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The fact that the mathematical formalism, used to make predictions on
quantum phenomena, is completely different from the mathematical formal-
ism used in classical probability, was recognized since the early days of quan-
tum theory in the late 1920’s.

However only in the early 1980’s it was realized that this difference of the
mathematical formalisms reflects a deeper probabilistic phenomenon: namely
the fact that, in general, the Bayes definition of ”conditional probability”
cannot be applied to the conditional probabilities that are considered in
quantum theory

(cf. [Ac81a], [Ac84] and [Ac86]) for a more systematic exposition.
This discovery lead to a rethinking of the basic axioms of probability

theory in the light of the new probabilistic ideas emerged from quantum
physics.

The new elements that quantum theory bought into the probabilistic
thought are essentially two:

i) the existence of incompatible events
ii) the ”chameleon effect”
Classical probability is based on Boolean logic, where it is postulated

that the ”join” of two meaningful proposition (”and”) is always a meaningful
proposition.

However, if we replace the platonic notion of ”proposition” by the empir-
ical notion of ”experimentally verifiable proposition”, we see that the exis-
tence of incompatible events implies the existence of statements which, when
considered individually, are empirically verifiable, but whose ”joint event” is
not. The most famous example, first pointed out by Heisenberg, is given by
the two statements:

– the position of a particle at time t is in an interval I
– the momentum of a particle at time t is in an interval J
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It is known that, if the intervals I and J are small enough, the joint event
is not empirically verifiable because of the Heisenberg principle.

Notice that this principle concerns a single particle and no probability is
involved.

A few years later H. Weyl formulated a statistical variant of the Heisen-
berg principle, expressing the fact that the product of the covariances of
position and momentum in a given quantum state cannot be smaller than a
certain quantity which is independent of the state considered.

The Heisenberg principle, in its original formulation, expresses a physical
limitation, not a logical impossibility. There is no logical reason why we
should not be able to measure with arbitrary precision, on the same particle
and at the same time, position and momentum. In fact classical mechanics
is a perfectly coherent theory from the logical point of view, but does not
contemplate such an impossibility.

The development of quantum probability has brought to light new forms
of incompatibility between pairs of events, which have a logic rather than
physical root. This type of incompatibility is not peculiar to quantum theory.

Consider, for example, the response of an iron ball, rotating along fixed
axis a to the action of a constant magnetic field, directed along a different
axis a. For example one can imagine that a is the z–axis of a frame, that
the rotating particle is ”fired” in a direction perpendicular to the z–axis, and
that one measures if it deviates on the left or on the right of the z–axis. This
is a perfectly measurable event and the same is true if we replace the z–axis
by another axis not parallel to z.

Let us denote A the former event and B the latter.
A little thought shows that the joint event A∩B cannot be experimentally

realized because a single particle cannot be simultaneously subject to the
”only action of the a–field” and to the ”only action of the b–field”: two
different magnets cannot be put in the same space point.

Another example can be taken from medicine: suppose that two different
medicines a and b are proposed as a cure of the same illness. We can sepa-
rately experiment medicine a or medicine b on a patient, but again the joint
event makes no sense because the same patient, at the same time, cannot be
cured ”only by medicine a ” and ” only by medicine b ”.

A third example is given by the color of a chameleon: the chameleon is
in a box and an experimentalists can measure either its color on a leaf (a)
or its color on the wood (b). It is clear that the simultaneous joint event
a ∩ b makes no sense because the same chameleon cannot be at the same
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time both ”only on the leaf” and ”only on the wood”.
Notice the physical difference between the three examples described above

and the following, more classical situation: in a box there are many balls
whose color can be either green or brown. Moreover each ball is either made
of glass or of wood. Clearly in this case we can make an experimental analysis
of the joint statistics ”color-material”.

The difference between the two types of examples considered above is
that, in the former case one measures the ”response” to an action; in the
latter one measures a property which is pre-existing to the measurement and
independent of it.

Notice however that in all the above situations the results of the measure-
ments are ”pre-determined”: the laws of classical electromagnetism allow (in
principle) to predict exactly the deviation of the particle once the initial data
(velocity, angular velocity, strength of the magnetic field, ... ) are known; the
laws of chemistry and biology allow a similar prediction for the medicines;
the knowledge that the chameleon is a usual one and not a mutant which
becomes brown on a leaf and green on a piece of wood, allows to predict
deterministically its color; finally for balls the situation is even simpler.

However it is also clear that the word ”predetermination” is used with a
different meaning in the two contexts: in the case of balls ”we measure what
it was”; in the case of chameleons ”we measure what it happens”.

In the former case we will speak of ”passive systems”; in the latter we
will speak of ”adaptive systems”.

The difference between the two cases has rather deep consequences on
the type of inductions that we can make in the two situations. Since statis-
tical inference is a generalization of inductive inference, it is clear that these
consequences will also have non trivial implications on the kind of statistical
inference we can make on the two types of systems.

To illustrate the implications for statistics of the difference between active
and passive systems let us consider the following variant of the above experi-
ments: consider two boxes; in one there are pairs of balls; each pair contains
1 green ball and 1 brown ball, moreover one ball of the pair weights 10 grams
and the other one 20 grams. The other box contains pairs of chameleons:
exactly one, in each pair weights 10g and the other 20g, moreover, in each
pair, exactly one is healthy (becomes green on a leaf, brown on a piece of
wood) and the other one is a mutant (green on wood, brown on leaf). In both
cases we do not know the statistics of the joint distributions color-weight.

Suppose you are interested in such a statistics at time t, but the rules of
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the game are such that you can do only one measurement at a time, both
on balls or on chameleons (incompatibility). A reasonable strategy for balls
would be the following: at time t you measure the color of one ball and the
weight of the other one. Suppose you find: ”brown” in ball 1 and ”10g” in
ball 2. Then you conclude that ball 1, at time t, is brown and weights 20g
and ball 2, at time t, is green and weights 10g.

Suppose now you want to apply the same strategy of measurement to
chameleons. Can you draw the same conclusion? No of course! In fact
suppose that, at time t, you measure the weight of chameleon 2 while he was
in the box and you find 10g. Suppose you measure, at time t, the color of
chameleon 1 on the leaf and you find ”brown”. You can only be sure that ”if
you had measured the color of chameleon 2 on the leaf you would have found
green”. However nothing prevents the possibility that the chameleon in the
box, i.e. at time t is brown. Since you are interested in the joint statistics
color-weight at time t, you are not allowed to make, for chameleons, the same
inference you made for balls.

Can we push this difference further? The answer is ”yes”. In my talk
a simple experimental situation will be described in which, by exploiting
the chameleon effect, one can reproduce exactly, by local independent bi-
nary choices of individuals who are situated far away of each other and
do not communicate with each other, exactly the same empirical correla-
tions that are experimentally obtained in the well known Einstein-Podolsky-
Rosenexperiments. In the past 37 years the possibility of realizing such an
experiment has been firmly denied by the entire community of physicists.

Without using the Chameleon effect, the possibility of such a reproduc-
tion is excluded by a mathematical constraint: an inequality among these
correlations, discovered by Bell and violated by some quantum mechanical
system. The probabilistic meaning of this inequality, first pointed out in
[Ac81a] will be shortly reviewed.
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