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Abstract. The OntoLex W3C Community Group published its final report on the 

Lexicon Model for Ontologies (lemon) in May 2016, specifying a suite of vocab-

ularies for the linguistic grounding of ontologies and RDF datasets in general. 

The Linguistic Metadata (LIME) vocabulary is the lemon module describing 

coarse-grained metadata about datasets as a whole, to represent resuming infor-

mation at the level of ontology-lexicon interface. The purpose of this metadata is 

to support the understanding and exploitation of available lexical material, and in 

the first place to facilitate the discovery of datasets that may be of interest. To-

wards the realization of that vision, we propose an API that supports the manip-

ulation of LIME metadata, as well as its automatic generation by means of a pro-

filer. We discuss the architecture of the API, as well as the main design decisions, 

which can inform the development of APIs for other vocabularies. 
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1 Introduction 

The OntoLex W3C Community Group published its final report [1] in May 2016 spec-

ifying the Lexicon Model for Ontologies (lemon), a suite of vocabularies (or modules) 

that support the grounding of ontologies and RDF datasets in the natural language. The 

core module (ontolex) establishes the structure of the ontology-lexicon interface, upon 

which the other modules (synsem, decomp, vartrans, lime) provide support for different 

linguistic aspects. Our focus is on the LIME [2,3] module for the representation of da-

taset-level metadata about the ontology-lexicon interface. This metadata provides re-

suming information about a dataset, allowing humans and machines to understand 

which lexical material is available, and how it can be used to achieve given goals. Ad-

ditionally, LIME metadata can be used to discover relevant datasets. This second aspect 

is particularly relevant in the more distributed scenarios foreseen by the OntoLex com-

munity group, such as the one in which the ontology, the lexicon and the lexicalization 

set establishing the connection between them are published as separate datasets. In such 

a case, LIME metadata ties together these disparate datasets, supporting crawling, in-

dexing and then searching this network of lexicalized datasets. 
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The realization of that grand vision clearly presupposes the adoption and consistent 

use of the LIME vocabulary. As a first step in that direction, we propose an API for the 

manipulation and generation of LIME metadata. This API is implemented in Java on 

top of the RDF middleware RDF4J [4] (formerly, Sesame). Our work is open source 

and made available free of charge on its repository: 

https://bitbucket.org/art-uniroma2/lime-api/ (hereafter, we will 

refer to commit c1e7492). The API is still under development, but already in a mature 

stage and fully usable. 

The paper is structured as follows:  Section 2 motivates the need for a LIME API, 

which is then discussed thoroughly in Section 3. Section 4 evaluates our work. Section 

5 discusses related works. Section 6 concludes the paper. 

2 Motivation 

The OntoLex lemon specification is implemented as a collection of OWL ontologies, 

therefore RDF tools and libraries may be sufficient to manage OntoLex lemon data. 

However, they represent quite a low-level approach. While these RDF editors can be 

required to accomplish some tasks, tools dedicated to lemon can ease common tasks, 

and offer a simplified view even for non RDF-experts.  

Our LIME API aims at achieving that simplification for the management of LIME 

metadata. On the one hand, the use of our API allows for detection of common errors 

at compile-time. On the other hand, composition allows expressing complex queries 

via the API in a type-safe manner. Conversely, writing a SPARQL query as a string in 

a computer program does not benefit from any check by the compiler (misspellings are 

quite common) nor from the possibility to compose and reuse existing fragments.  

Finally, one of the greatest advantages of a widespread API for a given resource is 

the consistency it brings in accessing it, providing further semantics by means of com-

mon use. This aspect is mostly relevant in the LIME profiling component, which gen-

erates metadata about a dataset by inspecting it. An agreed implementation of the stand-

ard can thus guarantee that everybody computes the metadata in the same manner. 

3 LIME API 

The LIME API consists of different layers providing assistance at progressively higher 

levels of abstraction. At the lowest level, a set of vocabulary classes define constants 

for the IRI defined by the OntoLex lemon specification, which can be used in a program 

in place of hardcoded strings (mitigating the risk of misspellings). Then a repository 

(connection) wrapper decorates the RDF4J API with operations tailored to the manip-

ulation of LIME objects. At the highest level, the profiler disburdens the user from 

writing LIME metadata, by generating it automatically. 
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3.1 Vocabulary Classes 

A first basic contribution of our API is a collection of vocabulary classes that provide 

constants for the IRIs defined by the OntoLex lemon specification. These vocabulary 

classes are alike the ones shipped by RDF4J for popular vocabularies. 

The code in Fig. 1 provides an excerpt of the vocabulary class for the LIME module. 

These classes can be used in place of hand-written IRIs to manipulate RDF statements 

via RDF4J APIs such as the RepositoryConnection and Model APIs. In the fragment 

below we use the LIME vocabulary class for retrieving instances of the class 

lime:Lexicon: 

Set<Resource> lexicons = QueryResults.asModel( 

 conn.getStatements(null, RDF.TYPE, LIME.LEXICON)).subjects(); 

These vocabulary classes benefit developers with code completions and, to a limited 

extent, with static code checking: indeed, a misspelling in a constant identifier (e.g. 

LIME.LEXICON) is recognized as a compile-time error. Conversely, an error in a 

string literal (e.g. “http://www.w3.org/ns/lemon/lime#Lexicon”) does 

not produce a compile-time error, and usually manifests itself in the form of runtime 

failures (which have to be traced back to the causing defect in the source code). Re-

garding the last aspect, it is worth to notice that our vocabulary classes were generated 

automatically directly form the ontologies accompanying the OntoLex specification, 

by means of a small utility we developed for that purpose. 

3.2 Repository (Connection) Wrappers 

While discussing the vocabulary classes, we presented a small fragment of code for 

retrieving all lexicons described in a metadata file. Fragments such as that one clearly 

express some information need that is generic enough to be turned into a first-class 

operation of our API. 

To that end we developed a connection wrapper that decorates a plain RDF4J con-

nection to an RDF Repository with specific operations for the LIME vocabulary. 

public class LIME { 

 

 public static final String NAMESPACE =          

           "http://www.w3.org/ns/lemon/lime#"; 

 

 public static final String PREFIX = "lime"; 

 

 public static final Namespace NS =  

                  new SimpleNamespace(PREFIX, NAMESPACE); 

 

 public static final IRI CONCEPTUALIZATION_SET; 

 

 // ... 

} 

Fig. 1. An excerpt of code of the static fields describing the LIME vocabulary 
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Additionally, we provided a repository wrapper that overrides the operation Re-

pository#getConnection() to return a wrapper around a connection created by 

the delegate repository. The code fragment below demonstrates the creation of a repos-

itory wrapper, which is then used to obtain a connection wrapper. 

LIMERepositoryWrapper repoWrapper =  

            new LIMERepositoryWrapper(repository); 

 

LIMERepositoryConnectionWrapper connWrapper =  

                 repoWrapper.getConnection(); 

The connection wrapper exposes an operation to retrieve all lexicons: 

Collection<Resource> lexicons =  

        QueryResults.asList(connWrapper.getLexicons()); 

Homogeneously with similar operators in RDF4J, the method getLexicons() 

returns an iterator-like object. The class QueryResults can be used to fetch all val-

ues from this iterator, and put them into an ordinary Java collection. We defined similar 

operations for retrieving lexicalization sets, concept sets, conceptualization sets and 

lexical linksets. 

One advantage of APIs over the direct of use a query language such as SPARQL is 

their composability, in the sense that the result of an API invocation can be processed 

through other APIs. While useful for rapid prototyping, this approach has the known 

downside of performing badly as the size of the data increases. The reason is that the 

composition is performed by the client program, losing the optimizations implemented 

by a query engine.  

Let us consider how the operations above can be used to retrieve lexicalization sets 

for a given reference dataset and language. Firstly, one would obtain an iterator over 

all lexicalization sets, and then for each one check (with a separate API invocation) its 

language and reference dataset. This algorithm clearly requires a number of API calls 

proportional to the number of available lexicalization sets. Moreover, when the repos-

itory connection is accessing a remote dataset, each invocation entails a network round-

trip-time and the transmission of potentially irrelevant data (i.e. every lexicalization set 

not matching the user criterion).  

Alternatively, one could write just one SPARQL query and move the entire compu-

tation to the query engine, which would return only the relevant data. However, this 

approach is not compositional, and does not benefit from compile-time checks. Actu-

ally, if an information need is sufficiently recurring, it can be reasonable to promote the 

associated SPARQL query to a new operation in the API. 

Nonetheless, in our API we reconcile compositionality and efficiency, by allowing 

the user to specify as Java code complex matching conditions that are then translated 

into a SPARQL query for efficient execution. 

Our design was inspired by the library Hamcrest [5], which supports the declarative 

definition of intents for unit tests. Following its approach, we implemented an embed-

ded domain-specific language, which is supported by a number of class methods that 



instantiate matchers. In the examples below, we assume that the user has statically im-

ported such methods, so that they can be used without mentioning the defining class 

(i.e. LIMEMatchers) 

  The fragment below shows how to retrieve lexicalization sets matching the afore-

mentioned conditions on reference dataset and language: 

Collection<Resource> lexicalizationSets =  

 QueryResults.asList(conn.getLexicalizationSets( 

  suchThat( 

      language("en"), 

   referenceDataset("http://example.org/referenceDataset1") 

 ))); 

The API invocation above produces the following SPARQL query, which corre-

sponds to the user’s expressed information need: 

SELECT ?v0 WHERE { 

  ?v0 a lime:LexicalizationSet . 

  ?v0 lime:language "en" . 

  ?v0 lime:referenceDataset  

           <http://example.org/referenceDataset1> . 

} 

The method getLexicalizationSets expects a Matcher<? super Lexi-

calizationSet> producing the SPARQL fragment expressing the desired selection 

criterion over lexicalization sets. Matcher is a generic interface, which can be instan-

tiated with a Java type representing the class of resources over which the criterion is 

defined. The interface LexicalizationSet in the example is just one of the inter-

faces we defined to represent the classes in the LIME vocabulary. Following the exam-

ple of the Guava library [6] by Google, the operation getLexicalizationSets 

uses the super keyword to express a lower bound on the type parameter in the instan-

tiation of Matcher: specifically, it accepts a matcher over lexicalization sets and any 

of its super classes. To illustrate the rationale, consider matchers like functions taking 

an instance of a given type, say Dataset (i.e. in the sense specified by VoID [7]). In our 

example, we have a stream of lexicalization sets, which are a kind of dataset, and thus 

we can apply a matcher for datasets. Conversely, given a stream of datasets, we are not 

guaranteed that they are lexicalization sets and thus that a matcher over lexicalization 

sets is sensible. It is worth to notice that these constraints are not strictly necessary, as 

a matcher could simply reject an illegal argument. However, they are useful in practice, 

forcing the user to write conditions that conform to the domain and range restrictions 

expressed in the ontology. The methods language and referenceDataset in-

stantiate matchers that test whether the resource under evaluation (a lexicalization set 

in our case) has the given value for the eponym property (in the LIME namespace). 

Since the domain of these properties is the union of different classes, we introduced a 

number of super interfaces, corresponding to different class unions. For example, lan-

guage produces a Matcher<LexicalizationSetOrLexicon>, where Lex-
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icalizationSetOrLexicon subsumes both LexicalizationSet and Lex-

icon.  Finally, the method suchThat produces a matcher that is the conjunction of 

the matchers passed as arguments. 

Our information need can be made even more complex, for example by requesting 

conceptualization sets with an average ambiguity less than 0.5 for an English lexicon 

the subject of which is agriculture, as for the example in Fig. 2 

The fact that we push the comparison down into the SPARQL query, allows us to 

take advantage of the optimizations that some triple stores implement (e.g. GraphDB: 

http://graphdb.ontotext.com/documentation/free/storage.ht

ml#literal-index). 

3.3 Profiler 

The peak of the contribution of the LIME API is a profiler, which automates the com-

putation of LIME metadata for different scenarios. As already said, the necessity of this 

component is determined by the need for a reference implementation of the metrics 

defined by the OntoLex specification. 

Under the hood, the profiler executes some SPARQL queries on the provided da-

taset, recognizing the main types of dataset defined by LIME. Currently, the profiler is 

able to recognize lexicalizations of ontologies and thesauri expressed as RDFS and 

SKOS(-XL) labels, as well as using lemon lexical entries. 

The behavior of the profiler can be controlled via configuration parameters, as well 

as an initial set of LIME metadata, e.g. telling the name and void:uriSpace of 

distributed reference datasets not contained in the profiled data. Work is underway to 

Collection<Resource> conceptualizationSets = QueryResults 

  .asList(conn.getConceptualizationSets( 

    suchThat( 

      avgAmbiguity(lessThan(0.5)), lexiconDataset( 

        suchThat(language("en"),hasProperty(DCTERMS.SUBJECT,   

          vf.createIRI( 

            "http://dbpedia.org/resource/Agriculture")         

        )) 

      ) 

    ) 

   )); 
 

SELECT ?v0 { 

 ?v0 rdf:type lime:ConceptualizationSet . 

 ?v0 lime:avgAmbiguity ?v1 . 

 FILTER( ?v1 < "0.5"^^xsd:decimal) 

 ?v0 lime:lexiconDataset ?v2 . 

 ?v2 lime:language "en" . 

 ?v2 dct:subject <http://dbpedia.org/resource/Agriculture> . 

} 

Fig. 2. A complex query expressed in the LIME API and its equivalent SPARQL code 

 

 



complete the support for other dataset types defined in lemon, e.g. concept sets, con-

ceptualization sets and lexical linksets.  

Fig. 3 reports an excerpt of the metadata generated from a dump of the EuroVoc1 

thesaurus. In this scenario, the main dataset coincides with the reference dataset, and a 

number of void:subsets correspond to lexicalizations in different natural 

languages: for conciseness, we only show the details of the Italian lexicalization set.  

Currently, we assume that void:entities in the reference dataset gives the number 

of potentially lexicalizable resources, and thus that it can be used to compute 

lime:percentage and lime:avgNumOfLexicalizations. In case of 

thesauri, we count as entities only concepts, collections and concept schemes. So the 

fact that the number of lexicalized references is higher than the number of concepts is 

explained by the labels attached to concept schemes. The current implementation of the 

profiler does not collapse country-specific variants, and counts lexical entries by 

canonical form (altough the specification in some cases seems to suggest to count the 

lexical entry resources). 

The AGROVOC [8] metadata is already published in the form of an associated VoID 

file (linked by all of its resources through the void:inDataset property) that 

includes LIME metadata2 produced through (an earlier version of) this API, while 

EUROVOC will follow the same publication approach with the next release of its data. 

                                                           
1 http://eurovoc.europa.eu/  
2 http://aims.fao.org/aos/agrovoc/void.ttl 

@prefix meta: <http://eurovoc.example.org/void.ttl#> . 

@prefix base: <http://eurovoc.example.org/void.ttl> . 

<> a void:DatasetDescription ; 

   foaf:primaryTopic meta:EuroVoc . 

 

meta:EuroVoc a void:Dataset ; 

   void:triples 2505003 ; 

   dct:conformsTo <http://www.w3.org/2004/02/skos/core> ; 

   void:classPartition [void:class skos:Concept ; 

                        void:entities 7172 ], … ; 

   void:entities 7302 ; 

   void:subset meta:EuroVoc_mt_lexicalization_set, … . 

 

meta:EuroVoc_mt_lexicalization_set a lime:LexicalizationSet; 

   dct:language <http://id.loc.gov/vocabulary/iso639-1/it> , 

                <http://lexvo.org/id/iso639-3/ita> ; 

 lime:avgNumOfLexicalizations 2.537 ; 

 lime:language "it" ; 

 lime:lexicalizationModel <http://www.w3.org/2008/05/skos-

xl> ; 

 lime:lexicalizations 18521; 

 lime:percentage 0.997 ; 

 lime:referenceDataset meta:EuroVoc ; 

 lime:references 7273 . 

Fig. 3. An excerpt of the Lime metadata describing a dump of the EuroVoc thesaurus 
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4 Evaluation 

Our primary means for evaluating the LIME API was a set of unit tests accompanying 

its source code. Concerning the repository (connection) wrapper, the unit tests allowed 

us to spot a number of programming errors, which would have prevented some combi-

nation of conditions. The relevance of unit tests for the profiler is instead determined 

by their ability to function as an executable specification of what is the expected 

metadata for different dataset types. These tests verify that the profiler meets its speci-

fication, while their small size allows manual computation and verification of the sta-

tistics, so that we can ascertain the correctness of the specification, and ultimately val-

idate our software. We hope that a few people knowledgeable about lemon will verify 

by hand these test cases, thus strengthening our confidence in the correctness of the 

profiles, especially when the profiler is applied to datasets sufficiently large that verifi-

cation by hand is almost impossible. We believe that the efficiency gain of our approach 

to API composition has already been supported convincingly, while the scalability of 

the profiler required some empirical verification. To that end, we considered two very 

large thesauri encoded in SKOS: AGROVOC and EuroVoc. We performed the exper-

iments on a Notebook equipped with an Intel(R) Core(TM) i7-3630QM CPU @ 

2.40GHz, 24 GB of RAM DDR3 1600 MHz, Windows Home 10 64bit operating sys-

tem and Oracle JDK 8 (build 1.8.0_121-b13). Table 1 reports the total required time, 

as well as its break out into time to load the data and time to produce the metadata. 

5 Related Works 

Our LIME API is similar in purpose to existing APIs for lemon, such the one [9]  de-

veloped in the context of the Monnet Project and the one [10] developed as part of a 

PhD thesis on the automatic lexicon generation system M-ATOLL [11]. 

Both the M-ATOLL and the Monnet lemon API define an object-oriented model 

corresponding to the (Monnet) lemon ontology. However, they differ in how they im-

plement that model. The M-ATOLL API uses the RDF middleware Apache Jena 

[12,13] as a means to read/write an in-memory representation of the ontology lexicon. 

Table 1. Results of the empirical evaluation on two thesauri. Timings are based on a single run. 

 AGROVOC EuroVoc 

Time to load data (ms) 68044 42667 

Time to profile (ms) 3622 2354 

Total time (ms) 71666 45021 

Triples 4800064 2505003 

Schemes / Concepts / Collections 2 / 32721 / 0 130 / 7172  / 0 

Lexicalizations 649498 389539 

Languages 32 30 

 



Crucially, they adopt a white-listing or pull approach, so that only known properties 

from the RDF input are loaded into memory and thus can be accessed through the API. 

In a certain sense, this approach misses the opportunity offered by RDF to use and 

combine different vocabularies together. Conversely, our repository (connection) 

wrapper is an extension of the RDF4J API: therefore, our convenience methods can be 

combined freely with low-level RDF operations, and it is even possible to use SPARQL 

as a query language. With this regard, the Monnet API is more similar to our LIME 

API, since the object-model can be implemented as a view over a (remote) RDF dataset. 

Moreover, they allow to retrieve resources of interest based on the evaluation of arbi-

trary SPARQL queries. To our knowledge, however, the API does not offer any facility 

– as our LIME API does – to compositionally assemble these queries, which must be 

represented as strings.  

The profiling module for the automatic generation of LIME metadata is related to 

works on dataset analytics. With this regard, LODStats [14] is an extensible framework 

for dataset analytics, which supports the efficient computation of different statistics. 

They designed a formalism for the explicit representation of these statistics, aiming at 

understandability and semantic clarity. We pursued these goals, by implementing the 

profiler as a collection of SPARQL queries. Conversely, LODStats traded the expres-

sivity of full-graph patterns for a more lightweight formalism that was better suited to 

stream processing. LODStats needs this level of scalability, since it has been deployed 

as a publicly-accessible service providing statistics on an as-big-as-possible portion of 

the Linked Open Data cloud. Currently, we target smaller-scale deployments, related 

to a few datasets under the control of the same publisher. In this scenario, the publisher 

is likely to have already loaded these datasets into a triple store capable of executing 

SPARQL queries. Indeed, our evaluation on two real-world thesauri showed that pro-

filing is a heavy but doable activity. 

A related use case is the integration of the profiler into an RDF/ontology/thesaurus 

editor as a means to better understand the dataset being edited from the perspective of 

available lexical material. Current support for statistics inside editors is limited to 

lower-level structural characteristics. TopBraid Composer [15] reports the number of 

triples and the number of instances per meta-class (i.e. classes defined by the ontology 

vocabulary, such as owl:Class) and per domain class. Furthermore, it differentiates 

between local, imported and inferred entities.  VoID defines the property void:tri-

ples to represent the number of triples in a dataset, while instances of different meta-

classes can be represented via different void:classPartitions. Unfortunately, 

the distinction between local, imported and inferred is not easy to capture. The number 

of local classes and properties can be represented more succinctly via the VOAF [16]  

vocabulary, utilized by the Linked Open Vocabularies [17] (LOV) project. However, 

there is a semantic mismatch, because VOAF ignores deprecated classes and properties, 

whereas TopBraid does not. It is interesting to observe that similarly to what we did, 

the documentation of VOAF associates its metadata vocabulary with SPARQL queries, 

as a sort of operational definition. Protégé [18] (in the specific, version 5.1.0) computes 

a number of ontology metrics, which are essentially counts over different types of on-

tology axioms. An interesting feature is the computation of the DL expressivity, i.e. the 

specific language in the DL family used in the ontology. 



The aforementioned LODStats and LOV already report languages used in a dataset. 

However, they do not fulfill the needs of the OntoLex community for a mechanism to 

discover related but independently published lexical material. In fact, LOV supports 

this interlinking at the level of vocabularies, by making explicit the relationships be-

tween vocabularies and their use in datasets. 

6 Conclusions and Future Works 

As we envisaged [19] in the context of ontology mediation, lexical assets should be 

properly published and made findable on the web, in order to be properly exploited for 

accomplishing diverse tasks (e.g. discovery, alignment, etc..).  

Towards the realization of such a scenario, our work on LIME API intends to foster 

the creation of LIME metadata describing lexical assets published on the Semantic 

Web. In order to reach end-users, we also aim plan to seamlessly support the use of the 

lemon vocabulary in the third version of our thesaurus/ontology editor VocBench [20]. 

In [21], we have already shown how custom forms support the instantiation of the De-

sign patterns for the ontology-lexicon interface [22] within VocBench. Thanks to the 

work presented in this paper, we will also support the production of LIME metadata by 

integrating the LIME profiler into VocBench 3. 

Concerning the lower levels of the API for data manipulation, we will extend them 

with additional operations (in particular, write operations), borrowing and integrating 

ideas from previous lemon APIs. Depending on the feedback of the community, we will 

also consider to support other lemon modules (starting from the core). Similarly, we 

will investigate the usefulness of an extension of the LIME module to support other 

lemon modules in addition to the core one. 
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