

An API for OntoLex LIME datasets

Manuel Fiorelli, Maria Teresa Pazienza, Armando Stellato

ART Research Group, Dept. of Enterprise Engineering (DII),

University of Rome Tor Vergata

Via del Politecnico, 1, 00133 Rome, Italy

{fiorelli, pazienza}@info.uniroma2.it

stellato@uniroma2.it

Abstract. The OntoLex W3C Community Group published its final report on the

Lexicon Model for Ontologies (lemon) in May 2016, specifying a suite of vocab-

ularies for the linguistic grounding of ontologies and RDF datasets in general.

The Linguistic Metadata (LIME) vocabulary is the lemon module describing

coarse-grained metadata about datasets as a whole, to represent resuming infor-

mation at the level of ontology-lexicon interface. The purpose of this metadata is

to support the understanding and exploitation of available lexical material, and in

the first place to facilitate the discovery of datasets that may be of interest. To-

wards the realization of that vision, we propose an API that supports the manip-

ulation of LIME metadata, as well as its automatic generation by means of a pro-

filer. We discuss the architecture of the API, as well as the main design decisions,

which can inform the development of APIs for other vocabularies.

Keywords: lemon, Ontolex, LIME, Metadata, API

1 Introduction

The OntoLex W3C Community Group published its final report [1] in May 2016 spec-

ifying the Lexicon Model for Ontologies (lemon), a suite of vocabularies (or modules)

that support the grounding of ontologies and RDF datasets in the natural language. The

core module (ontolex) establishes the structure of the ontology-lexicon interface, upon

which the other modules (synsem, decomp, vartrans, lime) provide support for different

linguistic aspects. Our focus is on the LIME [2,3] module for the representation of da-

taset-level metadata about the ontology-lexicon interface. This metadata provides re-

suming information about a dataset, allowing humans and machines to understand

which lexical material is available, and how it can be used to achieve given goals. Ad-

ditionally, LIME metadata can be used to discover relevant datasets. This second aspect

is particularly relevant in the more distributed scenarios foreseen by the OntoLex com-

munity group, such as the one in which the ontology, the lexicon and the lexicalization

set establishing the connection between them are published as separate datasets. In such

a case, LIME metadata ties together these disparate datasets, supporting crawling, in-

dexing and then searching this network of lexicalized datasets.

mailto:%7d@info.uniroma2.it

The realization of that grand vision clearly presupposes the adoption and consistent

use of the LIME vocabulary. As a first step in that direction, we propose an API for the

manipulation and generation of LIME metadata. This API is implemented in Java on

top of the RDF middleware RDF4J [4] (formerly, Sesame). Our work is open source

and made available free of charge on its repository:

https://bitbucket.org/art-uniroma2/lime-api/ (hereafter, we will

refer to commit c1e7492). The API is still under development, but already in a mature

stage and fully usable.

The paper is structured as follows: Section 2 motivates the need for a LIME API,

which is then discussed thoroughly in Section 3. Section 4 evaluates our work. Section

5 discusses related works. Section 6 concludes the paper.

2 Motivation

The OntoLex lemon specification is implemented as a collection of OWL ontologies,

therefore RDF tools and libraries may be sufficient to manage OntoLex lemon data.

However, they represent quite a low-level approach. While these RDF editors can be

required to accomplish some tasks, tools dedicated to lemon can ease common tasks,

and offer a simplified view even for non RDF-experts.

Our LIME API aims at achieving that simplification for the management of LIME

metadata. On the one hand, the use of our API allows for detection of common errors

at compile-time. On the other hand, composition allows expressing complex queries

via the API in a type-safe manner. Conversely, writing a SPARQL query as a string in

a computer program does not benefit from any check by the compiler (misspellings are

quite common) nor from the possibility to compose and reuse existing fragments.

Finally, one of the greatest advantages of a widespread API for a given resource is

the consistency it brings in accessing it, providing further semantics by means of com-

mon use. This aspect is mostly relevant in the LIME profiling component, which gen-

erates metadata about a dataset by inspecting it. An agreed implementation of the stand-

ard can thus guarantee that everybody computes the metadata in the same manner.

3 LIME API

The LIME API consists of different layers providing assistance at progressively higher

levels of abstraction. At the lowest level, a set of vocabulary classes define constants

for the IRI defined by the OntoLex lemon specification, which can be used in a program

in place of hardcoded strings (mitigating the risk of misspellings). Then a repository

(connection) wrapper decorates the RDF4J API with operations tailored to the manip-

ulation of LIME objects. At the highest level, the profiler disburdens the user from

writing LIME metadata, by generating it automatically.

https://bitbucket.org/art-uniroma2/lime-api/

3.1 Vocabulary Classes

A first basic contribution of our API is a collection of vocabulary classes that provide

constants for the IRIs defined by the OntoLex lemon specification. These vocabulary

classes are alike the ones shipped by RDF4J for popular vocabularies.

The code in Fig. 1 provides an excerpt of the vocabulary class for the LIME module.

These classes can be used in place of hand-written IRIs to manipulate RDF statements

via RDF4J APIs such as the RepositoryConnection and Model APIs. In the fragment

below we use the LIME vocabulary class for retrieving instances of the class

lime:Lexicon:

Set<Resource> lexicons = QueryResults.asModel(

 conn.getStatements(null, RDF.TYPE, LIME.LEXICON)).subjects();

These vocabulary classes benefit developers with code completions and, to a limited

extent, with static code checking: indeed, a misspelling in a constant identifier (e.g.

LIME.LEXICON) is recognized as a compile-time error. Conversely, an error in a

string literal (e.g. “http://www.w3.org/ns/lemon/lime#Lexicon”) does

not produce a compile-time error, and usually manifests itself in the form of runtime

failures (which have to be traced back to the causing defect in the source code). Re-

garding the last aspect, it is worth to notice that our vocabulary classes were generated

automatically directly form the ontologies accompanying the OntoLex specification,

by means of a small utility we developed for that purpose.

3.2 Repository (Connection) Wrappers

While discussing the vocabulary classes, we presented a small fragment of code for

retrieving all lexicons described in a metadata file. Fragments such as that one clearly

express some information need that is generic enough to be turned into a first-class

operation of our API.

To that end we developed a connection wrapper that decorates a plain RDF4J con-

nection to an RDF Repository with specific operations for the LIME vocabulary.

public class LIME {

 public static final String NAMESPACE =

 "http://www.w3.org/ns/lemon/lime#";

 public static final String PREFIX = "lime";

 public static final Namespace NS =

 new SimpleNamespace(PREFIX, NAMESPACE);

 public static final IRI CONCEPTUALIZATION_SET;

 // ...

}

Fig. 1. An excerpt of code of the static fields describing the LIME vocabulary

http://www.w3.org/ns/lemon/lime

Additionally, we provided a repository wrapper that overrides the operation Re-

pository#getConnection() to return a wrapper around a connection created by

the delegate repository. The code fragment below demonstrates the creation of a repos-

itory wrapper, which is then used to obtain a connection wrapper.

LIMERepositoryWrapper repoWrapper =

 new LIMERepositoryWrapper(repository);

LIMERepositoryConnectionWrapper connWrapper =

 repoWrapper.getConnection();

The connection wrapper exposes an operation to retrieve all lexicons:

Collection<Resource> lexicons =

 QueryResults.asList(connWrapper.getLexicons());

Homogeneously with similar operators in RDF4J, the method getLexicons()

returns an iterator-like object. The class QueryResults can be used to fetch all val-

ues from this iterator, and put them into an ordinary Java collection. We defined similar

operations for retrieving lexicalization sets, concept sets, conceptualization sets and

lexical linksets.

One advantage of APIs over the direct of use a query language such as SPARQL is

their composability, in the sense that the result of an API invocation can be processed

through other APIs. While useful for rapid prototyping, this approach has the known

downside of performing badly as the size of the data increases. The reason is that the

composition is performed by the client program, losing the optimizations implemented

by a query engine.

Let us consider how the operations above can be used to retrieve lexicalization sets

for a given reference dataset and language. Firstly, one would obtain an iterator over

all lexicalization sets, and then for each one check (with a separate API invocation) its

language and reference dataset. This algorithm clearly requires a number of API calls

proportional to the number of available lexicalization sets. Moreover, when the repos-

itory connection is accessing a remote dataset, each invocation entails a network round-

trip-time and the transmission of potentially irrelevant data (i.e. every lexicalization set

not matching the user criterion).

Alternatively, one could write just one SPARQL query and move the entire compu-

tation to the query engine, which would return only the relevant data. However, this

approach is not compositional, and does not benefit from compile-time checks. Actu-

ally, if an information need is sufficiently recurring, it can be reasonable to promote the

associated SPARQL query to a new operation in the API.

Nonetheless, in our API we reconcile compositionality and efficiency, by allowing

the user to specify as Java code complex matching conditions that are then translated

into a SPARQL query for efficient execution.

Our design was inspired by the library Hamcrest [5], which supports the declarative

definition of intents for unit tests. Following its approach, we implemented an embed-

ded domain-specific language, which is supported by a number of class methods that

instantiate matchers. In the examples below, we assume that the user has statically im-

ported such methods, so that they can be used without mentioning the defining class

(i.e. LIMEMatchers)

 The fragment below shows how to retrieve lexicalization sets matching the afore-

mentioned conditions on reference dataset and language:

Collection<Resource> lexicalizationSets =

 QueryResults.asList(conn.getLexicalizationSets(

 suchThat(

 language("en"),

 referenceDataset("http://example.org/referenceDataset1")

)));

The API invocation above produces the following SPARQL query, which corre-

sponds to the user’s expressed information need:

SELECT ?v0 WHERE {

 ?v0 a lime:LexicalizationSet .

 ?v0 lime:language "en" .

 ?v0 lime:referenceDataset

 <http://example.org/referenceDataset1> .

}

The method getLexicalizationSets expects a Matcher<? super Lexi-

calizationSet> producing the SPARQL fragment expressing the desired selection

criterion over lexicalization sets. Matcher is a generic interface, which can be instan-

tiated with a Java type representing the class of resources over which the criterion is

defined. The interface LexicalizationSet in the example is just one of the inter-

faces we defined to represent the classes in the LIME vocabulary. Following the exam-

ple of the Guava library [6] by Google, the operation getLexicalizationSets

uses the super keyword to express a lower bound on the type parameter in the instan-

tiation of Matcher: specifically, it accepts a matcher over lexicalization sets and any

of its super classes. To illustrate the rationale, consider matchers like functions taking

an instance of a given type, say Dataset (i.e. in the sense specified by VoID [7]). In our

example, we have a stream of lexicalization sets, which are a kind of dataset, and thus

we can apply a matcher for datasets. Conversely, given a stream of datasets, we are not

guaranteed that they are lexicalization sets and thus that a matcher over lexicalization

sets is sensible. It is worth to notice that these constraints are not strictly necessary, as

a matcher could simply reject an illegal argument. However, they are useful in practice,

forcing the user to write conditions that conform to the domain and range restrictions

expressed in the ontology. The methods language and referenceDataset in-

stantiate matchers that test whether the resource under evaluation (a lexicalization set

in our case) has the given value for the eponym property (in the LIME namespace).

Since the domain of these properties is the union of different classes, we introduced a

number of super interfaces, corresponding to different class unions. For example, lan-

guage produces a Matcher<LexicalizationSetOrLexicon>, where Lex-

http://example.org/referenceDataset1

icalizationSetOrLexicon subsumes both LexicalizationSet and Lex-

icon. Finally, the method suchThat produces a matcher that is the conjunction of

the matchers passed as arguments.

Our information need can be made even more complex, for example by requesting

conceptualization sets with an average ambiguity less than 0.5 for an English lexicon

the subject of which is agriculture, as for the example in Fig. 2

The fact that we push the comparison down into the SPARQL query, allows us to

take advantage of the optimizations that some triple stores implement (e.g. GraphDB:

http://graphdb.ontotext.com/documentation/free/storage.ht

ml#literal-index).

3.3 Profiler

The peak of the contribution of the LIME API is a profiler, which automates the com-

putation of LIME metadata for different scenarios. As already said, the necessity of this

component is determined by the need for a reference implementation of the metrics

defined by the OntoLex specification.

Under the hood, the profiler executes some SPARQL queries on the provided da-

taset, recognizing the main types of dataset defined by LIME. Currently, the profiler is

able to recognize lexicalizations of ontologies and thesauri expressed as RDFS and

SKOS(-XL) labels, as well as using lemon lexical entries.

The behavior of the profiler can be controlled via configuration parameters, as well

as an initial set of LIME metadata, e.g. telling the name and void:uriSpace of

distributed reference datasets not contained in the profiled data. Work is underway to

Collection<Resource> conceptualizationSets = QueryResults

 .asList(conn.getConceptualizationSets(

 suchThat(

 avgAmbiguity(lessThan(0.5)), lexiconDataset(

 suchThat(language("en"),hasProperty(DCTERMS.SUBJECT,

 vf.createIRI(

 "http://dbpedia.org/resource/Agriculture")

))

)

)

));

SELECT ?v0 {

 ?v0 rdf:type lime:ConceptualizationSet .

 ?v0 lime:avgAmbiguity ?v1 .

 FILTER(?v1 < "0.5"^^xsd:decimal)

 ?v0 lime:lexiconDataset ?v2 .

 ?v2 lime:language "en" .

 ?v2 dct:subject <http://dbpedia.org/resource/Agriculture> .

}

Fig. 2. A complex query expressed in the LIME API and its equivalent SPARQL code

complete the support for other dataset types defined in lemon, e.g. concept sets, con-

ceptualization sets and lexical linksets.

Fig. 3 reports an excerpt of the metadata generated from a dump of the EuroVoc1

thesaurus. In this scenario, the main dataset coincides with the reference dataset, and a

number of void:subsets correspond to lexicalizations in different natural

languages: for conciseness, we only show the details of the Italian lexicalization set.

Currently, we assume that void:entities in the reference dataset gives the number

of potentially lexicalizable resources, and thus that it can be used to compute

lime:percentage and lime:avgNumOfLexicalizations. In case of

thesauri, we count as entities only concepts, collections and concept schemes. So the

fact that the number of lexicalized references is higher than the number of concepts is

explained by the labels attached to concept schemes. The current implementation of the

profiler does not collapse country-specific variants, and counts lexical entries by

canonical form (altough the specification in some cases seems to suggest to count the

lexical entry resources).

The AGROVOC [8] metadata is already published in the form of an associated VoID

file (linked by all of its resources through the void:inDataset property) that

includes LIME metadata2 produced through (an earlier version of) this API, while

EUROVOC will follow the same publication approach with the next release of its data.

1 http://eurovoc.europa.eu/
2 http://aims.fao.org/aos/agrovoc/void.ttl

@prefix meta: <http://eurovoc.example.org/void.ttl#> .

@prefix base: <http://eurovoc.example.org/void.ttl> .

<> a void:DatasetDescription ;

 foaf:primaryTopic meta:EuroVoc .

meta:EuroVoc a void:Dataset ;

 void:triples 2505003 ;

 dct:conformsTo <http://www.w3.org/2004/02/skos/core> ;

 void:classPartition [void:class skos:Concept ;

 void:entities 7172], … ;

 void:entities 7302 ;

 void:subset meta:EuroVoc_mt_lexicalization_set, … .

meta:EuroVoc_mt_lexicalization_set a lime:LexicalizationSet;

 dct:language <http://id.loc.gov/vocabulary/iso639-1/it> ,

 <http://lexvo.org/id/iso639-3/ita> ;

 lime:avgNumOfLexicalizations 2.537 ;

 lime:language "it" ;

 lime:lexicalizationModel <http://www.w3.org/2008/05/skos-

xl> ;

 lime:lexicalizations 18521;

 lime:percentage 0.997 ;

 lime:referenceDataset meta:EuroVoc ;

 lime:references 7273 .

Fig. 3. An excerpt of the Lime metadata describing a dump of the EuroVoc thesaurus

http://eurovoc.europa.eu/
http://eurovoc.example.org/void.ttl
http://eurovoc.example.org/void.ttl

4 Evaluation

Our primary means for evaluating the LIME API was a set of unit tests accompanying

its source code. Concerning the repository (connection) wrapper, the unit tests allowed

us to spot a number of programming errors, which would have prevented some combi-

nation of conditions. The relevance of unit tests for the profiler is instead determined

by their ability to function as an executable specification of what is the expected

metadata for different dataset types. These tests verify that the profiler meets its speci-

fication, while their small size allows manual computation and verification of the sta-

tistics, so that we can ascertain the correctness of the specification, and ultimately val-

idate our software. We hope that a few people knowledgeable about lemon will verify

by hand these test cases, thus strengthening our confidence in the correctness of the

profiles, especially when the profiler is applied to datasets sufficiently large that verifi-

cation by hand is almost impossible. We believe that the efficiency gain of our approach

to API composition has already been supported convincingly, while the scalability of

the profiler required some empirical verification. To that end, we considered two very

large thesauri encoded in SKOS: AGROVOC and EuroVoc. We performed the exper-

iments on a Notebook equipped with an Intel(R) Core(TM) i7-3630QM CPU @

2.40GHz, 24 GB of RAM DDR3 1600 MHz, Windows Home 10 64bit operating sys-

tem and Oracle JDK 8 (build 1.8.0_121-b13). Table 1 reports the total required time,

as well as its break out into time to load the data and time to produce the metadata.

5 Related Works

Our LIME API is similar in purpose to existing APIs for lemon, such the one [9] de-

veloped in the context of the Monnet Project and the one [10] developed as part of a

PhD thesis on the automatic lexicon generation system M-ATOLL [11].

Both the M-ATOLL and the Monnet lemon API define an object-oriented model

corresponding to the (Monnet) lemon ontology. However, they differ in how they im-

plement that model. The M-ATOLL API uses the RDF middleware Apache Jena

[12,13] as a means to read/write an in-memory representation of the ontology lexicon.

Table 1. Results of the empirical evaluation on two thesauri. Timings are based on a single run.

 AGROVOC EuroVoc

Time to load data (ms) 68044 42667

Time to profile (ms) 3622 2354

Total time (ms) 71666 45021

Triples 4800064 2505003

Schemes / Concepts / Collections 2 / 32721 / 0 130 / 7172 / 0

Lexicalizations 649498 389539

Languages 32 30

Crucially, they adopt a white-listing or pull approach, so that only known properties

from the RDF input are loaded into memory and thus can be accessed through the API.

In a certain sense, this approach misses the opportunity offered by RDF to use and

combine different vocabularies together. Conversely, our repository (connection)

wrapper is an extension of the RDF4J API: therefore, our convenience methods can be

combined freely with low-level RDF operations, and it is even possible to use SPARQL

as a query language. With this regard, the Monnet API is more similar to our LIME

API, since the object-model can be implemented as a view over a (remote) RDF dataset.

Moreover, they allow to retrieve resources of interest based on the evaluation of arbi-

trary SPARQL queries. To our knowledge, however, the API does not offer any facility

– as our LIME API does – to compositionally assemble these queries, which must be

represented as strings.

The profiling module for the automatic generation of LIME metadata is related to

works on dataset analytics. With this regard, LODStats [14] is an extensible framework

for dataset analytics, which supports the efficient computation of different statistics.

They designed a formalism for the explicit representation of these statistics, aiming at

understandability and semantic clarity. We pursued these goals, by implementing the

profiler as a collection of SPARQL queries. Conversely, LODStats traded the expres-

sivity of full-graph patterns for a more lightweight formalism that was better suited to

stream processing. LODStats needs this level of scalability, since it has been deployed

as a publicly-accessible service providing statistics on an as-big-as-possible portion of

the Linked Open Data cloud. Currently, we target smaller-scale deployments, related

to a few datasets under the control of the same publisher. In this scenario, the publisher

is likely to have already loaded these datasets into a triple store capable of executing

SPARQL queries. Indeed, our evaluation on two real-world thesauri showed that pro-

filing is a heavy but doable activity.

A related use case is the integration of the profiler into an RDF/ontology/thesaurus

editor as a means to better understand the dataset being edited from the perspective of

available lexical material. Current support for statistics inside editors is limited to

lower-level structural characteristics. TopBraid Composer [15] reports the number of

triples and the number of instances per meta-class (i.e. classes defined by the ontology

vocabulary, such as owl:Class) and per domain class. Furthermore, it differentiates

between local, imported and inferred entities. VoID defines the property void:tri-

ples to represent the number of triples in a dataset, while instances of different meta-

classes can be represented via different void:classPartitions. Unfortunately,

the distinction between local, imported and inferred is not easy to capture. The number

of local classes and properties can be represented more succinctly via the VOAF [16]

vocabulary, utilized by the Linked Open Vocabularies [17] (LOV) project. However,

there is a semantic mismatch, because VOAF ignores deprecated classes and properties,

whereas TopBraid does not. It is interesting to observe that similarly to what we did,

the documentation of VOAF associates its metadata vocabulary with SPARQL queries,

as a sort of operational definition. Protégé [18] (in the specific, version 5.1.0) computes

a number of ontology metrics, which are essentially counts over different types of on-

tology axioms. An interesting feature is the computation of the DL expressivity, i.e. the

specific language in the DL family used in the ontology.

The aforementioned LODStats and LOV already report languages used in a dataset.

However, they do not fulfill the needs of the OntoLex community for a mechanism to

discover related but independently published lexical material. In fact, LOV supports

this interlinking at the level of vocabularies, by making explicit the relationships be-

tween vocabularies and their use in datasets.

6 Conclusions and Future Works

As we envisaged [19] in the context of ontology mediation, lexical assets should be

properly published and made findable on the web, in order to be properly exploited for

accomplishing diverse tasks (e.g. discovery, alignment, etc..).

Towards the realization of such a scenario, our work on LIME API intends to foster

the creation of LIME metadata describing lexical assets published on the Semantic

Web. In order to reach end-users, we also aim plan to seamlessly support the use of the

lemon vocabulary in the third version of our thesaurus/ontology editor VocBench [20].

In [21], we have already shown how custom forms support the instantiation of the De-

sign patterns for the ontology-lexicon interface [22] within VocBench. Thanks to the

work presented in this paper, we will also support the production of LIME metadata by

integrating the LIME profiler into VocBench 3.

Concerning the lower levels of the API for data manipulation, we will extend them

with additional operations (in particular, write operations), borrowing and integrating

ideas from previous lemon APIs. Depending on the feedback of the community, we will

also consider to support other lemon modules (starting from the core). Similarly, we

will investigate the usefulness of an extension of the LIME module to support other

lemon modules in addition to the core one.

Acknowledgments. This work has been partially funded by the ISA2 Work Programme

action for the realization of the VocBench 3 collaborative editing platform for ontolo-

gies and thesauri: https://ec.europa.eu/isa2/solutions/vocbench3

References

1. Cimiano, P., McCrae, J.P., Buitelaar, P.: Lexicon Model for Ontologies: Community

Report, 10 May 2016. Community Report, W3C (2016)

https://www.w3.org/2016/05/ontolex/.

2. Fiorelli, M., Pazienza, M.T., Stellato, A.: LIME: Towards a Metadata Module for Ontolex.

In : 2nd Workshop on Linked Data in Linguistics: Representing and Linking lexicons,

terminologies and other language data, Pisa, Italy (2013)

3. Fiorelli, M., Stellato, A., McCrae, J.P., Cimiano, P., Pazienza, M.T.: LIME: the Metadata

Module for OntoLex. In Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux,

P., Zimmermann, A., eds. : The Semantic Web. Latest Advances and New Domains

(Lecture Notes in Computer Science). Proceedings of the 12th Extended Semantic Web

Conference (ESWC 2015), Portoroz, Slovenia, May 31 - 4 June, 2015. 9088. Springer

International Publishing (2015), pp.321-336

4. RDF4J. Available at: http://rdf4j.org/

5. Hamcrest. Available at: http://hamcrest.org/

6. Guava: Google Core Libraries for Java. Available at: https://github.com/google/guava

7. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets with

the VoID Vocabulary (W3C Interest Group Note). In: World Wide Web Consortium

(W3C). (Accessed March 3, 2011) Available at: http://www.w3.org/TR/void/

8. Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y.,

Keizer, J.: The AGROVOC Linked Dataset. Semantic Web Journal 4(3), 341–348 (2013)

9. The Lemon API. In: Monnet Project. Available at:

https://github.com/monnetproject/lemon.api

10. Lemon API. Available at: https://github.com/ag-sc/lemon.api

11. Walter, S.J.: Generation of Multilingual Ontology Lexica with M-ATOLL. Ph.D.

dissertation (2016)

12. Apache Jena. Available at: https://jena.apache.org/

13. McBride, B.: Jena: Implementing the RDF Model and Syntax Specification. In : Semantic

Web Workshop, WWW2001 (2001)

14. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – An Extensible Framework for

High-Performance Dataset Analytics. In ten Teije, A., Völker, J., Handschuh, S.,

Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N., eds. :

Knowledge Engineering and Knowledge Management. Springer, Berlin, Heidelberg (2012),

pp.353-362

15. TopBraid Composer. Available at: http://www.topquadrant.com/tools/ide-topbraid-

composer-maestro-edition/

16. Vocabulary of a Friend (VOAF). Available at: http://purl.org/vocommons/voaf

17. Vandenbussche, P.-Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked Open

Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web. Semantic

Web 8(3), 437--452 (2017)

18. Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu,

S.: The evolution of Protégé-2000: An environment for knowledge-based systems

development. International Journal of Human-Computer Studies 58(1), 89–123 (2003)

Protege.

19. Fiorelli, M., Pazienza, M.T., Stellato, A.: A Meta-data Driven Platform for Semi-automatic

Configuration of Ontology Mediators. In Calzolari, N., Choukri, K., Declerck, T., Loftsson,

H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S., eds. : Proceedings of the

Ninth International Conference on Language Resources and Evaluation (LREC'14),

Reykjavik, Iceland (May 2014)

20. Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo, C., Lorenzetti, T., Keizer,

J., Pazienza, M.T.: VocBench: a Web Application for Collaborative Development of

Multilingual Thesauri. In : The Semantic Web. Latest Advances and New Domains (Lecture

Notes in Computer Science) 9088. Springer International Publishing (2015), pp.38-53

21. Fiorelli, M., Lorenzetti, T., Pazienza, M.T., Stellato, A.: Assessing VocBench Custom

Forms in Supporting Editing of Lemon Datasets. In Gracia, J., Bond, F., McCrae, J.P.,

Buitelaar, P., Chiarcos, C., Hellmann, S., eds. : Language, Data, and Knowledge (Lecture

Notes in Artificial Intelligence) 10318. Springer International Publishing (2017) (in press).

22. McCrae, J.P., Unger, C.: Design Patterns for Engineering the Ontology-Lexicon Interface.

In Buitelaar, P., Cimiano, P., eds. : Towards the Multilingual Semantic Web. Principles,

Methods and Applications. Springer Berlin Heidelberg (2014), pp.15-30

http://rdf4j.org/
http://hamcrest.org/
https://github.com/google/guava
http://www.w3.org/TR/void/
https://github.com/monnetproject/lemon.api
https://github.com/ag-sc/lemon.api
https://jena.apache.org/
http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
http://purl.org/vocommons/voaf

	1 Introduction
	2 Motivation
	3 LIME API
	3.1 Vocabulary Classes
	3.2 Repository (Connection) Wrappers
	3.3 Profiler

	4 Evaluation
	5 Related Works
	6 Conclusions and Future Works
	References

