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Type 2 diabetes: Does pancreatic fat really matter?
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Summary
With the increasing prevalence of obesity, the interest of research in nonalcoholic fatty pancreas

disease (NAFPD) has grown. Even though the pancreas appears more susceptible to lipid accumu-

lation compared with the liver, NAFPD has been less investigated due to the limits in detecting

techniques. Several definitions and synonyms for NAFPD are used by authors and can be

misleading. This, together with differences in methodology and ethnicity, make the integration

and comparison of studies on this topic challenging. NAFPD could be used as an early indicator

of ectopic fat deposition, which is recognized as a key factor of obesity cardio‐metabolic compli-

cations. However, evidence that NAFPD has a pathogenetic role in type 2 diabetes is also emerg-

ing. This article reviews the current state of knowledge on the clinical and pathophysiologic

relevance of NAFPD in β‐cell function and insulin resistance.
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1 | INTRODUCTION

The global epidemic of obesity may largely explain the concurrent

increase in the incidence and prevalence of type 2 diabetes (T2DM)

over the last decades.

Therefore, the study of adipose tissue biology has gained

an enormous research interest. This has gradually transformed

adipose tissue from an inert lipid store into a metabolically dynamic

endocrine organ capable of synthesizing biologically active compounds

involved in metabolic homeostasis, as well as in many biological

functions.1-3

Although the epidemiological association between obesity and

T2DM in general is well described,4 the evidence of pathophysiological

connection between them has been fully appreciated only in recent

years. This issue has raised even more attention because of accumulat-

ing evidence that also a modest weight loss, induced by dietary inter-

ventions,5,6 physical exercise,7,8 and drugs and bariatric surgery

procedures,9,10 is capable of significantly reducing T2DM risk and

improving glycemic control.
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2 | THE CAUSAL LINK BETWEEN OBESITY
AND TYPE 2 DIABETES

Genome‐wide association scans (GWAS) and candidate gene

approaches have so far identified ∼40 genes associated with T2DM

and a similar number, but different, with obesity.11,12 Most of T2DM

genes appear related to β‐cell dysfunction, with many fewer involved

in pathways related to insulin resistance independent of adiposity.13

However, the identified genes are estimated to predict only 15% of

T2DM.14 This low predictive power may reflect the importance of

environmental factors and epigenetic or gene‐environment interac-

tions that are not detected by population genetics‐based methods.

Chronic positive energy balance, by promoting deposition of tri-

glycerides and intermediates of lipid metabolism such as diacylglycerol

and Acyl‐CoA in adipose and non adipose tissues, triggers harmful

cellular responses including activation of inflammatory signalling

pathways, mitochondrial dysfunction, and endoplasmic reticulum and

oxidative stresses.15 This cascade of lipotoxic damage in adipose

tissue recruits and activates immune cells, mainly represented by mac-

rophages, which further increase local inflammation16 and orchestrate

the detrimental adaptive responses of adipose tissue.17 These

responses, collectively with those taking place in the liver and skeletal

muscle, the classical target organs of insulin, contribute to the patho-

genesis of insulin resistance which is the key element of obesity‐

related metabolic derangements.
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Initially, insulin resistance can be overcome by an increased insulin

production by the pancreas, resulting in hyperinsulinemia. Afterwards,

during the progression towards overt T2DM, β‐cell failure to compen-

sate adequately the greater insulin requirements occurs.18-20 The com-

mon dysfunctional β‐cell phenotype in T2DM is characterized by

diminished glucose sensing, increased basal insulin secretion, blunted

first‐phase insulin secretory response to glucose, and increased proin-

sulin:insulin ratios21,22 together with a presumed decrease in insulin

production.21 Having said that β‐cell dysfunction could be primarily

due to genetic or epigenetic predisposing factors, whether this decom-

pensation is part of the obesity‐induced metabolic derangements or

secondary to hyper‐functioning β‐cells is unclear.21,23,24

The influence of obesity on T2DM risk is determined not only by

the degree of obesity but also by distribution of fat mass. Indeed,

whereas abdominal obesity confers an increased risk for T2DM, meta-

bolic syndrome and cardiovascular disease,25 preferential fat accumu-

lation in gluteo‐femoral region confers a lower risk and, as learned

from lipodystrophies, may be even protective.26,27 In addition, there

are numerous ectopic fat depots that may serve specialized functions

related to their neighbouring tissues,28-31 playing an emerging local

pathophysiological role in obesity complications.
3 | ECTOPIC LIPIDS

As previously mentioned, when obesity develops and the circulating

lipids exceed storage and metabolic capacity of adipose tissue, a pro-

gressive and abnormal retention of lipids within non‐adipose tissues

occurs. This process, termed “steatosis”,32 may involve liver, heart,

skeletal muscle and pancreas.33 Lipid droplets accumulate in the cyto-

plasm of cells, thus leading to cell dysfunction or death, a phenomenon

called lipotoxicity.34

In human studies, intrahepatic and intramyocellular lipid content

emerged as much stronger predictors of insulin resistance than circu-

lating fatty acids, suggesting that intracellular lipids may impair insulin

signalling and therefore cause insulin resistance.35 Similarly, accumula-

tion of fat in the heart has been associated with cardiac dysfunction

and heart failure,36 possibly contributing to diabetic cardiomyopathy

development.37

Lipid accumulation can occur by increased uptake of FFAs,

increased synthesis within the tissue involved, or reduced FFAs oxida-

tion/disposal, although the relative contribution of these factors may

vary in different physiological states and tissues.38
4 | NONALCOHOLIC FATTY PANCREAS
DISEASE

Ogilvie coined the term “pancreatic lipomatosis” to describe the exces-

sive storage of fat in pancreatic tissue in his human post mortem study.

Thereafter, owing to the lack of distinction between the lipid accumu-

lation within acinar and β‐cells and intra‐pancreatic adipocyte infiltra-

tion, the accumulation of fat in the pancreatic gland has been

referred to using various synonyms, including pancreatic lipomatosis,

pancreatic steatosis, fatty replacement, fatty infiltration, fatty
pancreas, lipomatous pseudohypertrophy, and nonalcoholic fatty pan-

creas disease (NAFPD).39

Because pancreatic steatosis also occurs in nonobese individuals

(that is, patients with cystic fibrosis, iron overload, viral infections,

chemotherapy, and chronic alcohol abuse),39,40 Smits and van Geenen

proposed that the term “NAFPD” should be reserved for pancreatic

steatosis associated with obesity and metabolic syndrome,40 condition

possibly reversed by weight reduction or appropriate medications.41,42

On the other hand, the term “fatty replacement” should be used for

those conditions that lead to acinar cell death and irreversible replace-

ment by adipocytes.40,43

From an epidemiologic perspective, few studies aimed to estimate

the prevalence of NAFPD, which ranges from 16% and 35% in Asian

populations.44-46 However, owing to the lack of clear definitions as

well as of standard diagnostic tools, the prevalence of NAFPD in

general population is so far unknown.47
4.1 | Histology and imaging techniques

Intracellular lipid accumulation can be demonstrated in exocrine

parenchyma and islet cells by immunohistochemistry or electron

microscopy.48,49 However, because the histological examination needs

biopsy and can be also hampered by grading errors due to the irregular

accumulation of pancreatic fat,50 pancreatic steatosis is most

commonly diagnosed by means of imaging techniques.

Pancreatic steatosis presents as hyperechogenic at ultrasonogra-

phy, but especially in obese patients, the pancreas is not always easily

visible with this technique. In addition, pancreatic fibrosis has similar

ultrasonographic features, which preclude the routine use of ultraso-

nography as a screening tool for lipid deposition in the pancreas.51

Computed tomography (CT) with or without contrast can also be

used. The density of steatotic pancreas is similar to adipose tissue on

CT scan, and the amount of pancreatic fat can be measured using

Hounsfield units, correlated to the spleen, although no cutoff points

have been defined yet.52

Several magnetic resonance imaging (MRI) methods have been

proposed to measure lipids in the pancreas, such as phase‐opposed

phase, Dixon method, the spectral‐spatial excitation techniques,53,54

and, more recently, the 3‐dimensional fat‐water MRI method.55

However, proton magnetic resonance spectroscopy (1H‐MRS) is the

current gold standard for noninvasive quantification of pancreatic

triacylglycerol content, being almost equivalent to histology and

biochemical measurements for in vivo use.56 However, MRI and

1H‐MRS still have some limitations, including high cost, long scan-

ning time, and susceptibility to magnetic resonance chemical shift

artefact due to the surrounding visceral fat.57 In addition, sensitivity

and specificity for the detection of pancreatic steatosis with these

imaging techniques have not been determined yet.
4.2 | Pathophysiology

Animal model studies have shown that maternal obesity throughout

pregnancy and lactation can induce a significant increase in markers

indicative of a NAFPD phenotype,58 which only become evident when
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offspring are subsequently challenged by a post‐weaning obesogenic

diet, suggesting a priming effect of maternal obesity.59

In human studies, pancreatic fat content has been closely associ-

ated with increasing BMI, insulin resistance, metabolic syndrome, and

hepatic fat content.44 Whereas NAFPD frequently coexists with

NAFLD,60 the association between NAFPD and visceral adiposity has

been found in some61,62 but not all63 studies. The relationship

between pancreatic fat content and visceral fat seems influenced by

ethnicity, resulting stronger in Hispanics than African Americans.61

Of note, the pancreas seems to be more susceptible to fat deposi-

tion compared with the liver. In fact, 15 weeks of high‐fat diet deter-

mined a 5‐fold greater fat accumulation in pancreas compared with

the liver in mice,48 and accordingly, in human obesity, the proportion

of fat was found to be higher in the pancreas than in skeletal muscle

and liver.54

Also, increasing age has been associated with pancreatic steatosis.

Saisho et al have found that pancreatic fat content linearly increased

with age throughout childhood and reached a plateau until the age of

~50 years.64 In multiple regression analyses, the variance of pancreas

lipid content explained by gender and visceral adipose tissue measured

with MRI was 59.2%.62 In addition, men have a higher pancreatic fat

content compared with BMI‐matched women62 and the highest prev-

alence of NAFPD at the age of 40 to 49 years, while the prevalence of

NAFPD in women was very low until menopause.65 This suggests that

aging and hormonal changes have relevance to the development of

NAFPD, although confirmatory studies are needed.

The accumulation of triglycerides may occur in pancreatic paren-

chymal tissue63 with an almost identical distribution in the exocrine

and endocrine pancreas66 or in adipocytes,67 so that 1H‐MRS

measurements of lipids in the whole pancreas have been proposed as

a surrogate marker for islet lipids.66 Nevertheless, the intracellular lipid

accumulation has been described to precede the adipocyte infiltra-

tion.66 On the other hand, according to other authors, fat deposition

in the human pancreas appears to occur mainly in interlobular septa,

rather than in cells.68,69 Whether leukocyte infiltration accompanies

pancreatic steatosis is also still controversial.43,60

The potential sources of lipids accumulating in the pancreas may

be represented by circulating FFAs, de novo lipogenesis, and dietary
FIGURE 1 Pathophysiology and clinical consequences of nonalcoholic fat
owing to obesity and metabolic syndrome. Abbreviation: NAFPD, nonalcoh
fat intakes. Phospholipids turnover could also provide a source of

extracellular FFAs.
5 | NAFPD AND TYPE 2 DIABETES

Some cross‐sectional studies have shown that subjects with T2DM

have an increased MRS‐measured or MRI‐measured pancreatic fat

content compared with non‐diabetics63,70,71 and that, in turn, subjects

with NAFPD a higher proportion of T2DM than non‐NAFPD group.44

In addition, NAFPD has been found associated with T2DM indepen-

dent of adiposity and other cardiometabolic risk factors,72 suggesting

that NAFPD might represent an additional factor other than NAFLD

able to deteriorate glucose metabolism (Figure 1).

By contrast, others observed no difference in pancreatic fat mea-

sured by histology at autopsy or CT scans64 in relation to the presence

of T2DM.

However, most studies were cross‐sectional. To our best knowl-

edge, the so far only one 5‐year retrospective cohort study examining

the longitudinal effects of pancreatic steatosis on incident T2DM in

Japanese population. In this study, the association between pancreatic

steatosis and increased incidence of T2DM disappeared after adjust-

ment for potential confounders including BMI and liver attenuation,73

even if it remains to be elucidated whether these findings could be

observed in longer follow‐up and in other ethnic groups.
5.1 | NAFPD and insulin resistance

Obesity represents a common pathway for the development of

NAFPD, NAFLD, and T2DM.

Concurrence of fatty pancreas and fatty liver at ultrasonography

was found in 67.9% of subjects, with a negative predictive value of

NAFLD in normal pancreas of 96.4%.74 Even in obese paediatric

population, approximately 50% of patients with NAFLD and 80% of

biopsy‐proven nonalcoholic steatohepatitis concurrently had

NAFPD.75 The positive correlation of NAFLD and fatty pancreas was

also demonstrated in autopsy60 or 1H‐MRS studies.76 In addition,

subjects with fatty pancreas presented a more advanced form of liver
ty pancreas disease, term reserved to accumulation of pancreatic fat
olic fatty pancreas disease
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disease (reflected by higher values of fibrosis, ballooning and NAFLD

Activity Score) compared with the group without NAFPD.75

The homeostasis model assessment‐ (HOMA‐IR) and euglycemic

clamp‐based estimates of insulin resistance were found positively cor-

related with the severity of NAFPD74,77 in patients with impaired

fasting glucose (IFG) and/or impaired glucose tolerance (IGT), whereas

few others did not confirm these relationships in obese

individuals.61,62

Similarly, whether the association between NAFPD and insulin

resistance and glucose metabolism is independent of obesity and non-

alcoholic fatty liver disease is still debated. However, whereas in a

community cohort study the pancreatic fat content remained signifi-

cantly associated with HOMA‐IR even after adjusting for liver fat and

BMI,65 in a multivariate logistic regression analysis, this association dis-

appeared after further adjustment for visceral fat,74 suggesting that

the latter, rather than overall adiposity or pancreatic fat, does mediate

the association between NAFPD and insulin resistance. In this light,

NAFPD would be just part of a cluster of abnormalities during the

course of obesity.
5.2 | NAFPD and β‐cell dysfunction

Several in vitro and animal studies have indicated that fatty infiltration

of the pancreas contributes to a loss of β‐cell mass and function.78,79 In

rats, chronic exposure to high‐fat diet was capable of inducing an acute

inflammatory response and both acinar and islets cells damage by

increasing pancreatic FFAs content.80 Accordingly, in obese Zucker

prediabetic rats, the triacylglycerol content of islets preceded the

development of T2DM.66

In human studies, pancreatic steatosis appears to be present and

the amount of pancreatic fat an even stronger determinant of OGTT‐,

but not hyperglycemic clamp‐,77 derived measures of impaired insulin

secretion56 than visceral fat in patients with IFG and IGT. Similarly,

pancreatic lipid content, as measured by 1H‐MRS, was negatively

associated with oral glucose tolerance test‐based measures of insulin

secretion in obese nondiabetic adults,63 even if Le et al failed to con-

firm this correlation in obese normoglycemic adolescents,61 possibly

due to more heterogeneous stages in the progression of β‐cell failure

in young compared with older adults.63 In fact, in children with a rare

mutation in carboxyl‐ester lipase, pancreatic steatosis reflects early

events in the pathogenesis of diabetes.
Although, as said, many authors have emphasized an upward trend

in pancreatic fat content during the progression of diabetic state,81,82

the majority of the studies could not demonstrate associations

between NAFPD and overt T2DM.63,64 In line with this, no relation-

ship between pancreatic fat and the first phase insulin response to oral

glucose challenge was found regardless of glucose tolerance status.83

Therefore, on the basis of current evidence, several authors conclude

that pancreatic steatosis is probably not a cause of lipotoxicity in

pancreatic β‐cells, but merely a marker of β‐cell dysfunction.33,40,84

In this context, as explanation for the lack of association

between pancreatic fat and β‐cell dysfunction in diabetic patients, it

has been theorized that once T2DM occurs, other factors

superimposing the effect of pancreatic steatosis may rather account

for the progressive decline in β‐cell function.63 Namely, owing to many

deleterious cascades, including oxidative stress, inflammation, apopto-

sis, and islets hypoperfusion, deterioration of β‐cell functioning may

develop at a rate disproportional to that of pancreatic fat accumula-

tion.63 Instead, in prediabetes, lipid metabolites and adipocyte secre-

tory products,85 whose concentration is likely high in the proximity

of the islets, could contribute more blatantly to the progression of

β‐cell dysfunction (Figure 2).

Regardless of the causality issue, in the effort to find an explana-

tion for the higher pancreatic fat content observed in diabetics relative

to nondiabetics, it has been postulated that, once diabetes develops,

fatty replacement of damaged tissue may contribute to the extra‐islet

pancreatic fat deposition.63 Alternatively, the increased levels of

malonyl coenzyme A caused by hyperglycemia may inhibit carnitine

palmitoyltransferase 1, decreasing mitochondrial β oxidation and, thus,

further stimulating intracellular lipid accumulation86 (Figure 3).
6 | OTHER POTENTIAL CLINICAL
CONSEQUENCES OF NAFPD

As suggested by prospective observational studies investigating the

association between obesity and pancreatic cancer,87 NAFPD may

promote pancreatic cancer via steatopancreatitis (NASP) and pancre-

atic fibrosis, a concept analogous to nonalcoholic fatty liver disease

which can cause hepatic cancer via steatohepatitis and hepatic cirrho-

sis.88 The observation that fat mass is markedly greater in pancreatic

tumours of obese mice than in lean mice supports this hypothesis.89
FIGURE 2 It has been theorized that once
T2DM occurs, the activation of many
deleterious cascades superimposing the effect
of pancreatic NAFPD mostly account for the
progressive decline in β‐cell function, which,
indeed, because then appears to develop at a
rate disproportional to that of pancreatic fat
accumulation. Abbreviation: NAFPD,
nonalcoholic fatty pancreas disease



FIGURE 3 Putative interplay between nonalcoholic fatty pancreas disease and insulin resistance and β‐cell dysfunction. During long‐term positive
energy balance, dietary fatty acids and hyperinsulinemia stimulate hepatic steatosis (NAFLD), leading to increased production and secretion of
very‐low‐density lipoprotein (VLDL), which will increase free fatty acid (FFAs) delivery to pancreatic islets. Insulin resistance also enhances FFAs
release from adipose tissue, further increasing circulating FFAs. In β‐cells, chronic exposure to elevated FFAs results in increased intracellular
triacylglycerol content, decreased insulin gene expression, and blunted glucose‐stimulated insulin secretion. In addition, hyperglycemia inhibits
carnitinine‐palmitoyl transferase‐1 (CPT‐1) via increasing malonyl coenzyme A (malonyl CoA), thus decreasing mitochondria β‐oxidation and further
promoting intracellular triglyceride (TG) accumulation. This, together with adipocyte‐derived inflammatory adipocitokines, contributes to β‐cell
destruction, further blunting insulin secretion. Abbreviations: CPT‐1, carnitinine‐palmitoyl transferase‐1; DG, diglycerides; FFAs, free fatty acids;
PA, phosphatidic acid; TCA, tricarboxylic acid; TG, triglycerides; VLDL, very‐low‐density lipoprotein. Modified from Yu and Wang47
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However, whether pancreatic fibrosis, which can give rise to pancre-

atic cancer, is primarily caused by NASP or whether pancreatic cancer

causes fibrosis owing to duct obstruction is unknown.

Nevertheless, in patients with pancreatic cancer, pancreatic

steatosis appears to facilitate its dissemination and increases the

lethality of the disease.67

Fatty pancreas may also exacerbate the severity of acute pancre-

atitis,40 in line with the notion that obesity is associated with develop-

ing organ failure,90 local complications,91 and increased mortality in

patients with pancreatitis.92 This may occur possibly through the

secretion of toxic fats and adipocitokines by pancreatic adipocytes,

which create an inflammatory milieu in the pancreas, making this organ

more susceptible to pancreatitis.93

Finally, pancreatic steatosis is also a risk factor for the develop-

ment of pancreatic fistula after pancreatic surgery94,95 but has been

shown together with obesity itself to increase the yield of pancreatic

islet isolation for transplantation96,97 (Figure 1).
7 | CONCLUSIONS

With the dramatic world‐wide increase in obesity prevalence, NAFPD

has become object of a growing research interest. However, whereas

according to in vitro and animal findings NAFPD may directly contrib-

ute to β‐cell dysfunction in T2DM, current evidence in human studies

remains inconclusive. As summarized by Catanzaro R et al, the 3 major

hypotheses about NAFPD that are still to be proven, or indeed refuted,

by further research are: (1) the increased amount of lipids within

pancreatic β‐cells can cause their dysfunction possibly through a

mechanism of lipotoxicity, at least in subjects with an already impaired

glucose metabolism; (2) intrapancreatic adipocytes may exert a

negative paracrine effect on β‐cells; and (3) NAFPD and T2DM are just

both obesity consequences.98

Because contradictory findings about the relationship between

NAFPD and β‐cell dysfunction may possibly arise from different

methods for assessing pancreatic fat content and β‐cell function, as
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well as from differences in age, ethnicity, and individual

liposusceptibility thresholds, additional longitudinal research is war-

ranted to validate the role NAFPD in the development of T2DM and,

hence, to unravel the underlying pathophysiology.
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