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Abstract

In this document, the proofs of the lemmas stated in [1] are reported.

Proof. (of Lemma 4) Let p ∈ Σ̃K
2d,m[x] be written as p =

∑m
i=1wih

2
i . By absurd, assume

that there exists (c1, . . . , cm) 6= (0, . . . , 0), such that c1h1 + . . . + cmhm = 0 in K[x]. If
ci 6= 0, then hi can be expressed as a linear combination of the other m−1 forms. Hence,
p is a quadratic function of h1, . . . , hi−1, hi+1, . . . , hm, whence, by applying Algorithm 1,
that p is a wSOS with at most m − 1 squares, which contradicts the hypothesis that
p ∈ Σ̃K

2d,m[x]. The case wi = 0 is trivial.

Proof. (of Lemma 5) Proof of (5.1). The proof is trivial if m = 1. Let m ≥ 2. Let m∗ ∈ Z
be such that m ≥ m∗ ≥ 1 and Σ̃K

2d,m∗ [x] 6= ∅. Since Σ̃K
2d,m∗ [x] ∪ ΣK

2d,m∗−1[x] = ΣK
2d,m[x]

and Σ̃K
2d,m∗ [x] ∩ ΣK

2d,m∗−1[x] = ∅, one has S−1m (Σ̃K
2d,m∗ [x]) ∩ S−1m (ΣK

2d,m∗−1[x]) = ∅ and

S−1m (Σ̃K
2d,m∗ [x])∪S−1m (ΣK

2d,m∗−1[x]) = S−1m (ΣK
2d,m[x]). Since Σ̃K

2d,m∗ [x] 6= ∅, x2d1 ∈ ΣK
2d,m[x] for

m ≥ 1, and x2d1 6∈ Σ̃K
2d,m∗ [x] for m∗ > 1, one has that S−1m (Σ̃K

2d,m∗ [x]) is a proper subset of

S−1m (ΣK
2d,m[x]). By Lemma 4, set ΣK

2d,m∗−1[x] is obtained from p =
∑m∗

i=1wih
2
i by imposing

that either at least one of the wi’s is zero or the h1, . . . , hm∗ are linearly dependent,
whence the Zariski closure of S−1m (ΣK

2d,m∗−1[x]) is a proper variety of S−1m (ΣK
2d,m[x]). This

implies that S−1m (Σ̃K
2d,m∗ [x]) is Zariski open.

Proof of (5.2). By (5.1), there are only two cases: either Σ̃K
2d,m[x] = ∅ or S−1m (Σ̃K

2d,m[x])

is a Zariski open of S−1m (ΣK
2d,m[x]). To show that m = m∗ it is sufficient to show that
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Σ̃K
2d,m[x] 6= ∅. Since n ≥ m, p = x2d1 + . . . + x2dm is a sum of m squares that cannot be

expressed as a wSOS with a smaller number of squares [2, pag 20] (i.e., p ∈ ΣK
2d,m[x],

p 6∈ ΣK
2d,m−1[x]), which implies p ∈ Σ̃K

2d,m[x].

Proof. (of Lemma 6) Let H(B̃) ∈ K`m,2×`n,2d be such that M h̃
=2 = H(B̃)Mx

=2d, where

M h̃
=2 := [h̃21 h̃1h̃2 . . . h̃

2
m]>.

(P.1) For n ≥ m ≥ 2 and for all d ∈ Z≥2, polynomials h̃21, h̃1h̃2, h̃
2
2, . . . , h̃1h̃m, . . . , h̃

2
m are

linearly independent over K if and only if matrix H(B̃) has full row rank.
(P.2) If matrix H(B̃o) has full row rank for a certain B̃o ∈ K`m,2×`n,2d ⊆ R`m,2×`n,2d , then
there exists an open neighborhood B ⊆ R`m,2×`n,2d of B̃o such that H(B̃) has full row
rank for all B̃ ∈ B. Let S ⊆ K`m,2×`n,2d be the set of all B̃ ∈ K`m,2×`n,2d such that H(B̃)
has not full row rank. The Zariski closure S of S does not coincide with K`m,2×`n,2d ,
because, in that case, for any open neighborhood B ⊆ R`m,2×`n,2d of B̃o, there would
exist B̃? ∈ B such that H(B̃?) has not full row rank, being K dense in R. Hence, if
H(B̃o) has full row rank for some B̃o ∈ K`m,2×`n,2d , then it has full row rank for “almost
all” B̃ ∈ K`m,2×`n,2d .
(P.3) For n ≥ m ≥ 2, ∀d ∈ Z≥2, by (P.1) and (P.2), if there exist h̃o1, . . . , h̃

o
m ∈ K[x]=d in

the reduced echelon form so that (h̃o1)
2, h̃o1h̃

o
2, (h̃

o
2)

2, . . . , h̃o1h̃
o
m, . . . , (h̃

o
m)2 are linearly inde-

pendent over K, then h̃21, h̃1h̃2, h̃
2
2, . . . , h̃1h̃m, . . . , h̃

2
m are linearly independent for “almost

all” h̃1, . . . , h̃m ∈ K[x]=d.
(P.4) Since any p in K[x1, . . . , xn]=d can be coerced into K[x1, . . . , xn, xn+1]=d, if (P.3)
holds for n = m, then it holds for any n ≥ m.
(P.5) Let n = m, h̃i = xd−11 xi, i = 1, . . . , n. Forms h̃ih̃j = x

2(d−1)
1 xixj, i, j = 1, . . . , n are

linearly independent.

Proof. (of Lemma 7) Without loss of generality, let i = n. Fix the GRL order >G on
K[x], with x1 >G x2 >G . . . >G xn and let p ∈ K[x]=d. First, it is proved that if
LM(p) = xdn, then p = axdn, for some constant a ∈ K, a 6= 0. As a matter of fact, since
p is homogeneous, all its terms have the same degree. Thus, assume that LM(p) = xdn
and, by absurd, that p contains a monomial xβ = xβ11 · · ·xβnn ,

∑n
i=1 βi = d, different

from xdn. This yields a contradiction, because if xβ11 · · ·xβnn 6= xdn,
∑n

i=1 βi = d, then

xβ11 · · ·xβnn >G xdn, whence xdn is not the leading monomial of p. Therefore, the proof
of (7.1) follows from Theorem 4. Moreover, if xµii ∈ I, then xi ∈

√
I, i = 1, . . . , n, which

proves (7.2).

Proof. (of Lemma 8) Proof of (8.1). Let â ∈ K` be any specialization of the parameters.
First, note that, since the polynomials pi(a, x), i = 1, . . . ,m, are homogeneous for any
specialization, one has pi(â, 0) = 0, i = 1, . . . ,m, for each â ∈ K`, whence 0 ∈ VKn(Iâ).
Now, assume that there exists a point x̃ ∈ Kn, x̃ 6= 0, belonging to VKn(Iâ); this implies
that pi(â, x̃) = 0, i = 1, . . . ,m. Therefore, taking into account the homogeneity, by
letting x = θx̃, θ ∈ K, one has pi(â, θx̃) = θpi(â, x̃) = 0, i = 1, . . . ,m, which shows that
all the points belonging to the line parameterized by x = θx̃ belong to VKn(Iâ), which,
therefore, is not finite.
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Proof of (8.2). Let â ∈ K` be such that the variety VKn(Iâ) of Kn
is finite. By (8.1), one

has VKn(Iâ) = {0}, whence VK(Iâ ∩K[xi]) = {0}; Iâ ∩K[xi] is a principal ideal, which
is therefore generated by one monic polynomial q(xi) in xi, which satisfies q(0) = 0,
because VK(Iâ ∩ K[xi]) = {0}. Since Iâ ∩ K[xi] is homogeneous, the polynomial q(xi)
must be necessarily homogeneous, whence q(xi) = xµii , i = 1, . . . , n. If Iâ ∩K[xi] = 〈∅〉,
then VKn(Iâ) is not finite, whereas if Iâ ∩ K[xi] = 〈xµii 〉, µi ≥ 1, then x ∈ VKn(Iâ)
implies xi = 0, for i = 1, . . . , n.
Proof of (8.3). By assumption, I ∩K[a] = 〈∅〉, whence

I ∩K[a, xi] = 〈qi,1(a)x
µi,1
i , . . . , qi,Mi

(a)x
µi,Mi
i 〉,

where at least one of the polynomials qi,j(a) is not zero at the specialization a = âo,
because otherwise VKn(Iâo) would not be finite. Hence, VK(Iâ ∩K[xi]) is finite, for all
â that do not belong to the variety of the ideal 〈qi,1, . . . , qi,Mi

〉 of K[a], i.e., for “almost
all” â ∈ K`. The finiteness of VK(Iâ∩K[x1])∩ . . .∩VK(Iâ∩K[xn]) implies the finiteness
of VKn(Iâ), because VKn(Iâ) = VKn(Iâ ∩ K[x]) ⊆ VKn(Iâ ∩ (K[x1] ∪ . . . ∪ K[xn])) ⊆
VKn((Iâ ∩K[x1]) ∪ . . . ∪ (Iâ ∩K[xn])) ⊆ VKn(Iâ ∩K[x1]) ∩ . . . ∩VKn(Iâ ∩K[xn]).

Proof. (of Lemma 9) Proof of (9.1). Let I = 〈 ∂p
∂x
〉 and, for any i ∈ {1, . . . , n}, let GI be

the rGb of I, w.r.t. the GRL order >G, with a1 >G . . . >G a` >G xj >G xi, ∀j 6= i.
Clearly, the quotient ring K[a, x]/I is not finite dimensional; let B be its monomial
basis, w.r.t. the above monomial order. Now, since B is the set of all monomials aβxγ /∈
〈LT(I)〉, but 〈LT(I)〉 is finitely generated, there exists µi ∈ Z≥1 such that aβxµii ∈ LT(I),
because VKn(Iâ) = {0}, for â = âo. Therefore, for each i = 1, . . . , n, there exists an
element of GI of the form qi(a)xµii , where qi ∈ K[a]. Fix any â /∈ VK`(〈q1, . . . , qn〉); for
each i ∈ {1, . . . , n}, if the GRL order >G in K[x1, . . . , xn], with xj >G xi, ∀j 6= i, is used
for the computation of the rGb GIâ of Iâ, then one has xµii ∈ GIâ , with µi ∈ Z≥1, which
proves (by Lemma 7) that VKn(Iâ) = {0} and that 〈∂pâ

∂x
〉 is primary, for “almost all”

â ∈ K`.
The proof of (9.2) follows from (9.1).

Proof. (of Lemma 10) By Lemma 5, for “almost all” p ∈ ΣK
2d,m[x], one has p ∈ Σ̃K

2d,m[x].

Letting h = [h1 . . . hm]> ∈ Km[x]=d, one can write p = h>Wh, whereW = diag(w1, . . . , wm),
det(W ) 6= 0. By (2), each form hi ∈ K[x]=d, i = 1, . . . ,m, can be taken as a specialization
Φn,d(â

i, x) of Φn,d(a
i, x). Hence, each form p ∈ ΣK

2d,m[x] can be taken as a specialization

p(âw,e, x) of p(aw,e, x) =
∑m

i=1wiΦ
2
n,d(a

i, x), where aw,e := [(a1)> . . . (am)>w1 . . . wm]>.

Consider the ideals 〈∂p(aw,e,x)

∂x
〉 and 〈h>(aw,e, x)〉 of K[aw,e, x], where

h(aw,e, x) := [Φn,d(a
1, x) . . . Φn,d(a

m, x)]>.

Since these two ideals are homogeneous for “almost all” specializations aw,e ∈ K(`n,d+1)m,

the quotient ideal (〈∂p(aw,e,x)

∂x
〉 : 〈h>(aw,e, x)〉) is homogeneous for “almost all” spe-

cializations aw,e ∈ K(`n,d+1)m. Consider the specialization âw,e ∈ K(`n,d+1)m such that
Φn,d(â

i, x) =
∑n

j=1 x
d
j , and ŵi = 1, i = 1, . . . ,m. It can be easily verified that, for such

3



a specialization, the ideal (〈∂p(âw,e,x)

∂x
〉 : 〈h>(âw,e, x)〉) equals 〈xd−11 , . . . , xd−1n 〉, and hence

VKn(〈∂p(âw,e,x)

∂x
〉 : 〈h>(âw,e, x)〉) = {0}. Therefore, by Lemma (8.3), the variety

VKn(〈∂p(aw,e,x)

∂x
〉 : 〈h>(aw,e, x)〉)

is finite for “almost all” aw,e ∈ K(`n,d+1)m and hence for “almost all” p ∈ ΣK
2d,m[x]. Hence,

by (8.2) of Lemma 8, there exists N ∈ Z≥1 such that xNn ∈ (〈∂p(âw,e,x)

∂x
〉 : 〈h>(âw,e, x)〉),

for “almost all” aw,e ∈ K(`n,d+1)m, and hence xNn ∈ (〈 ∂p
∂x
〉 : 〈h>〉), for “almost all” p ∈

ΣK
2d,m[x]. This implies xNn hi ∈ 〈

∂p
∂x
〉, i = 1, . . . ,m. Therefore, for “almost all” p ∈

ΣK
2d,m[x], one has 〈h>〉 ⊆ (〈 ∂p

∂x
〉 : 〈xNn 〉) = (〈 ∂p

∂x
〉 : 〈x∞n 〉).

Proof. (of Lemma 11) Consider Q = 〈Φn,d(a
1, x), . . . ,Φn,d(a

m, x), 1− yxn〉 of K[ae, x, y],
where y is an auxiliary variable.
(F.1) If Q ∩K[ae] 6= 〈∅〉, then xn ∈

√
Jâe , ∀âe /∈ V(Q ∩K[ae]), whence for “almost all”

âe ∈ Km`n,d .
(F.2) If Q∩K[ae] = 〈∅〉, then xn /∈

√
Jâe for “almost all” âe ∈ Km`n,d .

To prove (F.1), note that, for any specialization âe /∈ V(Q ∩K[ae]), one has Qâe = 〈1〉,
and therefore Theorem 1 implies xn ∈

√
Jâe . The condition Q∩K[ae] 6= 〈∅〉 implies that

the variety V(Q ∩ K[ae]) of Km`n,d does not coincide with the whole Km`n,d . To prove
(F.2), let S ⊆ K` be the set of all specializations âe such that Qâe = 〈1〉; its Zariski
closure S cannot coincide with the whole Km`n,d , because Q ∩ K[ae] = 〈∅〉, whence
xn /∈

√
Jâe , for all âe ∈ Km`n,d\S, where Km`n,d\S is Zariski open.

Proof of (11.1). If m = n, then Q ∩ K[ae] is a principal ideal; it is generated by one
polynomial q(ae) (i.e., Q∩K[ae] = 〈q(ae)〉), which is the resultant

Res(Φn,d(a
1, x), . . . ,Φn,d(a

n, x))

of the n polynomials Φn,d(a
1, x), . . . ,Φn,d(a

n, x), w.r.t. x (see [3, Ch 3, § 2]). By Theo-
rem 2.3 of [3, pag 86], such a resultant vanishes if and only if the system of the n equations
Φn,d(a

1, x) = 0, . . . ,Φn,d(a
n, x) = 0 has a non-zero solution in x over the algebraic closure

K, and is a non-zero polynomial in the coefficients a1, . . . , an. Hence, if q(âe) 6= 0, then
the system Φn,d(â

1, x) = 0, . . . ,Φn,d(â
n, x) = 0 admits only the trivial solution x = 0,

i.e., V(Jâe) = {0} and hence V(Qâe) = ∅. This means that Jâe = 〈1〉, for all âe such
that q(âe) 6= 0. Therefore, Q ∩ K[ae] 6= 〈∅〉, whence (F.1) implies that xn ∈

√
Jâe , for

“almost all” âe ∈ Km`n,d . If n ≤ m, then the resultant of the first n polynomials (as well
as of any other n-plet of such polynomials), Res(Φn,d(a

1, x), . . . ,Φn,d(a
n, x)), belongs to

Q ∩ K[ae], whence Q ∩ K[ae] 6= 〈∅〉; (F.1) implies that xn ∈
√
Jâe , for “almost all”

âe ∈ Km`n,d .
Proof of (11.2). If n > m, then the resultant of the set of n polynomials obtained from
{Φn,d(a

1, x), . . . ,Φn,d(a
m, x)} by adding n−m zero polynomials, is the zero polynomial,

whence Q∩K[ae] is the zero ideal 〈∅〉; hence, (F.2) implies that xn /∈
√
Jâe , for “almost

all” âe ∈ Km`n,d .

Proof. (of Lemma 12) If n ≤ m, then
√
J is “generically” maximal, since

√
J =

〈x1, . . . , xn〉 “generically”, thus proving the lemma in the case n ≤ m. Let n > m.
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For any âe ∈ Km`n,d , let ĥ1(x
1, x2) = Φn,d(â

1, x), . . . , ĥm(x1, x2) = Φn,d(â
m, x), where

x = [(x1)> (x2)>]>, x1 = [x1 . . . xm]> and x2 = [xm+1 . . . xn]>. For “almost all”
âe ∈ Km`n,d , apart from a reordering of the entries of x, {x1, . . . , xm} constitute a
maximal independent set w.r.t. Jâe = 〈ĥ1, . . . , ĥm〉, i.e., Jâe ∩K[x1, . . . , xm−1, xm] = 〈∅〉
and Jâe ∩ K[x1, . . . , xm−1] 6= 〈∅〉. Let GJâe = {g1, . . . , gs} be the rGb of Jâe , w.r.t. the
Lex order with xi >L xj, i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , n}. Coerce the polynomials
gi into K[x2][x1] and compute kg1,...,gs =

∑s
i=1 LC(gi), which belongs to K[x2]. Now, co-

ercing kg1,...,gs into K[x], consider the saturation (Jâe : 〈k∞g1,...,gs〉). By [4], Jâe is primary
if and only if (Jâe : 〈k∞g1,...,gs〉) = Jâe . Clearly, if (Jâoe : 〈k∞g1,...,gs〉) = Jâoe for some special-
ization âoe, then (Jâe : 〈k∞g1,...,gs〉) = Jâe , for “almost all” specializations âe. To complete

the proof, it is enough to find one of such âoe. Take ĥo1 = (x1+xm+1+ . . .+xn)d, . . . , ĥom =
(xm + xm+1 + . . .+ xn)d; the lemma is proven by (1.3) of Lemma 1.

Proof. (of Lemma 13) First, take n = m and let h(ae, x) = [h1(a
1, x) . . . hn(an, x)]

>
,

where ae = [(a1)> . . . (am)>]>. For any specialization âe ∈ Km`n,d of ae, let ĥ be the
corresponding specialization of h. As well known [5], the n polynomials ĥi in the n

unknowns xi are algebraically independent if and only if det(∂ĥ
∂x

) = 0 in K[x]; det(∂h
∂x

) 6= 0

in K[ae, x] and can be rewritten as det(∂h
∂x

) = q1(ae)x
α1

+ q2(ae)x
α2

+ . . ., where qi(ae),
i = 1, 2, . . ., are non-zero polynomials and the αi’s are multi-indices of the same length

|αi| = |αj|. Let Q = 〈q1(ae), q2(ae), . . .〉 be an ideal of K[ae]; det(∂ĥ
∂x

) = 0 in K[x] if
and only if âe ∈ V(Q), thus proving the theorem, since V(Q) 6= Km`n,d . Similarly, for
n > m.

Proof. (of Lemma 14) By the proof of Theorem 5, each p ∈ Σ̃K
2d,m∗ [x] can be taken as a

specialization pâ∗e(x) = p(â∗e, x) of p(a∗e, x) =
∑m∗

i=1wih
2
i (a

i, x), where

a∗e = [(a1)> . . . (am
∗
)>w1 . . . wm∗ ]>,

and, for “almost all” a∗e ∈ K(`n,d+1)m∗
, the variety VKn(〈∂p(a

∗
e ,x)

∂x
〉 : 〈h>(a∗e, x)〉) is finite.

This implies the existence of q ∈ K[a∗e] such that q(a∗e)x
N∗
n ∈ (〈∂p(a

∗
e ,x)

∂x
〉 : 〈h>(a∗e, x)〉) ∩

K[a∗e, xn]. Hence, for each â∗e ∈ K(`n,d+1)m∗
such that q(â∗e) 6= 0, one has (〈∂p(â

∗
e ,x)

∂x
〉 :

〈xN∗
n 〉) = 〈h>〉.
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