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Abstract

In this document, the proofs of the lemmas stated in [1] are reported.

Proof. (of Lemma 4) Let p € i]fd’m[x] be written as p = Y ;" w;h?. By absurd, assume
that there exists (c1,...,¢,) # (0,...,0), such that cihy + ... + ¢phy = 0 in Kz]. If
¢; # 0, then h; can be expressed as a linear combination of the other m — 1 forms. Hence,
p is a quadratic function of hy, ..., h;_1,hi11, ..., hy, Wwhence, by applying Algorithm 1,
that p is a wSOS with at most m — 1 squares, which contradicts the hypothesis that
p € X5yn[2]. The case w; = 0 is trivial. O

Proof. (of Lemma 5) Proof of (5.1). The proof is trivial if m = 1. Let m > 2. Let m* € Z
be such that m > m* > 1 and X5, .[z] # 0. Since X5, .[z] U XS, . [z] = X5, [2]
and :z:]g{d,m* [l‘] N Eggd,m*fl[x] = ®’ one has Sgwl(ig(d,m* [mD N S’;’Ll(zggd,m*fl[x]) = @ and
St (S5 me [T IS (55 e 1 [2]) = 851 (85 [2]). Since X5, [a] # 0, 23 € X5, [«] for
m > 1, and 23¢ ¢ f]]é(d’m* [z] for m* > 1, one has that Sgll(ig%’m* [z]) is a proper subset of
S (35, [2]). By Lemma 4, set X5, ., [x] is obtained from p = ", w;h? by imposing
that either at least one of the w;’s is zero or the hq,..., h,« are linearly dependent,
whence the Zariski closure of S, ;'(X5; ,._,[2]) is a proper variety of S, '(X5; ,[z]). This

implies that S,;l(i%{d’m* [z]) is Zariski open.
Proof of (5.2). By (5.1), there are only two cases: either ig{dm[x] = or S;f(iggd,m[a:])
is a Zariski open of S;,'(X5;,,[z]). To show that m = m* it is sufficient to show that
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igﬁi?m[ ] # 0. Since n > m, p =23+ ... + 22 is a sum of m squares that cannot be
expressed as a wSOS with a smaller number of squares [2, pag 20] (i.e., p € X5, [7],

p &€ X5y ,,_1[2]), which implies p € iggd’m[a:]. O

Proof. (of Lemma 6) Let H(B) € K2*2i be such that M", = H(B)M?2,,, where
M, = (2 Tahs .. R2]T.

(P.1) For n > m > 2 and for all d € Zs,, polynomials h2, hiho, b3, ... hihp,,. .., hZ, are
linearly independent over K if and only if matrix H(B) has full row rank.

(P.2) If matrix H(B°) has full row rank for a certain B° € Kfm2*tn2a C Rbm2xtn2d then
there exists an open neighborhood B C Rfm2*t2¢ of B° such that H(B) has full row
rank for all B € B. Let S C K/m2xtn2a he the set of all B € Kfm2Xtn2d guch that H(B)
has not full row rank. The Zariski closure S of S does not coincide with Kfm2*¢n.2¢
because, in that case, for any open neighborhood B C Rfm2Xtn2d of B° there would
exist B* € B such that H(B*) has not full row rank, being K dense in R. Hence, if
H(B®) has full row rank for some B° € K2*n2¢_then it has full row rank for “almost
all” B € Kfm2xtn2a,

(P.3) For n > m > 2, Vd € Zx,, by (P.1) and (P.2), if there exist h‘l’, .., b, € Klz]—q in
the reduced echelon form so that (h9)2, hohs, (izg)?, .. hehe ..., (he)? are linearly inde-
pendent over K, then hl, hy hg, h2, .. 71 B B?n are hnearly independent for “almost
all” hy, ... hy, € K[z]—q.

(P.4) Slnce any p in K[zq,...,2,]=4 can be coerced into Kxy,..., Ty, Tpi1]=a, if (P.3)
holds for n = m, then it holds for any n > m.

(P.5) Let n = m, h; =29y i =1,...,n. Formsizfz rxj, 1,7 =1,...,n are
linearly independent. ]

(d 1)

Proof. (of Lemma 7) Without loss of generality, let @ = n. Fix the GRL order >¢ on
K[z], with SL’l >q Ty >g ... >¢ o, and let p € K[z]_4. First, it is proved that if
LM(p) = 2, then p = az?, for some constant a € K, a # 0. As a matter of fact, since
p is homogeneous all its terms have the same degree Thus assume that LM(p) = z¢

and, by absurd, that p contains a monomial ® = x : wﬁn ZZ  Bi = d, different

from x¢. This ylelds a contradiction, because if x" - xﬁ” # xd 3" B = d, then
xﬁfl ceafn > 2¢) whence 2 is not the leading monomial of p. Therefore, the proof

of (7.1) follows from Theorem 4. Moreover, if zf* € Z, then x; € VZ,i=1,...,n, which
proves (7.2). O

Proof. (of Lemma 8) Proof of (8.1). Let & € K’ be any specialization of the parameters.
First, note that, since the polynomials p;(a,z), i = 1,...,m, are homogeneous for any
specialization, one has p;(a,0) =0, i =1,...,m, for each & € K*, whence 0 € Vg=(Z,).
Now, assume that there exists a point & € K", & # 0, belonging to Vg»(Z;); this implies
that p;(a,z) = 0, ¢ = 1,...,m. Therefore, taking into account the homogeneity, by
letting x = 6z, 6 € K, one has p;(a,0%) = p;(a,z) =0, ¢ =1,...,m, which shows that
all the points belonging to the line parameterized by x = 6% belong to Vg=(Z;), which,
therefore, is not finite.



Proof of (8.2). Let a@ € K¢ be such that the variety Vz»(Z;) of K is finite. By (8.1), one
has Vg (Z;) = {0}, whence Vi(Z; NK[z;]) = {0}; Zo N K[z,] is a principal ideal, which
is therefore generated by one monic polynomial ¢(z;) in z;, which satisfies ¢(0) = 0,
because Vi(Z; N K[z;]) = {0}. Since Z; N K][z;] is homogeneous, the polynomial ¢(z;)
must be necessarily homogeneous, whence q(z;) = 2/, i = 1,...,n. If Z; N K[z;] = (0),
then Vgn(Z;) is not finite, whereas if Z; N Klx;] = (2f"), u; > 1, then x € Vg (Z3)
implies x; =0, fori =1,...,n.

Proof of (8.3). By assumption, Z N Kla] = (), whence

I N K[CL, xz] - <QZ 1( ) MZ l) o 7Qi,Mi (a)xi‘ii’Mi%

where at least one of the polynomials ¢; j(a) is not zero at the specialization a = a°,
because otherwise Vgn(Zz0) would not be finite. Hence, V(Z; N K[z;]) is finite, for all
a that do not belong to the variety of the ideal (g;1,...,¢an,) of Kla], i.e., for “almost
all” a € K* The finiteness of V&(Z; NK[z1]) N ... N Vg(Zs NK[z,]) implies the finiteness
of Vgn(Zs), because Vgn(Z;) = Ve (Za N K[z]) € Ve (Za N (K[zy] U ... U K]z,])) C
Ve (Za N K[z ) U. .. U(Za NK[zy,)) C Ve (Za NKzy]) N ...N Vi (Za N K[zy]). O

Proof. (of Lemma 9) Proof of (9.1). Let Z = <—Z> and, for any i € {1,...,n}, let Gz be
the rGb of Z, w.r.t. the GRL order >¢, with a; >¢ ... >¢ ar >¢ z; >¢ 4, Vj # i
Clearly, the quotient ring Kla,x]/Z is not finite dimensional; let B be its monomial
basis, w.r.t. the above monomial order. Now, since B is the set of all monomials a’x” ¢
(LT(Z)), but (LT(Z)) is finitely generated, there exists y1; € Z>; such that a’z!" € LT(Z),
because Vgn(Z;) = {0}, for @ = a°. Therefore, for each i = 1,...,n, there exists an
element of QZ of the form ¢;(a)z", Where ¢; € Kla]. Fix any a ¢ Vge((q1, ..., qn)); for
each i € {1,...,n}, if the GRL order >¢ in K[zy, ..., x,], with z; >¢ z;, Vj # 1, is used
for the computation of the rGb Gz, of Z;, then one has xt" € Gz, with u; € Z>1, which
proves (by Lemma 7) that Vg (Z;) = {0} and that <87;;> is primary, for “almost all”
a €K

The proof of (9.2) follows from (9.1). O

Proof. (of Lemma 10) By Lemma 5, for “almost all” p € X5, [z], one has p € iggd’m[x].
Letting h = [hy ... hy]' € K™[z]_g, one can Writep = h"Wh, where W = diag(w, . .., wp,),
det(WW) # 0. By (2), each form h; € Klz]—q4,7 = 1,...,m, can be taken as a specialization
P, 4(a', x) of @, 4(a’, x). Hence, each form pE Z2dm[ | can be taken as a specialization
Pllw,e, ) of plawe,x) = D7 w;®?2 4(a’, ), where aye == [(a')" ... (@™)"wy ... wy]".
Consider the ideals (81’“8+”W and (h'(ay.e, 7)) of K[ay.,,x], where

h(awe, ) = [®na(a’, z) ... §pq(a™ 2)]".

Since these two ideals are homogeneous for “almost all” specializations a,, . € Knat)m,
the quotient ideal ((W} : (h"(awe,r))) is homogeneous for “almost all” spe-
cializations a, . € K¢nathm — Consider the spec1ahzat10n (e € KnatDm guch that

P, q(a'x) =30, x4, and w; = 1,1 =1,. . It can be easily verified that, for such



a specialization, the ideal ((W} (W (Gue, 7)) equals (x{7, ... 2971) and hence

VKn((%) : (W (Guwe, x))) = {0}. Therefore, by Lemma (8.3), the variety

Vi (P2) + (0T (e, 2))

is finite for “almost all” a,,, € K4*D™ and hence for “almost all” p € ¥5gmlr]. Hence,
by (8.2) of Lemma 8, there exists N € Zs; such that x)) € ((Pplawe)y (W (G e, 7)),

Ox
for “almost all” a,. € K*a*)™ and hence z) € ((2) : (h")), for “almost all” p €
Y5ymlr]. This implies z)'h; € (%>, v = 1,...,m. Therefore, for “almost all” p €
S5amle], one has (hT) C ((38) : (2)) = ((5) + (&)). O

Proof. (of Lemma 11) Consider Q = (®,, 4(a', z),..., P, 4(a™, x),1 — yx,) of K[a., z,],
where y is an auxiliary variable.

(F.1) If 9 NKlae] # (0, then z, € \/Ta., Va. € V(QNK[a.]), whence for “almost all”
a, € Kména,

(F.2) If 9N Kla] = (0), then z,, ¢ \/ T, for “almost all” G, € K™,

To prove (F.1), note that, for any specialization a. ¢ V(Q NKla]), one has Q;. = (1),
and therefore Theorem 1 implies z,, € \/J;,. The condition QNK]a.] # (0) implies that
the variety V(Q N Kla.]) of K™% does not coincide with the whole K™%, To prove
(F.2), let S C K’ be the set of all specializations a, such that Q, = (1); its Zariski
closure S cannot coincide with the whole K™% because Q N Kla.] = ((}), whence
Ty & /T, for all 4, € K™na\S, where K™/na\S is Zariski open.

Proof of (11.1). If m = n, then Q@ N Kla,| is a principal ideal; it is generated by one
polynomial g(a.) (i.e., @ NK[a.] = (¢(ae))), which is the resultant

Res(®, q4(a', 1),..., P, 4(a", 7))

of the n polynomials @, 4(a',z),..., ®,q(a", ), wr.t. z (see [3, Ch 3, § 2]). By Theo-
rem 2.3 of [3, pag 86], such a resultant vanishes if and only if the system of the n equations
P, 4(a,x) =0,...,®,4(a", ) = 0 has a non-zero solution in x over the algebraic closure
K, and is a non-zero polynomial in the coefficients a',...,a”. Hence, if q(d.) # 0, then
the system @, 4(a',z) = 0,...,®P,4(a",2) = 0 admits only the trivial solution z = 0,
i.e., V(Ja,) = {0} and hence V(Q;,) = (. This means that J;, = (1), for all a, such
that g(a.) # 0. Therefore, @ N Kla.] # (0), whence (F.1) implies that z,, € \/Ja,, for
“almost all” G, € K™d. If n < m, then the resultant of the first n polynomials (as well
as of any other n-plet of such polynomials), Res(®,, 4(a', z),. .., ®,q4(a", z)), belongs to
9 N K[a], whence Q N Kla.] # (B); (F.1) implies that z, € \/Js., for “almost all”
a, € Kmbna,

Proof of (11.2). If n > m, then the resultant of the set of n polynomials obtained from

{®,4(at,2),..., @, 4(a™, x)} by adding n — m zero polynomials, is the zero polynomial,
whence Q@ NKJa,] is the zero ideal (P); hence, (F.2) implies that x,, ¢ /7., for “almost
all” a, € Kmna, O

Proof. (of Lemma 12) If n < m, then v/J is “generically” maximal, since v/J =
(x1,...,2,) “generically”, thus proving the lemma in the case n < m. Let n > m.
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For any d. € K™md, let hy(z',22) = ®pq(a@,z),. .., hm(z',22) = ®,q(@™, x), where
r o= [(Y)" (@®)"]", 2! = [z ... 2,])" and 2? = [1,4, ... 7,]". For “almost all”
d. € Kmfnd apart from a reordering of the entries of x, {zi,...,7,} constitute a
magzimal independent set w.rt. Jo, = (hy, ... hy), ice., Jo. VK21, ..., Tt ) = (0)
and Ja, N K[z, ..., 25m1] # (0). Let Gz, = {g1,...,9s} be the rtGb of T, , w.r.t. the
Lex order with ; >, z;, i€ {1,...,m} and j € {m+1,...,n}. Coerce the polynomials
gi into K[z?][z'] and compute kgl 77777 =37 LC(g;), which belongs to K[z?]. Now, co-
ercing ky, .. 4. into K[z], consider the saturation (Jg, @ (k2° e 5.))- By [4], Ja, is primary
if and only if (s, : (k3> ) = Ja.. Clearly, if (Jao : (k37 )) Jae for some special-
ization ag, then (Js, : (k37 ,.)) = Ja,, for “almost all” specializations G.. To complete
the proof, it is enough to ﬁnd one of such 2. Take h¢ = (214 Zpms1+...+x,)%, ..., hS, =
(T + Tt + - .. + x,)% the lemma is proven by (1.3) of Lemma 1.

77777

O

Proof. (of Lemma 13) First, take n = m and let h(ac,z) = [h(a',z) ... hy(a” )],
where a, = [(a))" ... (a™ )T]T. For any specialization a. € K™ of a, let h be the
corresponding specialization of h. As well known [5], the n polynomials h; in the n
unknowns z; are algebraically independent if and only if det(22) = 0 in K[z]; det(22) # 0
in K[a., 2] and can be rewritten as det(g—Z) = qi(ac)z™ + gla)z® + ..., where g(a.),
i =1,2,..., are non-zero polynomials and the a’’s are multi-indices of the same length
o] = |a?|. Let Q@ = (qi(ac), q2(ac),...) be an ideal of Kla.]; det(ah) = 0 in K[z] if
and only if a. € V(Q), thus proving the theorem, since V(Q) # Kmend Similarly, for
n > m. ]

Proof. (of Lemma 14) By the proof of Theorem 5, each p € E2dm [z] can be taken as a
specialization pss (x) = p(af, x) of plat,x) = S w;h2(a’, x), where

*

al=1[a")" ... (@) w . wee] T

and, for “almost all” af € K»atUm" the variety Vg» (<M> : (hT(a?,))) is finite.

This implies the existence of ¢ € K[a?] such that ¢(a})zY" € ((%> : (R (a?, a:))) N
KlaZ,z,]. Hence, for each a' € K*na+U™" guch that g(a’) # 0, one has (<8p(a o)y
(@) = (h"). O
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