens (i.e. balls), each of them starting from
a node (i.e. bins) of the complete graph of size n. This is
a randomized protocol for the multi-token traversal problem
where tokens represent different resources/tasks that must be
assigned to all nodes inmutual exclusion [8]. In this scenario,
a critical complexity measure is the (global) cover time, i.e.,
the time required by any token to visit all nodes.

It is important to observe that our analysis of the maxi-
mum loadworks for anonymous tokens andnodes and, hence,
for any particular queuing strategy. Under FIFO strategy, no
token spends in a bin a number of rounds exceeding the cur-
rent load as it entered the bin. Theorem 1 then implies that,
after an initial stabilizing phase ofO(n) rounds, every token
will spend at most a logarithmic number of rounds in any bin
queue it traverses and over any period of polynomial length,
w.h.p.We also know that the cover time of the single random-

walk process is w.h.p.O(n log n) (see, e.g., [11]). Combining
the above two facts, we easily get the following, almost tight
result on the multi-token traversal problem problem.

Corollary 1 The random-walk protocol for the multi-token
traversal problem on the clique has cover timeO (

n log2 n
)
,

w.h.p.

4.1 Adversarial model

The self-stabilization property shown in Theorem 1 makes
the random walk protocol robust to transient faults. We
can consider an adversarial model in which, in some faulty
rounds, an adversary can reassign the tokens to the nodes in
an arbitrary way. Then, the linear convergence time shown in
Theorem 1 implies that the O (

n log2 n
)
bound on the cover

time still holds provided the faulty rounds happen with a fre-
quency not higher than γ n, for any constant γ � 6. Indeed,
thanks to Lemma 4, the action of an adversary manipulating
the system configuration once every γ n rounds can affect
only the successive 5n rounds, while our analysis in the
non-adversarial model does hold for the remaining (γ − 5)n
rounds. It follows that the overall slowdown on the cover time
produced by such an adversary is at most a constant factor
on the previous O (

n log2 n
)
upper bound, w.h.p.

5 Conclusions and open questions

In this paper, we showed that repeated balls-into-bin is self-
stabilizing when the number m of balls equals the number n
of bins (obviously, this is still the case, whenever m < n).
An interesting open question is whether this result extends
to larger values of m, i.e., for any m = O(n log n).

Amore general interestingquestion is the studyof this pro-
cess over more general graph classes. This line of research is
also motivated by several recent applications of parallel ran-
dom walks in the (uniform) gossip model [8,13,14,40]. As
mentioned in the introduction, previous analysis of this pro-
cess provides a bound O (√

t
)
on the maximum load after

t rounds on regular graphs [12]. We believe this previous
bound for regular graphs is far from tight and it leads to
rough bounds on parallel cover times on these networks. We
conjecture that the maximum load remains logarithmic for
a long period in any regular graph. A possible reason for
this phenomenon (if true) might be that the expected dif-
ference between (token) arrivals and departures is always
non-positive at every node in regular graphs. As highlighted
in our analysis of the complete graph, this fact alone is not
enough but it could be combined with a suitable bound on
the number of empty bins, in order to prove our conjecture in
this more general case. Unfortunately, non-complete graphs
present a further technical issue: in order to apply any argu-
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ment based on the presence of empty bins, not only do we
need to argue about their number, but also about their distri-
bution across the network. This technical issue seems to be
far from trivial even on simple topologies such as rings.

Finally, a technical question concerns the tightness of our
bound on themaximum load. In the classical (one shot) balls-
into-bins problem, it is well-known that the maximum load
of the bins is Θ (log n/ log log n) w.h.p. One may wonder
whether our O (log n) upper bound on the maximum load
of the repeated process for a polynomial number of rounds
is tight, or it can be improved to O (log n/ log log n). We
conjecture that, within any polynomial time window, the
probability that the maximum load asymptotically exceeds
log n/ log log n is non-negligible.
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Appendix A: Useful inequalities

Lemma 7 (Chernoff bound) Let {Xt : t ∈ [n]} be a family
of independent binary random variables. Let X = ∑n

t=1 Xt

and let μL � E [X ] � μH . For every δ ∈ (0, 1) it holds that

P(X � (1 − δ)μL) � exp

(
−δ2

2
μL

)
(6)

P(X � (1 + δ)μH ) � exp

(
−δ2

3
μH

)
(7)

Appendix B: Negative association

Definition 1 (Negative association) Random variables
X1, . . . , Xn are negatively associated if, for every pair of
disjoint subsets I , J ⊆ [n], it holds that

E
[
f (Xi , i ∈ I ) · g (

X j , j ∈ J
)]

� E [ f (Xi , i ∈ I )]

·E [
g

(
X j , j ∈ J

)]

for all pairs of functions f : R|I | → R and g : R|J | → R

that are both non-decreasing or both non-increasing.

A counterexample

As announced in the overview of the analysis in Sect. 3, we
here give a simple counterexample showing that, in our balls-
into-bins process, the random variables counting the number
of balls arriving in a given bin in different rounds cannot be
negatively associated.

Consider our random process with n = 2 and let X1 and
X2 be the random variables indicating the number of tokens
arriving at the first bin in rounds 1 and 2, respectively. Let
f ≡ g be the non-increasing function

f (x) =
{
1 if x = 0
0 if x > 0

If X1 and X2 were negatively associated, we thus would have
that P(X1 = 0, X2 = 0) � P(X1 = 0)P(X2 = 0). How-
ever, by direct calculation it is easy to compute that

P(X1 = 0, X2 = 0) = 1/8

because, in order for “X1 = 0, X2 = 0” to happen, at the
first round both balls have to end up in the second bin (this
happens with probability 1/4) and at the second round the
ball chosen in the second bin has to stay there (this happens
with probability 1/2). But we have that P(X1 = 0) = 1/4
and by conditioning on all the three possible configurations
at round 1 we have P(X2 = 0) = 3/8. Thus

1

8
= P(X1 = 0, X2 = 0) > P(X1 = 0)P(X2 = 0) = 1

4
· 3
8

In general, intuitively speaking it seems that event “Xt = 0”
makes more likely the event that there are a lot of empty
bins in the system, which in turn makes more likely event
“Xt+1 = 0” that the bin will receive no tokens at round t +1
as well.
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