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Centro Vito Volterra, Università degli Studi di Roma “Tor Vergata”
WEB-page: http://volterra.mat.uniroma2.it,

Abstract

We prove that the structure of the classical dynamical system, constructed in [AcImRe01]
to reproduce the EPR correlations, is a natural consequence of the combination of the general
theory of classical dynamical systems with the extension of von Neumann measurement
theory, proposed in [Ac93] to include in it the requirements of locality and causality. We then
prove some a priori estimates which guarantee the convergence of the simulation procedure.

The program to run the experiment is available from the WEB-page: http://volterra.mat.uniroma2.it.

1 Introduction

In the paper [AcImRe01] we constructed a family of classical deterministic (macroscopic)
dynamical systems which, performing purely local and independent choices, reproduces the
EPR correlations hence violates the Bell inequality. In the same paper an experimental imple-
mentation of this theoretical construction using three separated and independent computers
was described.

As evident from Theorem (1) below and its proof, no arbitrary ingredients or artificial
selection procedures are inserted by hands in our model: everything is pre–determined in the
usual sense of classical deterministic dynamical systems.

The above mentioned results give an experimental and theoretical confirmation of the
thesis, first advocated by quantum probability, that there is absolutely no contradiction
between a realistic view of the world, locality and the predictions of quantum theory.

It also explains, by means of a concrete and easily understandable example, that this
apparent contradiction has its roots in a too naive view of the notion of classical dynamical
system. This naive view overlooks the existence of adaptive dynamical systems, i.e.
systems whose dynamical evolution depends on the environment (in the case of measurements
– on the observable to be measured). The chameleon metaphora gives a nice intuitive picture
of such systems.

In section (2) of the present paper we recall the statement and the proof of the main
result in [AcImRe01]. The proof presented here corrects some notational misprints in that
paper.

In section (3) we prove how the structure of the mathematical model described in section
(2) naturally follows from the combination of the standard theory of classical dynamical
systems with the local causal extension of von Neumann’s measurement theory proposed
in [Ac93]. This combination can be considered as a natural formulation of the theory of
adaptive dynamical systems.

Finally in section (8) we describe the estimates that guarantee the validity of the simu-
lation procedure.
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2 A local, deterministic, reversible, classical dy-

namical system realizing the EPR correlation

In this section we recall the definition of the EPR–chameleon dynamical system constructed in
[AcImRe01] and we prove that it reproduces the EPR correlations. The notions of dynamical
system, local dynamics, ... will be used here and will be introduced formally in the following
sections.

Definition 1 Let be given:
– a measurable (state) space

(Ω1 × Ω2,F1 ×F2)

– for each a, b ∈ [0, 2π] two ±1–valued maps (observables)

S(1)
a : ω1 ∈ Ω1 → S(1)

a (ω1) ∈ {+1,−1}

S
(2)
b : ω2 ∈ Ω2 → S

(2)
b (ω2) ∈ {+1,−1}

– for each a, b ∈ [0, 2π] two maps (local dynamics)

T1,a : Ω1 → Ω1 ; T2,b : Ω2 → Ω2

The local, deterministic, reversible, classical, adaptive (cf section (6)) dynamical system

{(Ω1 × Ω2,F1 ×F2, P ) , T1,a ⊗ T2,b}

is said to realize the EPR correlations if

〈S(1)
a S

(2)
b 〉 :=

∫ ∫
Ω1×Ω2

S(1)
a (ω1)S

(2)
b (ω2)dP ◦ T−1(ω1, ω2) = − cos(b− a)

We will consider a classical deterministic local dynamical system composed by two spa-
tially separated sub–systems (1,M1) and (2,M2) interpreted as follows:

– 1 and 2 are particles
– M1 and M2 are measurement apparata
– the state space of (1,M1) is [0, 2π]×R and also the state space of (2,M2) is [0, 2π]×R
– therefore the state space of the whole system (1,M1, 2,M2) is [0, 2π]2 × R2

The local adaptive dynamics T1,a, T2,b where 1, 2 are labels for particles and a, b are
labels for apparata, are defined by

T1,a, T2,b : [0, 2π]× R→ [0, 2π]× R (1)

T1,a(σ1, λ1) := (s1,a(σ1, λ1),m1,a(σ1, λ1))

T2,b(σ2, λ2) := (s2,b(σ2, λ2),m2,b(σ2, λ2))

s1a(σ1, λ1) := σ1, ; m1,a(σ1, λ1) := λ1
1

T ′1,a(σ1)
(2)

s2,b(σ2, λ2) := σ2 ; m2,b(σ2, λ2) := λ2
1

T ′2,b(σ2)
(3)
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where the functions
T ′1,a, T

′
2,b : [0, 2π]→ [0, 2π]

are defined by

T ′1,a(σ1) =

√
2π

4
| cos(σ1 − a)| , T ′2,b(σ2) =

√
2π , σ1, σ1 ∈ [0, 2π] (4)

In other words our adaptive dynamics (1) are given, for σ1, σ1 ∈ [0, 2π];λ1, λ2 ∈ R, by:

T1,a(σ1, λ1) := (σ1 ,
λ14√

2π
| cos(σ1 − a)|) , T2,b(σ2, λ2) := (σ2 ,

λ2√
2π

)

For (σ1, σ2 ∈ [0, 2π] , λ1, λ2 ∈ R) we define the local measures

pS(dσ1, dσ2) =
1

2π
δ(σ1 − σ2)dσ1dσ2

p1,a(σ1, dλ1) = δ(m1,a(σ1, λ1)−ma)dλ1

p2,b(σ2, dλ2) = δ(m2,b(σ2, λ2)−mb)dλ2

where ma, mb are arbitrary real numbers.
Remark (1) pS(dσ1, dσ2) is the initial preparation of the composite system (1, 2) and,

by the causality principle, it cannot depend on the setting of the apparatus.
In fact at time t = 0 the particles cannot know which will be the setting of the apparatus

at time t = 1 (the first time of interaction with it).
p1,a(σ1, dλ1) and p2,b(σ2, dλ2) are the initial preparations of the local apparata. They are

typical ”response–type” preparations and must be interpreted in the adaptive sense, i.e.:
if, at time t = 1, the particle will arrive to me in state σx(= σ1, σ2), then I will set myself

in the state p1,x(σx, dλx) (x = 1, 2 ) (cf. sections (4), (5) where it is described how the
theory of adaptive dynamical systems naturally leads to measures of this type. As explained
in section (6), the above scheme is the discrete idealization of a continuous time process of
adaptation.

Combining the above local measures we define the measure (initial distribution) on
[0, 2π]2 × R2:

pS(σ1, σ2)p1,a(σ1, λ1)p2,b(σ2, λ2)dσ1σ2dλ1dλ2 (5)

Finally, for a, b as above, define the ±1–valued maps (observables)

S(1)
a , S

(2)
b : [0, 2π]× R→ {±1} (6)

by

S(1)
a (σ, µ) = S(1)

a (σ) = sgn(cos(σ − a)) , S
(2)
b = −S(1)

b ; σ ∈ [0, 2π], µ ∈ R (7)

Theorem 1 In the above notations, the measure (5) is a probability measure on [0, 2π]2×R2.
Moreover ∫

S(1)
a (s1,a(σ1, λ1),m1,a(σ1, λ1))S

(2)
b (s2,b(σ2, λ2),m2,b(σ2, λ2)) (8)

·pS(σ1, σ2)p1,a(σ1, λ1)p2,b(σ2, λ2)dσ1dσ2dλ1dλ2 = − cos(a− b)
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Proof . The positivity is obvious. The normalization condition∫
pS(σ1, σ2)p1,a(σ1, λ1)p2,b(σ2, λ2)dσ1σ2dλ1dλ2 = 1 (9)

follows from (8) by choosing a = b. To prove (8) notice that, with the choices (7), (5), the
correlations (8) become∫ ∫ ∫ ∫

S(1)
a (s1,a(σ1, λ1),m1,a(σ1, λ1))S

(2)
b (s2,b(σ2, λ2),m2,b(σ2, λ2)) (10)

δ(m1,a(σ1, λ1)−ma)δ(m2,b(σ2, λ2)−mb)pS(σ1, σ2)dλ1dλ2dσ1dσ2

Changing variables

m1,a(σ1, λ1) = µ1 ; m2,b(σ2, λ2) = µ2

m′1,a(σ1, λ1)dλ1 = dµ1 ; m′2,b(σ2, λ2)dλ2 = dµ2

and noting that given a, b ∈ [0, 2π] for almost all a, b, σ1, σ2 ∈ [0, 2π] the functions

m1,a(σ1, ·), m2,b(σ2, ·) : R→ R (11)

given by (2), (3), (4), are invertible, one finds

dλ1 =
1

m′1,a(σ1,m
−1
1,a(σ1, µ1))

dµ1 =: T ′1,a(σ1, µ1)dµ1 (12)

dλ2 =
1

m′2,b(σ2,m
−1
2,b(σ2, µ2))

dµ2 =: T ′2,b(σ2, µ2)dµ2 (13)

and, after the change of variables, (10) becomes∫ ∫ ∫ ∫
S(1)
a (s1,a(σ1,m

−1
1,a(σ1, µ1)), µ1)S

(2)
b (s2,b(σ2,m

−1
2,b(σ2, µ2)), µ2)

T ′1,a(σ1, µ1)T ′2,b(σ2, µ2)δ(µ1 −ma)δ(µ2 −mb)pS(σ1, σ2)dµ1dµ2dσ1dσ2 (14)

Because of our choice (2), (3), (4) of the functions s1,a, s2,b and of the choice (7) of S
(1)
a , S

(2)
b ,

these have the form
S(1)
a (σ1) := S(1)

a (s1,a(σ1,m
−1
1,a(σ1,ma), µ1)

S
(2)
b (σ2) := S

(2)
b (s2,b(σ2,m

−1
2,b(σ2,mb), µ2) (15)

in the sense that the right hand side depends only on the variables written on the left hand
side. Therefore (14) becomes∫ ∫

S(1)
a (σ1)S

(2)
b (σ2)T ′1,a(σ1)T ′1,b(σ2)pS(σ1, σ2)dσ1dσ2 (16)

Finally, since

pS(σ1, σ2) =
1

2π
δ(σ1 − σ2) (17)

using (4) we arrive at∫
S(1)
a (σ)S

(2)
b (σ)T ′1,a(σ)T ′1,b(σ)

dσ

2π
= − 1

4

∫ 2π

0
cos(σ − a)sgn(cos(σ − b))dσ = − cos(b− a)

which is the thesis.
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3 (Passive) Dynamical systems

The scheme of a usual (passive, deterministic, conservative) dynamical system is the follow-
ing:

– at time 0 the system is in a well defined state (i.e. it has a well defined probability
distribution which, in the totally deterministic case, may be a measure concentrated on a
single atom).

– the system evolves with a dynamics which depends on its own initial state
and not on the initial state of the measurement apparatus
– the initial state of the measurement apparatus
does not depend on any state of the system
– each observable of the system has a definite value at any time (dynamics)
– at time 1 the experimentalist reads, i.e. measures, the value of an observable of the

system
The mathematical model of such dynamical systems is defined as follows.

Definition 2 A classical (discrete time) deterministic dynamical system is a quadruple:

{(Ω,F) , O , P , T}

where:
– (Ω,F) is a measurable space (the state space)
– O is a set of measurable maps from (Ω,F) to R (the observables)
– P is a probability measure (the preparation of the experiment) called the initial distri-

bution of the system.
– T : Ω→ Ω is an F–measurable map (called the dynamics)
The system is called reversible if T−1 exists and is measurable (P–a.e. invertibility is

sufficient).

For such a system the probability that at time 1 the state of the system is in a subset
A ⊆ S is given by

Pr{x ∈ S : Tx ∈ A} = Pr{x ∈ S : x ∈ T−1A} = P (T−1A) =: P ◦ T−1(A)

Equivalently we can write

P ◦ T−1(χA) = P (χT−1A) = P (χA ◦ T )

By taking linear combinations and limits, we arrive to the identity

P ◦ T−1(f) = P (f ◦ T )

for any measurable function f : S → C. More explicitly, if 〈·〉 denotes the expectation value
at time 1, then

〈f〉 =

∫
S
f(Tx)dP (x) =

∫
S
f(y)dP ◦ T−1(y) (18)
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4 Dynamical measurements

Definition 3 A dynamical measurement is a dynamical system of the form

{(S ×M,P1), T}

where S is called the system space and M the apparatus space.

In such a system the dynamics is uniquely determined by 2 maps

s : (σ, λ) ∈ S ×M → s(σ, λ) ∈ S

m : (σ, λ) ∈ S ×M → m(σ, λ) ∈M

through the identity
T (σ, λ) = (s(σ, λ),m(σ, λ)) (19)

The expectation value of any observable

f : S ×M → R

of the composite system can be evaluated using (18) and (19). One finds

〈f〉 =

∫
S

∫
M
f(σ, λ)d(P1 ◦ T−1)(σ, λ) =

∫
S

∫
M
f(T (σ, λ))dP1(σ, λ) =

=

∫
S

∫
M
f(s(σ, λ),m(σ, λ))dP1(σ, λ)

In the following we will assume that both S and M are subsets of the real line R and we will
write all measures as densities with respect to the Lebesgue measure (distribution densities
being allowed). If f is chosen of the form

f = F ⊗G

where F : S → R and G : M → R are observables of the system and the apparatus
respectively, then

〈f〉 =

∫
S

∫
M
F (σ)G(λ)d(P1 ◦ T−1)(σ, λ) =

∫
S

∫
M
F (s(σ, λ))G(m(σ, λ))dP1(σ, λ) =

=

∫
S

∫
M
F (s(σ, λ))G(m(σ, λ))p(σ, λ)dσdλ

In general we want to measure F (an observable of the system) and to this goal we must
always associate to it an observable G = GF of the measurement apparatus. We call this
observable the form factor of the apparatus. With no loss of generality we can restrict our
attention to those form factors of the apparatus, i.e. G, which satisfy the conditions

G(λ) ≥ 0∫
S

∫
M
G(λ)d(P ◦ T−1)(σ, λ) = 1
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i.e. that G is a (P ◦ T−1)–probability density. Equivalently:

G(m(σ, λ))p(σ, λ) ≥ 0∫
S

∫
M
G(m(σ, λ))p(σ, λ))dσdλ = 1

In real life measurements only the values of F are considered so that the values of G are
averaged over. This means that the quantity G(m(σ, λ))p(σ, λ))dσdλ behaves like a single
object: an effective probability measure. For example, if for P–almost all σ ∈ S the map

mσ : λ ∈M → mσ(λ) := m(σ, λ) ∈M

is invertible, then we can write

〈F ⊗G〉 = 〈F 〉G =

∫
S

∫
M
F (s(σ, λ))pG(σ,m(σ, λ), λ)dλ

where the effective probability measure pG is given by

pG(σ,m(σ, λ), λ)dλ := G(m(σ, λ))p(σ,m−1
σ m(σ, λ))dλ

5 Independent preparations

Suppose that the initial preparations of the system and of the apparatus are independent:

dP (σ, λ) = dPS(σ)dPM (λ)

or equivalently, for the density:

p(σ, λ) = pS(σ)pM (λ)

In this case, and in the above notations,

G(m(σ, λ))p(σ, λ) = G(m(σ, λ))pS(σ)pM (σ, λ)

As explained in the previous section, the details of the function G are very seldom known
explicitly and what one can experimentally control is the combined action of G and pM , i.e.
one introduces the effective probability density

p̂M (σ,m(σ, λ), λ) := G(m(σ, λ))pM (σ, λ)

With these notations the expectation value 〈F 〉 becomes

〈F 〉 =

∫
S

∫
M
F (s(σ, λ))pS(σ)p̂M (σ,m(σ, λ), λ)dσdλ (20)

In other terms, the effective measure p̂M (σ,m(σ, λ), λ)dσ includes the information on the
evolution of the apparatus observable. A large class of natural examples of apparatus ob-
servables G, satisfying the conditions listed above can be constructed as follows.

It is clear that, in any real measurement, the apparatus is prepared in such a way that
the system will not interact with all its possible (micro–)states, but only with a well defined
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subset of them. This means that one fixes a set A ⊆ M of states of the apparatus (say –
macrostates) and the measurement is conditioned on this set.

For example the set A can be specified by the space location of the apparatus, its location
and extension, its orientation, a definite range of energies,...

Therefore, if F is any observable of the system S, its experimentally obtained mean value
will be of the form

〈F 〉 =

∫
S

∫
M
F (σ)

χA(λ)

P1(S ×A)
d(P1 ◦ T−1)(σ, λ) (21)

Using the general formula (18) and (19) we can write this expectation value in the form

〈F 〉 =

∫
S

∫
M
F (s(σ, λ))

χA(m(σ, λ))

P1(S ×A)
dP1(σ, λ) (22)

The detailed description of the set A ⊆ M is in general impossible so what one does in
practice is to consider globally the measure

χA(m(σ, λ))

P1(S ×A)
dP1(σ, λ) (23)

as an effective probability measure

dP (σ,m(σ, λ), λ) (24)

and to model (phenomenologically) this effective measure.
In terms of the effective measure (24) the expectation value (22) becomes

〈F 〉 =

∫
S

∫
M
F (s(σ, λ))dP (σ,m(σ, λ), λ) (25)

and for simplicity we will further restrict our attention to the case in which P (σ,m(σ, λ), λ)
does not explicitly depend on λ. In this case the expectation value (22) becomes

〈F 〉 =

∫
S

∫
M
F (s(σ, λ))dP (σ,m(σ, λ)) (26)

Notice the difference with the expectation value (18) for usual (passive) dynamical sys-
tems, which in this case would look like

〈F1〉 =

∫
S

∫
M
F1(s(σ, λ)),m(σ, λ))dP (σ, λ) (27)

This difference is only apparent because, as explained in the above discussion, (26) is obtained
from (27) with the particular choice F1 = F ⊗G.

If the preparations of the system and of the apparatus are independent:

dP1(σ, λ) = p(σ, λ)dσdλ = dPS(σ)dPM (λ) = pS(σ)pM (λ)dσdλ

then the effective probability measure (24) has the form

dP (σ,m(σ, λ), λ) =
χA(m(σ, λ))

P1(S ×A)
dP1(σ, λ) =
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=
χA(m(σ, λ))

PM (A)
dPS(σ)dPM (λ) = dPS(σ)P̂M (m(σ, λ), dλ)

where we have introduced the notation

P̂M (m(σ, λ), dλ) :=
χA(m(σ, λ))

PM (A)
dPM (λ) = pS(σ)dσ

χA(m(σ, λ))

PM (A)
pM (λ)dλ

The local, causal measure constructed in [AcIR01] has precisely this form.
Notice that in general the positive measures P̂M (m(σ, λ), dλ) will not be normalized, i.e.

it will not be true that for all σ ∈ S, up to a set of PS–measure zero, one has∫
M
P̂M (m(σ, λ), dλ) = 1

The normalization condition will hold in general only for the global measure:∫
S
dPS(σ)

∫
M
P̂M (m(σ, λ), dλ) = 1

For such a measure the expectation value (26) becomes

〈F 〉 =

∫
S

∫
M
F (s(σ, λ))dPS(σ)P̂M (m(σ, λ), dλ) (28)

and, in terms of densities

〈F 〉 =

∫
S

∫
M
F (s(σ, λ))pS(σ)dσp̂M (m(σ, λ), λ)dλ (29)

The fact that the normalization condition does not hold for P̂M is precisely the new mathe-
matical ingredient which has allowed to overcome the multiplicity of no–go theorems which
have proliferated in the past 40 years, starting from the Bell inequality. In fact it has been
proved in the appendix of the paper [AcImRe01] that, if the positive measures P̂M (m(σ, · )
are normalized, then it is impossible to violate Bell’s inequality.

6 Adaptive deterministic dynamical systems

The above considerations suggest to study the properties of the probability measures which
define expectations values of the form (26). In order to carry out this investigation, we have
to make more precise what is meant by a classical, adaptive, local, causal dynamical system.

Adaptive deterministic dynamical systems describe the following typical situation:
– a system is in a box at time 0
– the system evolves with a dynamics which depends on:
(i) its own initial state at time 0
(ii) the state of the measurement apparatus at the first time the system interacts with

the measurement apparatus, say, time 1
– the state at time 1 of the measurement apparatus depends on the state of the system

at time 1
– each observable of the system has a definite value at any time (dynamics)
– the experimental measure takes place at time 1
The von Neumann measurement scheme starts at time 1. Therefore for this scheme:
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– the initial state of the system is at time 0
– the initial state of the measurement apparatus is at time 1 hence it depends on the

initial state of the system at time 1
This is an idealization of the following physical situation:
– at time 0 the initial state of both system and apparatus are independent
– gradually each system begins to feel the interaction of the other
– this interaction cumulates until, at time 1, it triggers a macroscopic reaction which

activates the detector
The mathematical model of an adaptive dynamical systems reflects the intuitive idea that,

in an adaptive dynamical system, we measure the response to an apparatus pre–disposed to
measure an observable A.

Therefore the preparation of our system depends on A. Moreover also the dynamical
evolution of our system will depend on A (chameleon effect).

Definition 4 A classical deterministic adaptive dynamical system is a quadruple:

{(Ω,F) , O , {PA}A∈O , {TA}A∈O}

where:
– (Ω,F) is a measurable space (the state space)
– O is a set of measurable maps from (Ω,F) to R (the observables)
– for each A ∈ O:
(i) PA is a probability measure (the preparation of the experiment)
(ii) TA : Ω→ Ω is an F–measurable map (the adaptive dynamics)
The system is called reversible if T−1

A exists and is measurable for each A ∈ O.

7 Local causal probability measures for composite

systems

Consider a classical dynamical system composed of two particles (1, 2) with state space S1,
S2 respectively and two apparata A1, A2 with state spaces M1, M2 respectively. The state
space of the composite system will then be

Ω = S1 × S2 ×M1 ×M2 (30)

According to von Neumann’s measurement theory a measurement of the system (1, 2) by
means of the apparatus (A1, A2) will be described by a reversible dynamical system

Tt : Ω→ Ω

If time is discretized such a dynamics is described by a single map

T : Ω→ Ω

The preparation of the experiment is described by a probability measure P on Ω

P ∈ Prob (Ω)

The two additional requirements of:
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(i) locality

(ii) causality

were not discussed by von Neumann. Following [Ac93], let us introduce these notions in von
Neumann’s measurement scheme.

Definition 5 A dynamics T on the state space (30) is called local if it has the form

T = T1 ⊗ T2

where
T1 : S1 ×M1 → S1 ×M1

T2 : S2 ×M2 → S2 ×M2

are dynamics.

Definition 6 A probability measure P on the space (30) is called local and causal if it has
the form

P (dσ1, dσ2, dλ1, dλ2) = PS(dσ1, dσ2)P1(σ1, dλ1)P2(σ2, dλ2) (31)

where PS(dσ1, dσ2) is a probability measure on S1 × S2. For all σ1 ∈ S1, P1(σ1, dλ1) is a
positive measure on M1.

For all σ2 ∈ S2, P2(σ2, dλ2) is a positive measure on M2.

Definition 7 A local and causal probability measure on the space (30)

PS(dσ1, dσ2)P1(σ1, dλ1)P2(σ2, dλ2) (32)

is called trivial if, denoting ∫
M1

P1(σ1, dλ1) := p1(σ1) (33)∫
M2

P2(σ2, dλ2) := p2(σ2) (34)

one has:
p1(σ1)p2(σ2) = 1 ; PS − a.e. (35)

Theorem 2 The local causal probability measure (32) is trivial if and only if both P1 and
P2 are conditional probabilities, i.e. if and only if

pj(σj) = 1 ; PS,j − ∀σj ∈ Sj ; j = 1, 2 (36)

where PS,1, PS,2 denote the marginal measures of PS.

Proof. Suppose that (32) is trivial. Then by condition (35) there exists a set N ⊆ such that

PS(N) = 0

and ∀ (σ1, σ2) ∈ N c(= S1 × S2\N)

p1(σ1)p2(σ2) = 1
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If N c = S1×S2 this clearly implies that both p1 and p2 are constant (hence = 1) PS–a.e. In
fact ∀σ1 ∈ S1

p1(σ1) =
1

p2(σ2)
; ∀σ2 ∈ S2

which implies that p2 is constant and therefore also p1.
In the general case the argument is similar: denote N c

j (j = 1, 2) the projection of N c

on Sj . Then by Lemma (1) below N c
1 , N c

2 have measure 1 for the marginal measures of PS .
Moreover ∀σ1 ∈ N c

1

p1(σ1) =
1

p2(σ2)
; ∀σ2 ∈ N c

2

hence p2 is constant on N c
2 and similarly p1 is constant on N c

1 .
But then p1 ⊗ p2 is constant on N c

1 ×N c
2 which has measure 1 because N c

1 ×N c
2 ⊇ N c

Lemma 1 Let (S1 × S2, P ) be a probability space let

πj : S1 × S2 → Sj ; j = 1, 2

denote the canonical projections:
πj(s1, s2) = sj

and let
Pj := P ◦ π−1

j ; j = 1, 2

denote the marginal measures of P . Then, if U ⊆ S1×S2 has measure 1, also πj(U) (j = 1, 2)
has Pj–measure 1.

Proof. Since π−1
j (πj(U)) ⊇ U

Pj(πj(U)) = P (π−1
j (πj(U)) ⊇ P (U) = 1

Lemma 2 On the space (30) there exist non trivial, local, causal probability measures.

Proof. Because of Theorem (2) our problem is to construct fields of positive measures

σ1 ∈ S1 7→ P1(σ1, ·) ; σ2 ∈ S2 7→ P2(σ2, ·)

on M1 and M2 respectively, enjoying the following property: denoting

pj(σj) :=

∫
Mj

Pj(σj , dλj) ; j = 1, 2

the (positive) functions p1(σ1), p2(σ2) are not P–a.e. equal to 1, but p1(σ1)p2(σ2) is P–
integrable and its integral is equal to 1.

To this goal it is sufficient to consider arbitrary positive measures µj on Mj (j = 1, 2)
and arbitrary non constant, bounded, positive functions p̂j ∈ L∞ (Sj , PS,j) with different
mean values. Then p̂1(σ1)p̂2(σ2) is bounded hence P–integrable. Denoting Z the integral
P (p̂1 ⊗ p̂2), it is clear that the fields of measures

σj ∈ Sj 7→ Pj(σj , ·) :=
p̂j(σj)√

Z
µj( · ) ; (j = 1, 2)

have the required properties.
By taking convex combinations and limits thereof one constructs more general examples.

12



8 The role of non trivial local causal measures in

the simulations of EPR type experiments

If one calculates the EPR correlations with a local causal measure, one finds (in obvious
notations) ∫

S1×S2

∫
M1

∫
M2

S(1)
a (σ1)S

(2)
b (σ2)PS(dσ1, dσ2)P1,a(dσ1, dλ1)P2,b(σ2, dλ2)

=

∫
S1×S2

PS(dσ1, dσ2)

[∫
M1

S(1)
a (σ1)

P1,a(σ1, dλ1)

p1,a(σ1)

]
[∫

M2

S
(2)
b (σ2)

P2,b(σ2, dλ2)

p2,b(σ2)

]
p1,a(σ1)p2,b(σ2)

Notice that the integrals in square brackets are functions with values in [−1,+1], however
the probability measure

p1,a(σ1)p2,b(σ2)PS(dσ1, dσ2)

depends on a and b unless

p1,a(σ1)p2,b(σ2) = 1 ; PS(dσ1, dσ2)− a.e.

i.e. unless P is trivial and in this case the EPR correlations will always satisfy the Bell
inequality.

However if the measure is non trivial, the dependence on a and b of the distribution at
the source prevents the possibility to apply the Bell inequality.

In other words: the EPR correlations with respect to a local causal measure will not, in
general, satisfy the Bell inequality. Therefore the problem of the local violation of the Bell
inequality can be reformulated as follows:

can one construct a local causal probability measure on a space of the form

S1 × S2 ×M1 ×M2

and {±1}–valued random variables S
(j)
x such that the pair correlations of these random

variables reproduce the EPR correlations?
In the paper [AcIR01] such a measure was first constructed.

9 The measurement and the simulation problem

Definition 8 The problem of measurement consists in approximating the expectation value
(18) by the empirical average of a sequence (fj)j=1,...,N of measured values of f :

1

N

N∑
j=1

fj (37)

Definition 9 The problem of simulation consists in producing a sequence of data (xj), the
initial states, such that the empirical average

1

N

N∑
j=1

f(Txj)

is a good approximation of the expected value (18).

13



Remark. In the problem of measurement one needs not to know the dynamics T or the
initial states (xj). In the problem of simulation, this is necessary.

Similarly for the probability P1: in the problem of measurement one does not need to
know the probability measure P1, but this is reproduced according to the following scheme

In the average (37) one knows that each measured value corresponds to an (unknown)
final state Txj . Now, among the Txj some might be equal among themselves. Denote

{s1, . . . , sM}

the set of all mutually different Txj and, for each h = 1, . . . ,M , denote

Fh := {j ∈ {1, . . . , N} : Txj = sh} = {j ∈ {1, . . . , N} : xj = T−1sh}

with these notations

1

N

N∑
j=1

fj =
1

N

∑
f

(Txj) =
1

M

M∑
h=1

f(sh)
|Fh|
N
∼ 1

M

M∑
h=1

f(sh)p(T−1sh)

∼
∫
S
f(s)d(P ◦ T−1)(s)

where, here and in the following, the symbol ∼ denotes a good approximation and |F | denotes
the cardinality of the set F . In the simulation problem we have to:

(i) know the probability distribution P1 ◦ T−1

(ii) produce a sequence of points (yj)
N
j=1 such that

1

N

N∑
j=1

f(yj) ∼
∫
S
f(y)d(P ◦ T−1)(y) (38)

In the following lemma we prove that, for a general class of functions f and of measures
P1, sequences (yj) satisfying (38) always exist. Moreover from now on we suppose that all
measures are regular, i.e. the measure of the total space is the sup of the measures of compact
subsets.

Moreover the proof of the lemma will provide an algorithm to produce such sequences.

Lemma 3 In the above notations, suppose that

(i) S = Rm, M = Rk for some m, k ∈ N

(ii) the set of points of discontinuity for f has P1–measure zero and f is bounded on S

(iii) for any ε > and x ∈ S which is a point of discontinuity for f , there is an open ball
B(x) containing x such that

P1(B(x)) < ε (39)

Then for any ε > 0, there exists a natural integer N ∈ N and a sequence of point y (yj) in
S such that ∣∣∣∣∣∣ 1

N

N∑
j=1

f(yj)−
∫
S
f(y)d(P ◦ T−1)(y)

∣∣∣∣∣∣ ≤ ε

14



Proof. Given ε > 0, fix a compact set Sε such that

P (S\Sε) ≤
ε

3‖f‖′∞

‖f‖′∞ := min{1, ‖f‖∞}

Such a set Sε always exists.
Now fix a finite open cover (Bj)

M0
j=1 with the property that, for any j = 1, . . . ,M

|f(x)− f(y)| < ε

3
; ∀x, y ∈ Bj

From (Bh)M0
h=1 form a disjoint partition (Qh)Mh=1 of Sε and, for each j = 1, . . . ,M0, fix a point

Tx0
h ∈ Qh

Having fixed M , (x0
h), (Qh) find natural integers Kh, N (h = 1, . . . ,M) such that∣∣∣∣Kh

N
− P1(Qh)

∣∣∣∣ ≤ ε

3M‖f‖′∞

The existence of such numbers Kh, N will be proved in Lemma (4).
Notice that in this case

1− ε

3‖f‖′∞
≤
∑
h

P1(Qh) =

(∑
h

{
P1(Qh)− Kh

N

})
+

∑
hKh

N
≤ 1

and ∣∣∣∣∣∑
h

(P1(Qh)− Kh

N

)∣∣∣∣∣ ≤ εM

3M‖f‖′∞
≤ ε

3‖f‖′∞

therefore

1− 2ε

3‖f‖′∞
≤
∑M

h=1Kh

N
≤ 1 +

ε

3‖f‖′∞
(40)

which means that
M∑
h=1

Kh ∼ N

In the following we assume that
M∑
h=1

Kh = N

The precise meaning of this approximation will be explained in Lemma (4) below.
Having defined N and (Kh) form a new sequence

x1, . . . , xN

with the property that ∀h = 1, . . . ,M

|{j : xj = x0
h}| = Kh

15



For such a sequence∣∣∣∣∣∣ 1

N

N∑
j=1

f(Txj)−
M∑
h=1

f(Tx0
h)P (Qh)

∣∣∣∣∣∣ =

∣∣∣∣∣
M∑
h=1

f(Tx0
h)
Kh

N
−

M∑
h=1

f(Tx0
h)P (Qh)

∣∣∣∣∣ ≤
≤ ‖f‖′∞

M∑
h=1

∣∣∣∣Kh

N
− P (Qh)

∣∣∣∣ ≤ ε

3

Therefore ∣∣∣∣∣∣ 1

N

N∑
j=1

f(Txj)−
∫
S
f(Tx)dP (x)

∣∣∣∣∣∣ ≤
≤ ε

3

∣∣∣∣∣
M∑
h=1

f(Tx0
h)P (Qh)−

∫
∪Mh=1Qh

f(Tx)dP (x)

∣∣∣∣∣+

∫
S\(∪Mh=1Qh)

|f(Tx)|dP (x) ≤

≤ 2ε

3
+

∣∣∣∣∣
M∑
h=1

∫
Qh

f(Tx0
h)dP (x)−

M∑
h=1

∫
Qh

f(Tx)dP (x)

∣∣∣∣∣
≤ 2ε

3
+

M∑
h=1

∫
Qh

|f(Tx0
h)− f(Tx)|dP (x) ≤ ε

Lemma 4 In the notations and assumptions of the previous Lemma, let us denote

N0 :=
M∑
h=1

Kh

then, for any h = 1, . . . ,M ∣∣∣∣Kh

N0
− Kh

N

∣∣∣∣ ≤ 3ε

‖f‖′∞

Proof. For any h = 1, . . . ,M ∣∣∣∣Kh

N0
− Kh

N

∣∣∣∣ =

∣∣∣∣ NN0
− 1

∣∣∣∣ Kh

N

But from (40) we now that

1

1 + ε
3‖f‖′∞

≤ N

N0
≤ 1

1− 2ε
3‖f‖′∞

Therefore

1− 1

1 + ε
3‖f‖′∞

≥ 1− N

N0
;

N

N0
− 1 ≤ 1

1− 2ε
3‖f‖′∞

− 1

But for any 0 < δ < 1/2
1

1− δ
− 1 =

δ

1− δ
≤ 2δ

Therefore ∣∣∣∣ NN0
− 1

∣∣∣∣ ≤ m0

{
4ε

3‖f‖′∞
,

8ε

3‖f‖′∞

}
≤ 3ε

‖f‖′∞
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Lemma 5 Let P be a Borel probability measure on Rd and let f : Rd → R be a function
which is continuous on the complement of a set of measure zero and P–integrable. Then, for
any ε > 0 there exists a finite set

I1, . . . , IK ; K ∈ N (41)

of mutually disjoint subsets of Rd with the following property: for any choice of the points

x0
h ∈ Ih ; h = 1, . . . ,K∣∣∣∣∣

∫
Rd
f(x)P (dx)−

∫
Rd

K∑
h=1

f(x0
h)χIh(x)P (dx)

∣∣∣∣∣ ≤ ε (42)

Proof . Since f is P–integrable, denoting ‖f‖1 its L1(P )–norm, one has, for any L > 0,

‖f‖1 ≥
∫
{x∈Rd:|f(x)|>L}

|f(x)|P (dx) ≥ LP ({x ∈ Rd : |f(x)| > L})

Therefore the left hand side of (42) is less or equal than

≤ ε

3
+
ε

3
+

∣∣∣∣∣
∫
S0

f(x)P (dx)−
K∑
h=1

f(x0
h)P (Ih)

∣∣∣∣∣
where S0 is a compact set. Therefore we can find a finite partition

I1, . . . , Ih ; Ij ∩ Ih = φ ; j 6= 0

K⋃
j=1

Ij = S0

such that the above integral is equal to

2ε

3
+

∣∣∣∣∣
K∑
h=1

∫
Ih

(f(x)− f(x0
h))P (dx)

∣∣∣∣∣ ≤ 2ε

3
+

K∑
h=1

∫
Ih

|f(x)− f(x0
h)|P (dx) ≤

≤ 2ε

3
+
ε

3

K∑
h=1

P (Ih) =
2ε

3
+
ε

3
P (S0) ≤ 2ε

3
+
ε

3
= ε

Now choose arbitrary points

x0
h ∈ Ih ; h = 1, . . . ,K

Then, if L is chosen so that
2‖f‖1
L

≤ ε

3

one has ∣∣∣∣∣
∫
S
f(x)P (dx)−

K∑
h=1

f(x0
h)P (Ih)

∣∣∣∣∣ ≤∫
S(L)∪B

|f(x)|P (dx) +

∣∣∣∣∣
∫

(S(L)∪B)c
f(x)P (dx)−

K∑
h=1

f(x0
h)P (Ih)

∣∣∣∣∣ =
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=

∫
S(L)
|f(x)|P (dx) +

∫
B\S(L)

|f(x)|P (dx) +

∣∣∣∣∣
∫
S0

f(x)P (dx)−
K∑
h=1

f(x0
h)P (Ih)

∣∣∣∣∣
we conclude that, for any L > 0, there is an open set S(L) ⊆ Rd such that∫

S(L)
|f(x)|P (dx) <

2‖f‖1
L

(43)

|f(x)| ≤ L ; ∀x ∈ S(L)c (44)

By assumption f is continuous outside a set N of P–measure zero. Since P is a Borel measure
on Rd and P (N) = 0, there is an open set B containing N and such that

P (B) ≤ ε/3L (45)

It follows that the set
S0 := S(L)c ∩Bc

is compact and therefore f is uniformly continuous on S0. Hence there exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε/3

Cover S0 by a finite set of balls of radius δ/2 and extract from partition of S0:

Lemma 6 In the notations and assumptions of Lemma (5), if either

(i) f is bounded

(ii) there exists one x in the domain of f such that |f(x)| ≤ 1

Then the family of sets (41) can be chosen to be a partition of Rd if one replaces, in (42),
f by the function f0, equal to f on S0 and to f(x) on Sc0 where, in case (i) x is an arbitrary
point in the domain of f .

Proof . If f is bounded then one can choose, in Lemma (5),

S(L) = φ ; L := max{1, ‖f‖∞}

Then (43), (44) hold and defining

I0 := Sc0 = Bc ; x0
0 = x

(x is an arbitrary point in the domain of f) one has∣∣∣∣∣
∫
Rd
f(x)P (dx)−

∫
Rd

K∑
h=0

f0(x0
h)χIh(x)P (dx)

∣∣∣∣∣ (46)

≤

∣∣∣∣∣
∫
Rd
f(x)P (dx)−

∫
Rd

K∑
h=1

f(x0
h)χIh(x)P (dx)

∣∣∣∣∣+

∫
B
|f0(x)|P (dx)

Using (42) and (45) this is

≤ ε+ |f(x)|P (B) ≤ ε+
ε|f(x)|

3L
≤ 2ε
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and, since ε is arbitrary, the thesis follows. In case (ii) one defines

I0 = Sc0 ; x0
0 = x

with x as in the statement of the theorem. Then, with the same argument as above, the
quantity (46) is majorized by∣∣∣∣∣

∫
Rd
f(x)P (dx)−

∫
Rd

K∑
h=1

f(x0
h)χIh(x)P (dx)

∣∣∣∣∣+

∫
Sc0

|f0(x)|P (dx)

≤ ε+ |f(x)|P (Sc0) ≤ ε+ P (S(L)) + P (B)

≤ ε+
ε

3
+

ε

3L
< 2ε

and again the thesis follows from the arbitrariness of ε.

Remark. Notice that, in the notations of (6), one has

Range (f0) ⊆ Range (f)

i.e., replacing f by f0, we are not “adding new values” to the function f . In the simulation of
physical phenomena this condition is important because the f(xj) correspond to measured (or
measurable) values of an observable f and, in the empirical averages used in the simulations,
we want that only these values appear.

Lemma 7 Let (qn) be an increasing sequence of numbers in [0, 1]. On the space of sequences
in [0, 1]

Ω :=
∏
N

[0, 1]

define the probability measure

P0(A) =

∫
π0(A)

dx

where
π0 : (xn) ∈

∏
N

[0, 1]→ x0 ∈ [0, 1]

is the projection onto the 0–th coordinate.
Then for a set of sequences of P0–probability 1 one has, ∀α ∈ N:

lim
N→∞

1

N

N∑
j=1

χ[qα,qα+1)(xj) = qα+1 − qα (47)

Proof . It is known that, in the probability space ([0, 1], dx) there exist ergodic transforma-
tions. Let T : [0, 1] → [0, 1] be any of then. Then ∀α ∈ N, there exists a set Nα ⊆ [0, 1] of
Lebesgue measure zero, such that, for xj = Tx and

x ∈ [0, 1]\Nα

the limit (47) holds. Therefore on the set of measure 1

[0, 1]\
⋃
α∈N

Nα

the limit (47) will hold for any α ∈ N. From this the statement easily follows.
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Corollary 1 If (pj)
K
j=1 is any finite probability sequence:

pj ≥ 0 ;
K∑
j=1

pj = 1

Then for each ε > 0, there exists a sequence of integers (fα) ; fα ∈ N ; α = 1, . . . ,K
such that ∣∣∣∣∣ fα∑K

β=1 fβ
− pα

∣∣∣∣∣ ≤ ε ; ∀α = 1, . . . , α

Moreover the sum
∑K

β=1 fβ =: N can be made arbitrarily large.

Proof . For α ∈ {0, 1, . . . ,K − 1} define:

q0 := 0 ; qα+1 − qα := pα

and let (xj) be a sequence in [0, 1] satisfying (47). Then there exists Nε such that, if N ≥ Nε,
then for any α = 0, . . . ,K − 1

ε ≥

∣∣∣∣∣∣ 1

N

N∑
j=1

χ[qα,qα+1)(xj)− (qα+1 − qα)

∣∣∣∣∣∣ =

∣∣∣∣fαN − pα+1

∣∣∣∣
where fα denotes the cardinality of the set

{j ∈ {0, 1 . . . ,K − 1} : xj ∈ [qα, qα+1)}

It is clear that
K∑
α=1

fα = N

and this proves the statement.

Theorem 3 Let f : Rd → R be a bounded function satisfying the conditions of Lemma (5).

Then, for any ε > 0, there exist an integerN ∈ N and a sequence of points x1, . . . , xN ∈ Rd
such that ∣∣∣∣∣∣

∫
Rd
f(x)P (dx)− 1

N

N∑
j=1

f(xj)

∣∣∣∣∣∣ ≤ ε (48)

Proof . Given ε > 0, by Lemma (6) (and in its notations) there exist a partition I0, . . . , Ik of
Rd and points x0

h ∈ Ih such that∣∣∣∣∣
∫
Rd
f(x)P (dx)−

K∑
h=0

f0(x0
h)P (Ih)

∣∣∣∣∣ ≤ ε

2

According to Corollary (1) there exist integers f0, f1, . . . , fK ∈ N such that, denoting

N =

K∑
h=1

fh
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one has ∣∣∣∣fαN − P (Iα)

∣∣∣∣ ≤ ε

2‖f‖′∞K
; ∀α = 0, . . . ,K

Therefore∣∣∣∣∣
∫
Rd
f(x)P (dx)−

K∑
h=0

f0(x0
h)
fα
N

∣∣∣∣∣ ≤ ε

2
+

∣∣∣∣∣
K∑
h=0

f0(x0
h)
fα
N
−

K∑
h=0

f0(x0
h)P (Ih)

∣∣∣∣∣ ≤ (49)

≤ ε

2
+

K∑
h=0

|f0(x0
h)| ·

∣∣∣∣fαN − P (Ih)

∣∣∣∣ ≤ ε

2
+ ‖f‖∞K ·

ε

2‖f‖′∞K
≤ ε

Now let x0, . . . , xN be a sequence of points in Rd such that the cardinality of the set

Fα := {j ∈ {0, . . . , N} : xj = x0
α}

is equal to fα, ∀α = 0, . . . ,K. Then we have

1

N

N∑
j=1

f0(xj) =
1

N

K∑
h=0

f0(x0
h)

∑
{j:xj=x0h}

1 =

K∑
h=0

f0(x0
h)
fα
N

(50)

But, according to Lemma (6) in the present case f0(xj) = f(xj). Combining this with (49)
and (50), (48) follows.
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