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In a recent paper [3] Accardi, Lu and Volovich have introduced the x-algebra of the
renormalized square of white noise (SWN). This algebra is generated by the operators
Bf,B;LNf, whose formal expressions, in terms of the square of the standard quantum

white noise b, by are:

By = /bf.f(t) dt, B} = /Ib?f(t)dt-, Ny = /ﬁblbt.f(ﬂdt

with the following commutation relations:

By, Bj] = 26(1.9) + 4Ny, (
[Ny Bi] =2B} . (2
[Ny, Byl = =2Bj,, (

[By. By) = [B}, Bj] = [Ns. Ny] = 0. (4
Bs® = Nt® = 0. (5

where ¢ is a strictly positive number, (f.g) = [ f(#)g(t) dt (coming from renormalization).
and ® is the vacuum vector.

The SWN algebra was extended to the free case in [8]. The exponential vectors for the
SWN were introduced in [5] where the connection with Boukas—Feinsilver’s finite differ-
ence algebra was first noticed. As shown in [1], the deep roots of these connections are to
be found in the theory of representation of current algebras and of quantum independent
increment processes. This general approach has allowed to construct infinitely many repre-
sentations of the SWN. inequivalent to the Fock one and to obtain similar representations
for the higher powers of the white noise. In particular the results of [1] allow to reduce
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completely the stochastic integration theory for the SWN, obtained with direct estimates
in [9], to the usual Hudson—Parthasarathy stochastic integration. However this reduction
does not seem to solve in a simple way (at least at the present moment) the problem of
deciding if and in what sense the basic integrators of the SWN have a closed Ito table.
In the present note we show, by direct methods, that the answer to the above question is
affirmative for the second order Ito table. More precisely, our main result is the following:

Theorem (1). The mutual quadratic variation of any pair of the basic integrators of the
SWN (cf. (9¢) for their definition) ewxists in the topology of weak convergence of the matrix
elements in the SWN exponential vectors with test functions satisfying the conditions (9a),
(9b) below.

Due to the factorization property of the space of the SWN (cf. [5] and [1]), the second
order Tto table is sufficient to establish the unitarity condition (which will be discussed in
another paper). The topology used in Theorem (1) is too weak to guarantee the closure
of the Ito table at any order. We conjecture, that this is the case, but the proof of this
statement requires a further development of the theory.

We will use some known properties of the action of By and Ny on the exponential
vectors of the SWN which, for completeness, we prove in the following three lemmata.
Recall from [5] that an exponential vector for the SWN is a vector of the form

o}

1 n
P(g) = Z F(B;) .

n=0

nL g 1 n—1
Lemma 1. For anyn > 1, Ny (Bg) P = 2n,Bfg (Bg) P.
Proof. By Equations (2), (4) and (5) we get

Ny(B))"® = {[Nfz (B)"1+ (Bf;)an}Q = [Ny, (B])"]®

|
—

= > (B)IN:. BJ(B)" @
§=0
n—1 . 1 _—
=Y (B)'(2B},)(B)" '@ =208} (B})" ®. O
=0
Lemma 2. Ngy(g) = 2B}g1/)(g).
Proof. Apply Lemma 1 and use Equation (5) to get
— 1 n — 1 n—
Nyplg) =Y —Ny(B))"® =) anB}g (B)" '@ = 2B} 4(g). O
n=1 n=1

Lemma 3. B;y(g) = (2(:(]", g)+ 2Nfg)'g[)(g).
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Proof. First apply Equations (1) and (5) to get

By (Bf)"® = {[va (B))"]+ (Bg)an}@ = [By. (B))"]®

T, —

—1 . )
S (B By B(BHT @

7=0
n—1 . |
= (B})'{2¢(1.9) +4Nfg}(B;)n—1_jq)
J=0
n—1 |
=2en(h.)(B)" 0 0 () N () T

By Lemma 1 we have

Np (B @ =2(n—1-5)BL ,(B)" e,

Therefore,
n—1 ' ne1 | |
S (B N (B e = S () 20— 1 - B (B)
=0 =
—QZn—l—J (BT) ¢,
7=0
=n(n— 1)B (BT) % (1)

We then use Equations (5), (6), and (7) to get

n!
n=0
St 1 n—1 S n—2
=) —2 BH)" o —d4n(n—1)BL ,(B)" " ®
> p2enl ) (B 6+ 3 pintn = 15, (5]
= 2¢(f. 9)¥(g) + 4B} .9 (9)
This yields the lemma since 43}921/)(9) = 2Nj,1(g) by Lemma 2. O

Lemma 4. The following equality holds:

B By(g) = {462(.1”, 9)* +8c¢(f%9.9) + 8c(f.9)Nj, + 8Nz + 4N§-g}’¢’(9)-

Proof. Apply Lemma 3 to obtain
BfBlg) = {4(,-2( £.9)% +4¢(f.9) N7, + QBfog}’z/J(g). (8)
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By Equation (3) and Lemma 3 we have

ByNya(g) = {[Bf» Nyggl + Nngf}?/)(g) = 2By25v(g) + Ng, By (9)

= {46(1%5.9) + ANp2 gz + 261, 9)Np, + 2%, }i(9) (9)

Upon putting Equation (9) into Equation (8) we get the equality in the lemma. O
2
Lemma 5. N;Nyij(g) = {43}20 +4(B}) }Lp(g).

Proof. Use Lemma 2 and Equation (2) to get
2
NyNyip(g) = 2N B ih(g) = 2{[Nf, B+ B}ng}v[/;(g) = 4B}, (g)+4(B},) ¥(9). O
Now consider the operator valued measures on R defined by

. i
(!S" t) = BX(S.f) ’ BX(S"[,) ; Nx(sf)

where

Notice that
BX(S,I) = BX[S.H = BX[sﬁz,) = BX(sﬁz,]

and similar identities hold for the other operators. From now on all the test functions of
exponential vectors will be supposed to be step functions of the form

> 9(t)Xie, 1) (9a)

7=1

e}

with 0 <1 <...<t; <...and g(t;) # 0 only in a finite number of points. Moreover we
further restrict the test functions by the condition

lglloc = sup [g(t)] < 1/2 (95)
teR

It is known that the exponential vectors, corresponding to these test functions are total in
the SWN space. We will use the notation

dB; = B dB} = B! i dNy =Ny, 0 (9¢)

X[t t4+dt) X[t.t4dt)

where £, dt > 0 and in all expressions of the form
((f), dH,dK b (g)
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(H,K = B,B",N) the number dt is supposed to be such that both functions f,g are
constant in the interval [t,t + dt] for all t € R with the exception of at most a finite
number of points. With this convenction we have that

(Xit.tar): 9) = g(t)dt

for almost all £ € R with respect to the Lebesgue measure.
Now, we introduce a notation. Let F(x,y) = U n"™y" be an analytic
? ’ e m.n>0 N
function. Define F(0f, 0¢) by

(W(F). MF(0F.0:)(g) = (W(f). F(0F. 0)Mp(g)) = > amnf ()™ g(t)"(1b(f). M1)(g)).
m.n>0

(10)

where M is any operator in the algebra generated by Bf,B},N f. We remark that. in

the case of 1 st order white noise, 9, and 9; are the Hida derivative (or the white noise
differential operator) and its adjoint (see the books [6] [7].)

Equation (10) defines the symbols F(9;., 0;)M, MF(0;,0;) as sesquilinear forms on
the vector space algebraically spanned by the SWN exponential vectors. By construction
MF(8;,0:) = F(0;.,0:)M in the sense of quadratic forms for all M in the algebra generated
by By, B];., N¢. In particular O;M = M0, and Of M = MOJ* in the sense of sesquilinear
forms. Moreover, we have the following lemma.

Lemma 6. The equality 0f dBy = O, dBZ holds in the sense of sesquilinear forms on the
algebrazc span of the exponential vectors.

Proof. From Lemma 3 we get dBu(g) = (2(JJ( Ydt + 2g(t )(I’Nt) Y (g). Hence

(W(f).0F dBep(g)) = F(£)(b(f). dBep(g)) = F(£)(0(f). (2cg(t)dt + 2g(t)dN¢)1p(g))
= () g(t)(sb(f). (2cdt + 2dN¢)(g)). (11)

On the other hand, we have

(D(f), 0 dBIp(g)) = g(t)((f). dBIp(g)) = g(t){dByb(f). ()
g(t)((2¢f (t)dt + 2f (1) AN (f). ()
F(t)g(t){(2cdt + 2dN:) 9 (f), ¥(g)). (12)

Since ¢ is a real number, the lemma follows from Equations (11) and (12). O

Now, apply Lemma 4 to the function f = x[¢ 441 = dx¢ to get

BdeBdell/)(g) = {SCQ(f)2 (H + 8g(f)2 Nde + 4(J( ) N(]Xf }d (Q)
which can be written in another form:

dBidBiip(g) = {8(:9(75)2 dt +8g(t)? ANy + 4g(t)? (dNt)Q}'t/)(g). (13)
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By using the notation in Equation (10) we can rewrite Equation (13) as follows:
dByd By = 8¢07 dt + 802 dN; + 407 (dNy)>. (14)

This equation is understood to hold weakly on exponential vectors ¢ (g).
Apply Lemma 5 to the function f = X[t 1441 = dx¢ to get

ANINwi(g) = {49(1) dB] +4g(1)* (dB])? bi(g).

Therefore, with the notation in Equation (10), the following equality holds weakly on
exponential vectors

AN AN, = 40, dB] + 407 (dB})?. (15)

Next, consider d,BZd,BZ. We can use Equation (13) to derive

((f). dBldBl(g)) = (dBedBy(f). (g))
({8cf(t)%dt + 8F(t)?dNy + 4f (1)*(dN:)*}b(f). 4(9))
= f(1)*({8cdt + 8AN; + 4(dN:)*}9(f). (g)
FE20p(F), {8cdt + 8dN; + 4(dN,)* }o(g
= ((f), (07)*{8cdt + 8dN, + 4(dN,)*}4(g

)
)
)-
Therefore, we get the following equality

AB]dB] = 8¢(8;)2 dt + 8(8;)? ANy + 4(0})? (dNy)?. (16)

Equations (14), (15), (16) are linear in the quadratic differentials. By solving them
we easily derive

NNy = 1?:23((38(:912)2?5)3 otz 1:31(85*) 292 B + 1— 1((?(;?2202 aNe. (17)

Aedbe = 1= 186(2?‘)%;“)203 T 1166(?;‘) 207 B+ o 1??;*)202 e (18)
and, using Lemma 6 we find

ABlAB] = § _8fé((9;3?232 g —1ff§?§;j2a§ B+ 1= 1(6(5) zg Ve

which is obtained by taking the formal adjoint of both sides of (18) and conversely the
adjoint of the right hand side of Equation (19) is the right hand side of Equation (18).
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Notice that, because of Lemma 6, the right hand side of (19) is formally self-adjoint,
as it should be. Next, by Lemma 3 we have

NyBgip(g) = (2¢(f. 9) Ny + 2Ny N7, )4(g).

Then take [ = X[t 1441 =0 dxt and use the fact didNy; = 0 in the sense that, for any
uniformly bounded function F(#) and for any pair of exponential vectors ¢(f), ¥(g) one

has:

max(t; 41 —t;

lim Z Y(f (tiv1 — ;)N X, L]“)lﬂ( 9)) =
J:l

to get
2
NdXLBdX1, t/}(g) = 290) (Nd)(,) 'l//‘(g)a

which, using the notation (10), can be expressed as
dNtdBt = 28t(dNt)2-
Therefore, by Equation (17) we obtain the following equality.

* 2 3 )2 2

AN B, = 1—16(8 )282 1—16(9;7)20F " 1—16( )282

dN,.  (20)

Next, use Lemma 3 to get
BEBry(g) = 2¢(f.9)Bl(g) + 2BINF,0(g).

Take f = X[¢,++ar) = dX+ and note that, in the sense explained above, dtdBT =0, dBTdN,
Zaﬁk(dNt) Hence
dB}dB, = 20,dB] AN, = 48} 8,(dN;)*.

Therefore, by Equation (17),

128¢(0;)303 160; 02 i 128(0; )30
at +
1 —16(0;)20? 1-16(97)202 ° 1 — 16(0;)20?

dBldB, = dAN;. (21)

To find dBtdB;r, note that by Equation (1) we have
BB} = [By. B} + B} By = 2¢(f. f) + 4N + B} By.

Take f = X[¢.t4ar) = dx+ and then apply Equation (21) to get

2c — 32¢(9;)202 + 128¢(0; )3 03 160; 02
dB;dB] = t) i dt tt__qB]
e 1 — 16(9;)202 (e 16(97)202

4 — 64(0;)%07 + 128(05)30;
: dN, 22
1—16(9;)202 " 22)
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Now, note that BfNy = —[N¢, Bf] + NfBy = 2Bff + N¢ By by Equation (3).

J = Xt.i4ar) = dxt to get
dBtht =2 dBt + dNtdBt

Hence by Equation (20) we obtain the equality

64(07)23 802
)0t 248 «
Tt pa T

It + 64(97)*0;

dByd Ny = ,
e 1—16(07)202 " " 1—16(97)202

ANy

which, by Lemma 6, can be rewritten as

64c(0;)203 20 80?2 4(0
dB,dN, = 07 )"0; dt+{ i }dBI+ (07)°0 dAN,.

1— 16(9;)202 0F T 1—16(07)202 16(0 )283

From Equation (23), using the identity

(W(f). ANy dB(g)) = (¥(g). dBydNyp(f))

we can derive the equality:

(8*)382
97202

64¢(9;)3 02 8(9;)?
c(0f )°0; (0F) (JBf—I—Q(iBT—I—

INdB] = t :
T T 60202 T T 1 16(07)207 1 16(

dNt

which, by Lemma 6, can be rewritten as

64c(0; )3 02 8070, 64(0;)30?2
AN, dB] = Lodt+24 ——L 2L 4B Ll LN,
! T—i60022 " TV T 1= 16(0)02 t T T 6oz

Take

(23)

(26)

Notice that (25) is obtained from (23) by taking the formal adjoint and conversely (23) is

obtained from (25) in the same way. Finally, use Equation (2) to get
BINy = —[Nys. B} + NyB} = —2Bl, + N¢B].
Then take f = X[t t4a1 = dx¢ to show that

dB}dN; = —2dB] + dN,dB].

Hence by Equation (25) we have

G4c(0; )0 8(9;)? . 64(9F )07
at a
1— 16(0;)202 1—16(0;)202 1 —16(0;)202

dBI AN, =

which, by Lemma 6, can be rewritten as

64c(0})30? 80; 0,

It 1 :
H T 607202 1—16(5;

dBldN; = 1
HE T T 16(07)207

Summing up, we have the following:

(28)



Theorem (2). The Ité table for the renormalized square of white noise is given by

B

dNy

d By

dB;

atdt+ pTdB] ++FdN,

a®dt + B2 dB} ++° dN;

a~dt+ -dB] +~y~dN,

dN;

af dt + pFdB] + yFdN,

aldt + BdB] + +0dN;

ag dt + pg dB] + v5 dN;

aB]

atdt+praBl +yFdn,

ol dt + pdB] + 104N,

aldt + pLdB] + v AN,

’ /
y SV ere) SNV Ya V2] ey > & & 15
where the coefficients of , B, ¢

(e e € {+,—.0}) are given by equations (17) (18)

(19) (20) (21) (22) (24) (26) (28).
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