Proofs of the Lemmas stated in "Algebraic Certificates of (Semi)Definiteness for Polynomials Over Fields Containing the Rationals"

Laura Menini*, Corrado Possieri[†]and Antonio Tornambè[‡]

Dipartimento di Ingegneria Civile e Ingegneria Informatica, Universit`a di Roma Tor Vergata, 00133 Roma, Italy Technical Report RR-17.13

Abstract

In this document, the proofs of the lemmas stated in [1] are reported.

Proof. (of Lemma 4) Let $p \in \widetilde{\Sigma}_{2d,m}^{\mathbb{K}}[x]$ be written as $p = \sum_{i=1}^{m} w_i h_i^2$. By absurd, assume that there exists $(c_1, \ldots, c_m) \neq (0, \ldots, 0)$, such that $c_1h_1 + \ldots + c_mh_m = 0$ in K[x]. If $c_i \neq 0$, then h_i can be expressed as a linear combination of the other $m-1$ forms. Hence, p is a quadratic function of $h_1, \ldots, h_{i-1}, h_{i+1}, \ldots, h_m$, whence, by applying Algorithm 1, that p is a wSOS with at most $m-1$ squares, which contradicts the hypothesis that $p \in \widetilde{\Sigma}_{2d,m}^{\mathbb{K}}[x]$. The case $w_i = 0$ is trivial. \Box

Proof. (of Lemma 5) Proof of (5.1). The proof is trivial if $m = 1$. Let $m \geq 2$. Let $m^* \in \mathbb{Z}$ be such that $m \geq m^* \geq 1$ and $\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x] \neq \emptyset$. Since $\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x] \cup \Sigma_{2d,m^*}^{\mathbb{K}}[x]$ $\frac{K}{2d,m^*-1}[x] = \sum_{2d,m}^{K}[x]$ and $\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x] \cap \Sigma_{2d}^{\mathbb{K}}$ $\mathbb{E}_{2d,m^*-1}[x] = \emptyset$, one has $S_m^{-1}(\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x]) \cap S_m^{-1}(\Sigma_{2d,m^*-1}^{\mathbb{K}}[x]) = \emptyset$ and $S_m^{-1}(\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x]) \cup S_m^{-1}(\Sigma_{2d,m^*-1}^{\mathbb{K}}[x]) = S_m^{-1}(\Sigma_{2d,m}^{\mathbb{K}}[x])$. Since $\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x] \neq \emptyset$, $x_1^{2d} \in \Sigma_{2d,m}^{\mathbb{K}}[x]$ for $m \geq 1$, and $x_1^{2d} \notin \widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x]$ for $m^* > 1$, one has that $S_m^{-1}(\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x])$ is a proper subset of $S_m^{-1}(\Sigma_{2d,m}^{\mathbb{K}}[x])$. By Lemma 4, set $\Sigma_{2d,m^*-1}^{\mathbb{K}}[x]$ is obtained from $p = \sum_{i=1}^{m^*} w_i h_i^2$ by imposing that either at least one of the w_i 's is zero or the h_1, \ldots, h_{m^*} are linearly dependent, whence the Zariski closure of $S_m^{-1}(\Sigma_{2d,m^*-1}^{\mathbb{K}}[x])$ is a proper variety of $S_m^{-1}(\Sigma_{2d,m}^{\mathbb{K}}[x])$. This implies that $S_m^{-1}(\widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x])$ is Zariski open.

Proof of (5.2). By (5.1), there are only two cases: either $\widetilde{\Sigma}_{2d,m}^{\mathbb{K}}[x] = \emptyset$ or $S_m^{-1}(\widetilde{\Sigma}_{2d,m}^{\mathbb{K}}[x])$ is a Zariski open of $S_m^{-1}(\Sigma_{2d,m}^{\mathbb{K}}[x])$. To show that $m = m^*$ it is sufficient to show that

[∗]L. Menini: menini@disp.uniroma2.it

[†]C. Possieri: possieri@ing.uniroma2.it

[‡]A. Tornambè: tornambe@disp.uniroma2.it

 $\widetilde{\Sigma}_{2d,m}^{\mathbb{K}}[x] \neq \emptyset$. Since $n \geq m$, $p = x_1^{2d} + \ldots + x_m^{2d}$ is a sum of m squares that cannot be expressed as a wSOS with a smaller number of squares [2, pag 20] $(i.e., p \in \sum_{2d,m}^{\mathbb{K}}[x],$ $p \notin \Sigma_{2a}^{\mathbb{K}}$ ^K_{2d,m−1}[x]), which implies $p \in \widetilde{\Sigma}_{2d,m}^{K}[x]$. \Box

Proof. (of Lemma 6) Let $H(\tilde{B}) \in \mathbb{K}^{\ell_{m,2} \times \ell_{n,2d}}$ be such that $M_{=2}^{\tilde{h}} = H(\tilde{B})M_{=2d}^{x}$, where $M^{\tilde{h}}_{=2} := [\tilde{h}_1^2 \tilde{h}_1 \tilde{h}_2 \dots \tilde{h}_m^2]^\top.$

 $(1, 1)$ For $n \geq m \geq 2$ and for all $d \in \mathbb{Z}_{\geq 2}$, polynomials $\tilde{h}_1^2, \tilde{h}_1 \tilde{h}_2, \tilde{h}_2^2, \ldots, \tilde{h}_1 \tilde{h}_m, \ldots, \tilde{h}_m^2$ are linearly independent over K if and only if matrix $H(\tilde{B})$ has full row rank.

 $(P.2)$ If matrix $H(\tilde{B}^o)$ has full row rank for a certain $\tilde{B}^o \in \mathbb{K}^{\ell_{m,2} \times \ell_{n,2d}} \subseteq \mathbb{R}^{\ell_{m,2} \times \ell_{n,2d}}$, then there exists an open neighborhood $\mathcal{B} \subseteq \mathbb{R}^{\ell_{m,2} \times \ell_{n,2d}}$ of \tilde{B}^o such that $H(\tilde{B})$ has full row rank for all $\tilde{B} \in \mathcal{B}$. Let $\mathcal{S} \subseteq \mathbb{K}^{\ell_{m,2} \times \ell_{n,2d}}$ be the set of all $\tilde{B} \in \mathbb{K}^{\ell_{m,2} \times \ell_{n,2d}}$ such that $H(\tilde{B})$ has not full row rank. The Zariski closure \overline{S} of S does not coincide with $\mathbb{K}^{\ell_{m,2}\times\ell_{n,2d}}$, because, in that case, for any open neighborhood $\mathcal{B} \subseteq \mathbb{R}^{\ell_{m,2} \times \ell_{n,2d}}$ of \tilde{B}^o , there would exist $\tilde{B}^{\star} \in \mathcal{B}$ such that $H(\tilde{B}^{\star})$ has not full row rank, being K dense in R. Hence, if $H(\tilde{B}^o)$ has full row rank for some $\tilde{B}^o \in \mathbb{K}^{\ell_{m,2} \times \ell_{n,2d}}$, then it has full row rank for "almost" all" $\tilde{B} \in \mathbb{K}^{\ell_{m,2} \times \ell_{n,2d}}$.

(P.3) For $n \geq m \geq 2$, $\forall d \in \mathbb{Z}_{\geq 2}$, by (P.1) and (P.2), if there exist $\tilde{h}_1^o, \ldots, \tilde{h}_m^o \in \mathbb{K}[x]_{=d}$ in the reduced echelon form so that $(h_1^o)^2$, $\tilde{h}_1^o \tilde{h}_2^o$, $(\tilde{h}_2^o)^2$, \dots , $\tilde{h}_1^o \tilde{h}_m^o$, \dots , $(\tilde{h}_m^o)^2$ are linearly independent over K, then \tilde{h}_1^2 , $\tilde{h}_1\tilde{h}_2$, \tilde{h}_2^2 , \ldots , $\tilde{h}_1\tilde{h}_m$, \ldots , \tilde{h}_m^2 are linearly independent for "almost" all" $\tilde{h}_1, \ldots, \tilde{h}_m \in \mathbb{K}[x]_{=d}$.

(P.4) Since any p in $\mathbb{K}[x_1,\ldots,x_n]_{=d}$ can be coerced into $\mathbb{K}[x_1,\ldots,x_n,x_{n+1}]_{=d}$, if (P.3) holds for $n = m$, then it holds for any $n \geq m$.

(P.5) Let $n = m$, $\tilde{h}_i = x_1^{d-1} x_i$, $i = 1, ..., n$. Forms $\tilde{h}_i \tilde{h}_j = x_1^{2(d-1)} x_i x_j$, $i, j = 1, ..., n$ are linearly independent. \Box

Proof. (of Lemma 7) Without loss of generality, let $i = n$. Fix the GRL order $>_{\text{G}}$ on $\mathbb{K}[x]$, with $x_1 > G$ $x_2 > G$... $>G$ x_n and let $p \in \mathbb{K}[x]_{=d}$. First, it is proved that if $LM(p) = x_n^d$, then $p = ax_n^d$, for some constant $a \in \mathbb{K}$, $a \neq 0$. As a matter of fact, since p is homogeneous, all its terms have the same degree. Thus, assume that $LM(p) = x_n^d$ and, by absurd, that p contains a monomial $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$, $\sum_{i=1}^n \beta_i = d$, different from x_n^d . This yields a contradiction, because if $x_1^{\beta_1} \cdots x_n^{\beta_n} \neq x_n^d$, $\sum_{i=1}^n \beta_i = d$, then $x_1^{\beta_1} \cdots x_n^{\beta_n} > G$ x_n^d , whence x_n^d is not the leading monomial of p. Therefore, the proof of (7.1) follows from Theorem 4. Moreover, if $x_i^{\mu_i} \in \mathcal{I}$, then $x_i \in \sqrt{\mathcal{I}}$, $i = 1, \ldots, n$, which proves (7.2). \Box

Proof. (of Lemma 8) Proof of (8.1). Let $\hat{a} \in \mathbb{K}^{\ell}$ be any specialization of the parameters. First, note that, since the polynomials $p_i(a, x)$, $i = 1, \ldots, m$, are homogeneous for any specialization, one has $p_i(\hat{a},0) = 0, i = 1,\ldots,m$, for each $\hat{a} \in \mathbb{K}^{\ell}$, whence $0 \in \mathbf{V}_{\mathbb{K}^n}(\mathcal{I}_{\hat{a}})$. Now, assume that there exists a point $\tilde{x} \in \mathbb{K}^n$, $\tilde{x} \neq 0$, belonging to $\mathbf{V}_{\mathbb{K}^n}(\mathcal{I}_{\hat{a}})$; this implies that $p_i(\hat{a}, \tilde{x}) = 0$, $i = 1, \ldots, m$. Therefore, taking into account the homogeneity, by letting $x = \theta \tilde{x}, \theta \in \mathbb{K}$, one has $p_i(\hat{a}, \theta \tilde{x}) = \theta p_i(\hat{a}, \tilde{x}) = 0, i = 1, \ldots, m$, which shows that all the points belonging to the line parameterized by $x = \theta \tilde{x}$ belong to $V_{\overline{k}}(I_a)$, which, therefore, is not finite.

Proof of (8.2). Let $\hat{a} \in \mathbb{K}^{\ell}$ be such that the variety $\mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}})$ of $\overline{\mathbb{K}}^n$ is finite. By (8.1), one has $\mathbf{V}_{\overline{\mathbb{K}}^{n}}(\mathcal{I}_{\hat{a}}) = \{0\}$, whence $\mathbf{V}_{\overline{\mathbb{K}}}(\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_i]) = \{0\}$; $\overline{\mathcal{I}_{\hat{a}}} \cap \mathbb{K}[x_i]$ is a principal ideal, which is therefore generated by one monic polynomial $q(x_i)$ in x_i , which satisfies $q(0) = 0$, because $\mathbf{V}_{\overline{\mathbb{K}}}(\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_i]) = \{0\}$. Since $\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_i]$ is homogeneous, the polynomial $q(x_i)$ must be necessarily homogeneous, whence $q(x_i) = x_i^{\mu_i}$, $i = 1, \ldots, n$. If $\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_i] = \langle \emptyset \rangle$, then $\mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}})$ is not finite, whereas if $\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_i] = \langle x_i^{\mu_i} \rangle, \mu_i \geq 1$, then $x \in \mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}})$ implies $x_i = 0$, for $i = 1, \ldots, n$.

Proof of (8.3). By assumption, $\mathcal{I} \cap \mathbb{K}[a] = \langle \emptyset \rangle$, whence

$$
\mathcal{I} \cap \mathbb{K}[a, x_i] = \langle q_{i,1}(a) x_i^{\mu_{i,1}}, \dots, q_{i,M_i}(a) x_i^{\mu_{i,M_i}} \rangle,
$$

where at least one of the polynomials $q_{i,j}(a)$ is not zero at the specialization $a = \hat{a}^o$, because otherwise $\mathbf{V}_{\overline{K}^n}(\mathcal{I}_{\hat{a}^o})$ would not be finite. Hence, $\mathbf{V}_{\overline{K}}(\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_i])$ is finite, for all \hat{a} that do not belong to the variety of the ideal $\langle q_{i,1}, \ldots, q_{i,M_i} \rangle$ of $\mathbb{K}[a], i.e.,$ for "almost" all" $\hat{a} \in \mathbb{K}^{\ell}$. The finiteness of $\mathbf{V}_{\mathbb{K}}(\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_1]) \cap \ldots \cap \mathbf{V}_{\mathbb{K}}(\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x_n])$ implies the finiteness of $\mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}})$, because $\mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}}) = \mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}} \cap \mathbb{K}[x]) \subseteq \mathbf{V}_{\overline{\mathbb{K}}^n}(\mathcal{I}_{\hat{a}} \cap (\mathbb{K}[x_1] \cup \ldots \cup \mathbb{K}[x_n])) \subseteq$ ${\bf V}_{\overline{{\mathbb K}}^n}(\vec({\mathcal I}_{\hat a}\cap \mathbb K[x_1])\cup\ldots\cup (\mathcal I_{\hat a}\cap \mathbb K[x_n]))\subseteq {\bf V}_{\overline{{\mathbb K}}^n}(\mathcal I_{\hat a}\cap \mathbb K[x_1])\cap \ldots\cap {\bf V}_{\overline{{\mathbb K}}^n}(\mathcal I_{\hat a}\cap \mathbb K[x_n]).$ \Box

Proof. (of Lemma 9) Proof of (9.1). Let $\mathcal{I} = \langle \frac{\partial p}{\partial x} \rangle$ and, for any $i \in \{1, ..., n\}$, let $\mathcal{G}_{\mathcal{I}}$ be the rGb of I, w.r.t. the GRL order $>_{G}$, with $a_1 >_{G} \ldots >_{G} a_{\ell} >_{G} x_j >_{G} x_i$, $\forall j \neq i$. Clearly, the quotient ring $\mathbb{K}[a, x]/\mathcal{I}$ is not finite dimensional; let $\mathcal B$ be its monomial basis, w.r.t. the above monomial order. Now, since $\mathcal B$ is the set of all monomials $a^{\beta}x^{\gamma} \notin$ $\langle \mathrm{LT}(\mathcal{I}) \rangle$, but $\langle \mathrm{LT}(\mathcal{I}) \rangle$ is finitely generated, there exists $\mu_i \in \mathbb{Z}_{\geq 1}$ such that $a^{\beta} x_i^{\mu_i} \in \mathrm{LT}(\mathcal{I})$, because $\mathbf{V}_{\mathbb{K}^n}(\mathcal{I}_{\hat{a}}) = \{0\}$, for $\hat{a} = \hat{a}^o$. Therefore, for each $i = 1, \ldots, n$, there exists an element of $\mathcal{G}_{\mathcal{I}}$ of the form $q_i(a)x_i^{\mu_i}$, where $q_i \in \mathbb{K}[a]$. Fix any $\hat{a} \notin \mathbf{V}_{\mathbb{K}^{\ell}}(\langle q_1, \ldots, q_n \rangle)$; for each $i \in \{1, \ldots, n\}$, if the GRL order \gt_G in $\mathbb{K}[x_1, \ldots, x_n]$, with $x_j >_G x_i$, $\forall j \neq i$, is used for the computation of the rGb $\mathcal{G}_{\mathcal{I}_{\hat{a}}}$ of $\mathcal{I}_{\hat{a}}$, then one has $x_i^{\mu_i} \in \mathcal{G}_{\mathcal{I}_{\hat{a}}}$, with $\mu_i \in \mathbb{Z}_{\geq 1}$, which proves (by Lemma 7) that $\mathbf{V}_{\overline{k}^n}(\overline{\mathcal{I}_a}) = \{0\}$ and that $\langle \frac{\partial p_{\hat{a}}}{\partial x} \rangle$ is primary, for "almost all" $\hat{a} \in \mathbb{K}^{\ell}$.

The proof of (9.2) follows from (9.1) .

$$
\qquad \qquad \Box
$$

Proof. (of Lemma 10) By Lemma 5, for "almost all" $p \in \sum_{2d,m}^{\mathbb{K}} [x]$, one has $p \in \widetilde{\Sigma}_{2d,m}^{\mathbb{K}}[x]$. Letting $h = [h_1 \dots h_m]^\top \in \mathbb{K}^m[x]_{=d}$, one can write $p = h^\top Wh$, where $W = \text{diag}(w_1, \dots, w_m)$, $\det(W) \neq 0$. By (2), each form $h_i \in \mathbb{K}[x]_{=d}$, $i = 1, \ldots, m$, can be taken as a specialization $\Phi_{n,d}(\hat{a}^i,x)$ of $\Phi_{n,d}(a^i,x)$. Hence, each form $p \in \Sigma_{2d,m}^{\mathbb{K}}[x]$ can be taken as a specialization $p(\hat{a}_{w,e}, x)$ of $p(a_{w,e}, x) = \sum_{i=1}^{m} w_i \Phi_{n,d}^2(a^i, x)$, where $a_{w,e} := [(a^1)^{\top} \dots (a^m)^{\top} w_1 \dots w_m]^{\top}$. Consider the ideals $\langle \frac{\partial p(a_w,e,x)}{\partial x} \rangle$ and $\langle h^{\top}(a_{w,e},x) \rangle$ of $\mathbb{K}[a_{w,e},x]$, where

$$
h(a_{w,e}, x) := [\Phi_{n,d}(a^1, x) \dots \Phi_{n,d}(a^m, x)]^\top.
$$

Since these two ideals are homogeneous for "almost all" specializations $a_{w,e} \in \mathbb{K}^{(\ell_{n,d}+1)m}$, the quotient ideal $\langle \frac{\partial p(a_{w,e},x)}{\partial x} \rangle$: $\langle h^{\top}(a_{w,e},x) \rangle$ is homogeneous for "almost all" specializations $a_{w,e} \in \mathbb{K}^{(\ell_n, d+1)m}$. Consider the specialization $\hat{a}_{w,e} \in \mathbb{K}^{(\ell_n, d+1)m}$ such that $\Phi_{n,d}(\hat{a}^i, x) = \sum_{j=1}^n x_j^d$, and $\hat{w}_i = 1, i = 1, \ldots, m$. It can be easily verified that, for such a specialization, the ideal $(\langle \frac{\partial p(\hat{a}_{w,e},x)}{\partial x} \rangle : \langle h^{\top}(\hat{a}_{w,e},x) \rangle)$ equals $\langle x_1^{d-1}, \ldots, x_n^{d-1} \rangle$, and hence $\mathbf{V}_{\overline{\mathbb{K}}^n}(\langle \frac{\partial p(\hat{a}_{w,e},x)}{\partial x} \rangle : \langle h^{\top}(\hat{a}_{w,e},x) \rangle) = \{0\}.$ Therefore, by Lemma (8.3), the variety

$$
\mathbf{V}_{\overline{\mathbb{K}}^n}(\langle \frac{\partial p(a_{w,e},x)}{\partial x}\rangle:\langle h^{\top}(a_{w,e},x)\rangle)
$$

is finite for "almost all" $a_{w,e} \in \mathbb{K}^{(\ell_{n,d}+1)m}$ and hence for "almost all" $p \in \Sigma_{2d,m}^{\mathbb{K}}[x]$. Hence, by (8.2) of Lemma 8, there exists $N \in \mathbb{Z}_{\geq 1}$ such that $x_n^N \in (\langle \frac{\partial p(\hat{a}_{w,e},x)}{\partial x} \rangle : \langle h^\top(\hat{a}_{w,e},x) \rangle),$ for "almost all" $a_{w,e} \in \mathbb{K}^{(\ell_{n,d}+1)m}$, and hence $x_n^N \in (\langle \frac{\partial p}{\partial x} \rangle : \langle h^{\top} \rangle)$, for "almost all" $p \in$ $\Sigma_{2d,m}^{\mathbb{K}}[x]$. This implies $x_n^N h_i \in \langle \frac{\partial p}{\partial x} \rangle$, $i = 1, \ldots, m$. Therefore, for "almost all" $p \in$ $\Sigma_{2d,m}^{\mathbb{K}}[x],$ one has $\langle h^{\top} \rangle \subseteq (\langle \frac{\partial p}{\partial x} \rangle : \langle x_n^N \rangle) = (\langle \frac{\partial p}{\partial x} \rangle : \langle x_n^{\infty} \rangle).$ \Box

Proof. (of Lemma 11) Consider $\mathcal{Q} = \langle \Phi_{n,d}(a^1, x), \dots, \Phi_{n,d}(a^m, x), 1 - yx_n \rangle$ of $\mathbb{K}[a_e, x, y]$, where y is an auxiliary variable.

(F.1) If $\mathcal{Q} \cap \mathbb{K}[a_e] \neq \langle \emptyset \rangle$, then $x_n \in \sqrt{\mathcal{J}_{\hat{a}_e}}$, $\forall \hat{a}_e \notin \mathbf{V}(\mathcal{Q} \cap \mathbb{K}[a_e])$, whence for "almost all" $\hat{a}_e \in \mathbb{K}^{m \ell_{n,d}}.$

(F.2) If $Q \cap \mathbb{K}[a_e] = \langle \emptyset \rangle$, then $x_n \notin \sqrt{\mathcal{J}_{\hat{a}_e}}$ for "almost all" $\hat{a}_e \in \mathbb{K}^{m \ell_{n,d}}$.

To prove (F.1), note that, for any specialization $\hat{a}_e \notin V(Q \cap \mathbb{K}[a_e])$, one has $\mathcal{Q}_{\hat{a}_e} = \langle 1 \rangle$, and therefore Theorem 1 implies $x_n \in \sqrt{\mathcal{J}_{\hat{a}_e}}$. The condition $\mathcal{Q} \cap \mathbb{K}[a_e] \neq \langle \emptyset \rangle$ implies that the variety $\mathbf{V}(\mathcal{Q} \cap \mathbb{K}[a_e])$ of $\mathbb{K}^{m \ell_{n,d}}$ does not coincide with the whole $\mathbb{K}^{m \ell_{n,d}}$. To prove (F.2), let $S \subseteq \mathbb{K}^{\ell}$ be the set of all specializations \hat{a}_e such that $\mathcal{Q}_{\hat{a}_e} = \langle 1 \rangle$; its Zariski closure \overline{S} cannot coincide with the whole $\mathbb{K}^{m \ell_{n,d}}$, because $\mathcal{Q} \cap \mathbb{K}[a_e] = \langle \emptyset \rangle$, whence $x_n \notin \sqrt{\mathcal{J}_{\hat{a}_e}}$, for all $\hat{a}_e \in \mathbb{K}^{m \ell_{n,d}} \setminus \overline{\mathcal{S}}$, where $\mathbb{K}^{m \ell_{n,d}} \setminus \overline{\mathcal{S}}$ is Zariski open.

Proof of (11.1). If $m = n$, then $\mathcal{Q} \cap \mathbb{K}[a_e]$ is a principal ideal; it is generated by one polynomial $q(a_e)$ (*i.e.*, $\mathcal{Q} \cap \mathbb{K}[a_e] = \langle q(a_e) \rangle$), which is the resultant

$$
Res(\Phi_{n,d}(a^1,x),\ldots,\Phi_{n,d}(a^n,x))
$$

of the *n* polynomials $\Phi_{n,d}(a^1, x), \ldots, \Phi_{n,d}(a^n, x)$, w.r.t. x (see [3, Ch 3, § 2]). By Theorem 2.3 of $[3, \text{pag }86]$, such a resultant vanishes if and only if the system of the *n* equations $\Phi_{n,d}(a^1, x) = 0, \ldots, \Phi_{n,d}(a^n, x) = 0$ has a non-zero solution in x over the algebraic closure $\overline{\mathbb{K}}$, and is a non-zero polynomial in the coefficients a^1, \ldots, a^n . Hence, if $q(\hat{a}_e) \neq 0$, then the system $\Phi_{n,d}(\hat{a}^1, x) = 0, \ldots, \Phi_{n,d}(\hat{a}^n, x) = 0$ admits only the trivial solution $x = 0$, *i.e.*, $\mathbf{V}(\mathcal{J}_{\hat{a}_e}) = \{0\}$ and hence $\mathbf{V}(\mathcal{Q}_{\hat{a}_e}) = \emptyset$. This means that $\mathcal{J}_{\hat{a}_e} = \langle 1 \rangle$, for all \hat{a}_e such that $q(\hat{a}_e) \neq 0$. Therefore, $\mathcal{Q} \cap \mathbb{K}[a_e] \neq \langle \emptyset \rangle$, whence (F.1) implies that $x_n \in \sqrt{\mathcal{J}_{\hat{a}_e}}$, for "almost all" $\hat{a}_e \in \mathbb{K}^{m\ell_{n,d}}$. If $n \leq m$, then the resultant of the first n polynomials (as well as of any other *n*-plet of such polynomials), $\text{Res}(\Phi_{n,d}(a^1,x),\ldots,\Phi_{n,d}(a^n,x))$, belongs to $\mathcal{Q} \cap \mathbb{K}[a_e],$ whence $\mathcal{Q} \cap \mathbb{K}[a_e] \neq \langle \emptyset \rangle$; (F.1) implies that $x_n \in \sqrt{\mathcal{J}_{a_e}}$, for "almost all" $\hat{a}_e \in \mathbb{K}^{m\ell_{n,d}}.$

Proof of (11.2). If $n > m$, then the resultant of the set of n polynomials obtained from $\{\Phi_{n,d}(a^1,x),\ldots,\Phi_{n,d}(a^m,x)\}\$ by adding $n-m$ zero polynomials, is the zero polynomial, whence $Q \cap \mathbb{K}[a_e]$ is the zero ideal $\langle \emptyset \rangle$; hence, $(F.2)$ implies that $x_n \notin \sqrt{\mathcal{J}_{a_e}}$, for "almost" all" $\hat{a}_e \in \mathbb{K}^{m\ell_{n,d}}$. \Box

Proof. (of Lemma 12) If $n \leq m$, then $\sqrt{\mathcal{J}}$ is "generically" maximal, since $\sqrt{\mathcal{J}}$ = $\langle x_1, \ldots, x_n \rangle$ "generically", thus proving the lemma in the case $n \leq m$. Let $n > m$.

For any $\hat{a}_e \in \mathbb{K}^{m \ell_{n,d}}$, let $\hat{h}_1(x^1, x^2) = \Phi_{n,d}(\hat{a}^1, x), \ldots, \hat{h}_m(x^1, x^2) = \Phi_{n,d}(\hat{a}^m, x)$, where $x = [(x^1)^\top (x^2)^\top]^\top, x^1 = [x_1 \dots x_m]^\top \text{ and } x^2 = [x_{m+1} \dots x_n]^\top. \text{ For "almost all" }$ $\hat{a}_e \in \mathbb{K}^{m \ell_{n,d}}$, apart from a reordering of the entries of $x, \{x_1, \ldots, x_m\}$ constitute a maximal independent set w.r.t. $\mathcal{J}_{\hat{a}_e} = \langle \hat{h}_1, \ldots, \hat{h}_m \rangle$, i.e., $\mathcal{J}_{\hat{a}_e} \cap \mathbb{K}[x_1, \ldots, x_{m-1}, x_m] = \langle \emptyset \rangle$ and $\mathcal{J}_{\hat{a}_e} \cap \mathbb{K}[x_1,\ldots,x_{m-1}] \neq \langle \emptyset \rangle$. Let $\mathcal{G}_{\mathcal{J}_{\hat{a}_e}} = \{g_1,\ldots,g_s\}$ be the rGb of $\mathcal{J}_{\hat{a}_e}$, w.r.t. the Lex order with $x_i >_L x_j$, $i \in \{1, \ldots, m\}$ and $j \in \{m+1, \ldots, n\}$. Coerce the polynomials g_i into $\mathbb{K}[x^2][x^1]$ and compute $k_{g_1,...,g_s} = \sum_{i=1}^s \mathrm{LC}(g_i)$, which belongs to $\mathbb{K}[x^2]$. Now, coercing $k_{g_1,...,g_s}$ into $\mathbb{K}[x]$, consider the saturation $(\mathcal{J}_{a_e} : \langle k_{g_1,...,g_s}^{\infty} \rangle)$. By [4], \mathcal{J}_{a_e} is primary if and only if $(\mathcal{J}_{\hat{a}_e} : \langle k_{g_1,...,g_s}^{\infty} \rangle) = \mathcal{J}_{\hat{a}_e}$. Clearly, if $(\mathcal{J}_{\hat{a}_e} : \langle k_{g_1,...,g_s}^{\infty} \rangle) = \mathcal{J}_{\hat{a}_e}$ for some specialization \hat{a}_e^o , then $(\mathcal{J}_{\hat{a}_e} : \langle k_{g_1,\dots,g_s}^{\infty} \rangle) = \mathcal{J}_{\hat{a}_e}$, for "almost all" specializations \hat{a}_e . To complete the proof, it is enough to find one of such \hat{a}_e^o . Take $\hat{h}_1^o = (x_1 + x_{m+1} + \ldots + x_n)^d, \ldots, \hat{h}_m^o =$ $(x_m + x_{m+1} + \ldots + x_n)^d$; the lemma is proven by (1.3) of Lemma 1.

Proof. (of Lemma 13) First, take $n = m$ and let $h(a_e, x) = [h_1(a^1, x) \dots h_n(a^n, x)]^\top$, where $a_e = [(a^1)^\top \dots (a^m)^\top]^\top$. For any specialization $\hat{a}_e \in \mathbb{K}^{m \ell_{n,d}}$ of a_e , let \hat{h} be the corresponding specialization of h. As well known [5], the n polynomials \hat{h}_i in the n unknowns x_i are algebraically independent if and only if $\det(\frac{\partial \hat{h}}{\partial x}) = 0$ in $\mathbb{K}[x]$; $\det(\frac{\partial h}{\partial x}) \neq 0$ in $\mathbb{K}[a_e, x]$ and can be rewritten as $\det(\frac{\partial h}{\partial x}) = q_1(a_e)x^{\alpha^1} + q_2(a_e)x^{\alpha^2} + \ldots$, where $q_i(a_e)$, $i = 1, 2, \ldots$, are non-zero polynomials and the α^{i} 's are multi-indices of the same length $|\alpha^i| = |\alpha^j|$. Let $\mathcal{Q} = \langle q_1(a_e), q_2(a_e), \ldots \rangle$ be an ideal of $\mathbb{K}[a_e]$; det $(\frac{\partial \hat{h}}{\partial x}) = 0$ in $\mathbb{K}[x]$ if and only if $\hat{a}_e \in \mathbf{V}(\mathcal{Q})$, thus proving the theorem, since $\mathbf{V}(\mathcal{Q}) \neq \mathbb{K}^{\bigcirc_{m\ell_{n,d}}^{op}}$. Similarly, for $n > m$. \Box

Proof. (of Lemma 14) By the proof of Theorem 5, each $p \in \widetilde{\Sigma}_{2d,m^*}^{\mathbb{K}}[x]$ can be taken as a specialization $p_{\hat{a}^*_e}(x) = p(\hat{a}^*_e, x)$ of $p(a^*_e, x) = \sum_{i=1}^{m^*} w_i h_i^2(a^i, x)$, where

$$
a_e^* = [(a^1)^\top \dots (a^{m^*})^\top w_1 \dots w_{m^*}]^\top,
$$

and, for "almost all" $a_e^* \in \mathbb{K}^{(\ell_{n,d}+1)m^*}$, the variety $\mathbf{V}_{\mathbb{K}^n}(\langle \frac{\partial p(a_e^*,x)}{\partial x} \rangle : \langle h^{\top}(a_e^*,x) \rangle)$ is finite. This implies the existence of $q \in \mathbb{K}[a_e^*]$ such that $q(a_e^*)x_n^{N^*} \in (\langle \frac{\partial p(a_e^*, x)}{\partial x} \rangle : \langle h^{\top}(a_e^*, x) \rangle) \cap$ $\mathbb{K}[a_e^*,x_n].$ Hence, for each $\hat{a}_e^* \in \mathbb{K}^{(\ell_{n,d}+1)m^*}$ such that $q(\hat{a}_e^*) \neq 0$, one has $(\langle \frac{\partial p(\hat{a}_e^*,x)}{\partial x} \rangle)$: $\langle x_n^{N^*} \rangle$ = $\langle h^{\top} \rangle$.

References

- [1] L. Menini, C. Possieri, and A. Tornambe, "Algebraic certificates of (semi)definiteness for polynomials over fields containing the rationals," IEEE Trans. Autom. Control, 2018.
- [2] A. R. Rajwade, Squares, vol. 171. Cambridge Univ. Press, 1993.
- [3] D. Cox, J. Little, and D. O'Shea, Using algebraic geometry. Springer Verlag, 1998.
- [4] P. Gianni, B. Trager, and G. Zacharias, "Gröbner bases and primary decomposition of polynomial ideals," J. of Symb. Computation, vol. 6, no. 2, pp. 149–167, 1988.
- [5] P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics. Springer, 1986.