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ABSTRACT

We describe a new approach to the weak coupling and low density limits,
introduced in previous papers. We outline the basic ideas of the proof. We
also explain the differences and the common points between the two limits.
As a new result we establish the connection between the quantum stocha-
stic differential equation, deduced in [11] for the low density limit and the
one-particle scattering operator appearing in the generator of the semigroup
obtained by Dümcke ([25]) as low density limit of the reduced evolution.
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§0 Introduction

The problem of constructing a satisfactory theory of the irreversible and
dissipative quantum phenomena has a long history. The basic physical idea
is that dissipation and irreversibility in the behavior of a system arise when
this system interacts with some “macroscopic system” (called, according to
the interpretation, noise or reservoir or heat bath,...): the composite sy-
stem evolves according to the usual Hamiltonian dynamics and, due to the
interaction, if X is an observable of the initial system and X(t) its time
evolved in the Heisenberg picture, then X(t) will depend also on the degrees
of freedom of the reservoir. If these are averaged out, one obtains a new
system observable X(t) which no longer obeys a reversible evolution. The
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map X → X(t) is called the reduced dynamics. The equations obeyed by
the observables of the form X(t) are usually complicated (integro–differential
equations) and give little insight because the details of the evolution of the
reservoir are in principle uncontrollable and the information which one usual-
ly has on the reservoir is reduced to a few macroscopic parameters (such as
temperature, relaxation times, leading frequencies, coupling constants bet-
ween system–reservoir,...). One is therefore led to study the evolution X(t)
in some limiting situation, in the hope that the limiting procedure will sweep
away the inessential details and produce a meaningful equation.

Many such limiting procedures have been considered (weak coupling, low
density, singular coupling, hydrodynamical limit,...) and they describe diffe-
rent physical situations. In the present paper we shall discuss the first two (it
is known that the singlar coupling limit is essentially equivalent to the weak
coupling limit). Motivated by some results of Friedrichs ([32]) on second
order perturbation theory, van Hove ([30]) introduced the weak coupling
limit (WCL) as a device to derive a Pauli–type master equation for the ir-
reversible time evolution of the macroscopic observables of a large quantum
system. The idea of the low density limit (LDL) originates from Grad ([33]),
who considered this limit in order to derive the Boltzmann equation for the
one–particle distribution function of a classical dilute gas. Throughout this
paper, we use simply WCL for weak coupling limit and LDL for low den-
sity limit. Both limits have been studied in the framework of the rigorous
theory of open quantum systems: the WCL by Martin and Emch ([34]), Del-
l’Antonio ([23a]), Davies ([20,21,22]), Pulè ([29]); the LDL by Palmer ([28])
and Dümcke ([25]). For a review on the derivation of the classical kinetic
equations from Hamiltonian dynamics, see Spohn [35]. In all these papers
only the reduced dynamics of a system, in interaction with some reservoir,
is considered and their main results consist in proving that, in the limiting
situations and in the models considered, the reduced dynamics becomes a
semigroup whose generator is uniquely determined in terms of quantities re-
lated to the original Hamiltonian model. The main theoretical insight in this
first phase of development was the GKSL (Gorini, Kossakowski, Sudarshan
([36]), Lindblad ([37]) ) theorem on the structure of bounded generators of
quantum Markovian semigroups.

A more ambitious plan is to deduce a limiting equation not only for the
reduced evolution of the system, but for the whole coupled system, including
the reservoir. The relevance, for the physical applications, of the additional
information obtained with this procedure is explained by Gardiner and Col-
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let ([41a]), Barchielli ([41b], [41c]). The first difficulty of this program is that
there is no hope that the limiting evolution will live on the Hilbert space
where the approximate evolutions live, hence standard operator techniques
cannot be applied. In fact, in the analogous classical situations, the appro-
ximate evolutions converge only in the probabilistic sense of convergence
in law and, until the late eighties, there was no natural quantum analogue
(or substitute) for this notion (Dümcke’s proposal [26] to consider the limits
of correlation kernels in the sense of [38] met some difficulties in its imple-
mentation, with the non–time–ordered correlations). Moreover, the classical
analogy suggested that the limiting equations should be not ordinary, but
stochastic differential equations, and until the early eighties there was no
quantum analogue of these.

A turning point in this development was Hudson and Parthasarathy’s
introduction of quantum stochastic calculus ([31]). This allowed to produce
unitary dilations (in the sense of Kümmerer [46]) of those irreversible quan-
tum evolutions that were obtained as WCL or LDL of reduced dynamics
of open quantum systems and, by doing so, to produce natural candidates
for the limit equations, governing the composite (system + noise) system.
In other terms the existence of these unitary dilations ([46], [47], [48], [49a],
[49b], [50], [27]) and their very natural physical interpretation, suggested that
if the limit of the evolution of the coupled system existed (in whatever sense),
then it should not satisfy an ordinary Hamiltonian equation, but a quantum
stochastic equation in the sense of Hudson and Parthasarathy. The program
of synthetizing the various experiences of laser models, deductions of master
equations, construction of dilations and quantum central limit theorems, was
formulated by Frigerio in [40], where some of basic lines of the future deve-
lopement were outlined. The theoretical status of this program was however
quite unclear for several reasons:

(i) Although currently used in quantum optics (especially laser theory) since
their introduction in the early sixties ([42], [43a], [43b]), the various types of
quantum Brownian motions were poorly understood theoretically because the
mutual compatibility of the approximations introduced for their deduction
([44]) mas not clear. Even worse, some of the limiting equations seemed to
depend on the order of these approximations ([51], [52]).

(ii) It was never made precise in what sense the quantum Brownian motions
had to be considered approximations of the quantum electromagnetic field.
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(iii) The quantum Poisson process was introduced by Hudson and Parthasa-
rathy in [31], and generalized by Frigerio and Maassen in [40], on a purely
mathematical basis. For this new quantum noise even the phenomenologi-
cal justifications, existing for the quantum Brownian motion, were missing,
being replaced only by some physical intuitions of Frigerio and Maassen sug-
gesting that, in some sense, the low density limit should be related to the
quantum Poisson process just as the weak coupling limit is related to the
quantum Brownian motion. The later developement are fully confirming
the intuitions of Frigerio and Maassen, but the mathematical problem to be
overcome even to formulate the LDL problem were formidable (and some
of them are still open). For example: How to obtain a Poisson process from
a low density limit? Which quantum Poisson process arise in this way? How
to relate these processes with Palmer’s and Dümcke’s results on the LDL?

(iv) All the above mentioned quantum noises live in a representation of the
CCR (or CAR) algebra W (L2(R, dt ; K)) over the space of square–integrable
functions of a “time variable” t ∈ R with values in a suitable Hilbert spa-
ce K, and their time evolution is just the time shift (which has Lebesgue
spectrum); the representation is determined by a quasi–free state with cova-
riance operator of the form 1⊗Q, Q being an operator on K. By contrast,
a physical reservoir in thermal equilibrium is described (in the Boson case)
by the CCR algebra W (L2(Rd)), Rd being d–dimensional physical space,
and its time evolution is determined by a one–parameter unitary group on
L2(Rd) whose generator H (the one–particle Hamiltonian) is bounded from
below: the covariance operator Q of the reference state is a function of H,
say Q = coth(β

2
(H−µ)). It was not clear how these two pictures were related

and, in particular, if the former is in some sense a consequence of the latter.
In particular, how does it happen that time is an exterior parameter in the
usual physical description and a test function parameter in the stochastic
picture?

(v) The physical meaning of the space K was not clear: in all the applications
of stochastic calculus to physical models ([53], [54], [41], [20]), this space
was constructed by hands, i.e. postulated on the basis of heuristic and
phenomenological assumptions, while, if we look at the stochastic description
as an approximation of a Hamiltonian description, then the structure of the
space K should be deduced from the microscopic properties of the system.

The main purpose of the series of papers ([1],..., [16], [39]), was to try
to answer the above mentioned problems and in particular to show that
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the quantum Brownian motions (QBM) and the quantum Poisson process
(QPP) can be obtained as limits (in an appropriate sense) of “realistic” mo-
dels of quantum reservoirs and, moreover, that the conditions which define
the corresponding limiting procedures have a natural physical interpretation.
Although the final equations obtained in the above mentioned papers are ex-
plicit and easy to deal with, the procedure to obtain them is quite nontrivial,
involving among other things, estimates not available in the present literatu-
re on quantum field theory and a continuous feed–back between the guessing
of the limiting stochastic equation and the rigorous deduction of it.

In the present paper we made the attempt to invite other researchers
to explore the beautiful new territory which is emerging from these results
and which still abounds of unexplored regions. Our goal is to outline the
basic ideas and techniques of these developments by illustrating them with
the simplest examples (we omit the Fermion case, the non–rotating wave
approximation case, the details of the finite temperature case, the squeezing
case, the problems concerning the Langevin equation, ...). Although our
paper is of an expository nature, we have made the attempt to unify the
multitude of technical lemmata needed in the various estimates (this attempt
has been particularly successful for the Pulè inequalities (cf. Section 9)).

We also obtain a new result concerning the identification of the coefficients
of the stochastic equation deduced in ([9]) with particular matrix elements
of the T operator. This identification connects in a natural way the Alicki-
Frigerio ([39]) formulation of the Dümcke generator ([25]) with the quantum
stochastic differential equation obtained in [11].

A corollary of this identification is a new proof (via the Frigerio–Maassen
theory of the quantum Poisson process ([40])) of the unitary of the solution
of the LDL equation derived in [9]. A comparison with the original unitarity
proof in [11] and its simplified version in [9], shows that sometimes a dee-
per physical insight can lead to a drastic simplification of the mathematical
proofs.

Because of the width and the difficulty of the problem, we believe it useful
to give reader a quick purely qualitative description of the present status of
the above mentioned problems. We exclude the LDL from this general outline
and postpone its discussion to Section 5), because this discussion requires at
least the knowledge of the statement of the problem and of the main results
obtained so far.

The quantum Brownian motions.
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The precise sense in which the quantum Brownian motions are approxi-
mations of quantum fields is the following: one starts from a quasi–free repre-
sentation of the CCR or the CAR over a Hilbert spaceH1 (one–particle space)
and from a 1–particle dynamics (1–parameter unitary group St : H1 → H1)
compatible with the given representation, in the sense that the dynamics St
induces a 1–parameter group u0

t of automorphisms of the CCR (or the CAR)
algebra over H1.

Given these ingredients and a positive number λ, one defines the collec-
tive coherent vectors (or the collective number vectors in the Fermion
case), and the space Hλ which is the closed linear span of the collective cohe-
rent (resp. number) vectors. The space Hλ approximates the space H of a
certain QBM in the following sense: for each λ > 0 each collective coherent
(resp. number) vector uniquely defines a coherent (resp. number) vector of
the QBM. Moreover, if φ, ψ ∈ H correspond respectively to φλ, ψλ ∈ Hλ,
then lim

λ→0
< φλ, ψλ >= 〈φ, ψ〉. The detailed description of this procedure can

be found in Section 3). For the moment it is important to notice that this
approximation procedure involves only the quantum field and its 1–particle
dynamics: it is totally independent of the interaction of the field with any
reservoir.

We shall see that the situation is quite different for the quantum Poisson
process.

Finally let us remark that, due to the different choice of the collective
vectors in the Bose or Fermi case (resp. coherent and number vectors) the
techniques needed to handle the two cases are quite different, even if many
of the basic estimates are of the same nature (cf. Section 9)).

The inner space of the QBM

The QBM arising from the procedure described above are either the Fock
or the universal invariant QBM on L2(R, dt ; K) where K is a Hilbert space,
called the inner space of the QBM, uniquely determined by the micro-
scopic Hamiltonian model. The standard QBM is obtained when K = C.
The explicit description of K provides an important physical insight in the
approximation scheme of the quantum fields by QBM’s because it shows
precisely which degrees of freedom of the underlying Hamiltonian model gi-
ve rise to the Hilbert space K and which physical parameters give rise to
the parameters characterizing the various quantum noises. We consider this
determination of the correct K to be a substantial addition to the existing
physical literature whose nontriviality is shown by the fact that all the pre-
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vious justifications of the QBM, based on heuristic considerations, did not
lead to the correct choice of K.

A remarkable fact is that the inner space K is, at least in the simplest
cases of linear interactions independent of the statistics (Bose or Fermi)
of the original quantum field.

The role of the interaction

The above mentioned results apply to a simple class of models, charac-
terized by the fact that the interaction system–reservoir is linear in the
field operators and satisfies a rotating wave approximation condition (cf.
condition (1.8)). If either of these assumptions is dropped, then more compli-
cated noises arise. The case of models without rotating wave approximation,
but with a system Hamiltonian with discrete spectrum, has been dealt in
([6]) where it is proved that to each frequency of the system Hamiltonian it
corresponds an independent copy of a QBM of the type described in Section
3) (however the copies of QBM corresponding to different frequencies are not
isomorphic).

The case of a continuous spectrum system Hamiltonian has not yet been
dealt with rigorously, one might expect a continuous tensor product of QBM
parametrized by the spectrum of the system Hamiltonian, however we can-
not do a definite conjecture because, even in the simple case of the reduce
dynamics, this is a long standing open problem.

Much more subtle is the role played by a nonlinear dependence of the
interaction on the fields. In [8] it was proved that, for a polynomial interac-
tion of degree p > 1, the term by term limit of the matrix elements of the
iterated series exists but, even when one can interchange the limit and the
summation (this in the case for p = 2), the evolution is neither unitary nor
stochastic (cf. Sections 6) and 7) below for more details).

This led Frigerio (unpublished) to conjecture that in case of nonlinear
interactions, one should consider interaction dependent collective vec-
tors. The correctness of this conjecture has been recently proved in [16]
where the techniques developed in [4] for linear Fermion WCL together wi-
th the nonlinear estimates of [8] are modified so to control the WCL of a
quadratic Bose model.
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§1 . Statement of the problem

Let H0 and H1 Hilbert spaces interpreted respectively as the system and
the one particle reservoir space . Let W (H1) be the Weyl C∗-algebra on H1,
i.e. the closure of the linear space spanned by the set {W (f) : f ∈ H1} for
the unique C∗-norm on it (cf. [45]); let H be a self-adjoint bounded below
operator on H1 and β > 0 and µ be real numbers interpreted as inverse
temperature and chemical potential respectively. Let the fugacity z be given
by z = eβµ and define

Qz :=
(
1 + ze−βH

)
·
(
1− ze−βH

)−1
= coth(

1

2
β(H − µ)) (1)

and suppose that, for each z in a an interval [0, Z], Qz is a self-adjoint
operator on a domain D, independent on z. Denote ϕQz the mean zero
gauge invariant quasi-free state on W (H1) with covariance operator Qz, i.e.

ϕQz(W (f)) = exp

(
−1

2
< f,Qzf >

)
, ∀f ∈ H1 (2)

and let {HQz , πQz ,ΦQz} be the GNS - triple of {W (H1), ϕQz} , so that

< ΦQz , πQz(W (f))ΦQz > = ϕQz(W (f)) (3)

We shall write WQz for πQz ◦W . The Fock representation corresponds to the
case Qz = 1, which corresponds to the limiting case β = ∞ (or z = 0). In
this case the GNS representation will be simply denoted {H, π,Φ} . Let S1

t

be a unitary group on B(H1) (the one particle free evolution of the reservoir)
and suppose that

S1
t ·Qz = Qz · S1

t , ∀t ≥ 0 (4)

where the equality is meant on D. Typically we shall choose S1
t = exp(itH).

This implies that the second quantization of S1
t , denoted W (S1

t ), leaves ϕQz
invariant hence it is implemented, in the GNS representation, by a unitary
1-parameter group V

(z)
t whose generator H

(z)
R is called the free Hamiltonian

of the reservoir. As in [1],... , [16] we assume that there exists a non zero
subspace K of H1 (in all the examples it is a dense subspace) such that∫

R

| < f, Stg > |dt <∞ , ∀f, g ∈ K (5)
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Moreover , we suppose that QzK ⊆ K and eitHK ⊆ K for all t ∈ R .
For example, for the free Bose gas, H1 = L2(Rd) for some d ≥ 3, H is
the Laplacian on Rd and K can be choosen to be L1 ∩ L∞(Rd). Let be
given a self-adjoint operator HS on the system space Ho, called the system
Hamiltonian. The total free Hamiltonian is defined to be

H
(z)
0 := HS ⊗ 1 + 1⊗H(z)

R (6)

where, H
(z)
R := dΓ(H). The interaction Hamiltonians Vλ considered in [1], ...

, [16] are of the type

Vλ :=

{
iλ(D ⊗ (A+(g))p − c.c.), for WCL
i(D ⊗ A+(g0)A(g1)− c.c), for LDL

(7)

(1.7b)where,
g,g0, g1 ∈ K ⊂ H1 and D is a bounded operator on H0 (we make

this assumption for sake of simplicity, but our techniques apply, with minor
modifications to a large class of unbounded operators, including creation, an-
nihilation and number operators) and p is a positive integer. Notice that in
the WCL case we have the factor λ (coupling constant) but in the LDL case
this is replaced by the factor 1. In other words, we consider the LDL only for
scattering type interactions (by this we mean an interaction which preser-
ves the natural Z-grading on the reservoir space induced by the generalized
number operator) and the WCL only for exchange type interactions, i.e. of
the form (1.7a) . Of course, we could consider scattering type interaction
also for the WCL but, in the present paper, we shall not deal with this.

The WCL corresponds to letting the coupling constant λ→ 0, while time
is scaled as t/λ2. The LDL corresponds to letting the density n in the state
ϕQz tends to zero, time being scaled as n̄t/n, n̄ being a rescaled density to
be held fixed. The density n is the limit as the volume V → +∞ of the
expectation value of the number operator NV in finite volume in the state
ϕ

(V )
Qz

divided by V . It becomes asymptotically proportional to the fugacity
z in the limit as z → 0; for example, for the free Bose gas in three space
dimensions, with H = −1

2
∆, one has

n = n(β, z) = z

∫
R3

(exp(βk2/2)− z)−1d3k

With a suitable choice of n̄, the LDL is the limit z → 0, time being scaled
as t/z. REMARK There is a physical reason why the LDL should go with
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an interaction which preserves the (generalized) number operator. Scaling a
parameter means that it is a controllable parameter. If the interaction were
not to commute with number, then the density could take any value in the
course of time. Of course, there could be nothing wrong in considering num-
ber type interaction in the weak coupling limit (with nonzero temperature!)
as was done by Davies ([20]).

Moreover in the WCL case we shall assume that

exp (itHS) ·D · exp (−itHS) = e−iωtD for some ω > 0 (8)

(rotating wave approximation) and for the LDL case, we shall assume
that

exp (itHS) ·D · exp (−itHS) = D (9)

and that g0 and g1 have disjoint energy spectra, i.e.

< g0, Stg1 > = 0 , ∀t ∈ R (10)

The physical meaning of these assumptions will be explained in Section 5).
In fact as shown in [6], [10] and [14], none of the conditions is necessary but
the basic ideas of the problem, as well as of the proofs of the main results,
can be understood even if one limits oneself to these cases.

Denote for each D ∈ B(H0),

D0 = D , D1 = −D+ (11)

With these notations, the Hamiltonian of the total system can be expressed
in

H
(z)
λ := HS ⊗ 1 + 1⊗H(z)

R + Vλ (12)

and the wave operator at time t is defined by

Ut := exp
(
itH

(z)
0

)
· exp

(
−itH(z)

λ

)
(13)

Therefore we have the formal identity

d

dt
Ut =

1

i
Vλ(t)Ut ; U0 = 1 (14)

where

Vλ(t) := exp
(
itH

(z)
0

)
Vλ exp

(
−itH(z)

0

)
=

{
iλ
∑

ε∈{0,1}D1−ε ⊗ Aε(Stg)p, WCL

i
∑

ε∈{0,1}Dε ⊗ A+(Stgε)A(Stg1−ε), LDL

(15)
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where, St = eitωS1
t in the WCL case and St = S1

t in the LDL case. It is well
known that the solution of (1.14) is given by the iterated series

Ut =
∞∑
n=0

(−i)n
∫ t

0

dt1 · · ·
∫ tn−1

0

dtnVλ(t1) · · ·Vλ(tn) (16)

which, at least for p ≤ 2, is convergent on the domain of the vectors of the
form

u⊗ ΦQz(x

∫ T/x2

S/x2
Sufdu) (17)

where u ∈ Ho , f ∈ K , S, T ∈ R,

x :=

{
λ , WCL
z1/2 , LDL

(18)

and

ΦQz(x

∫ T/x2

S/x2
Sufdu) := WQz(x

∫ T/x2

S/x2
Sufdu)ΦQz (19)

is a collective coherent vector in the sense of [2] (resp. collective number
vector in the sense of [4]).

From Lemma (3.2) of [2], we know that the assumption (1.5) implies that
the sesquilinear form (·|·) : K ×K −→ C defined by

(f |g) :=

∫
R

< f, Stg > dt , f, g ∈ K (20)

defines a pre-scalar product on K. We denote {K, (·|·)}, or simply K, the
completion of the quotient of K by the zero (·|·) -norm elements . In [20],

... , [29] it was shown that for all normal initial states ϕ of the system and
some interactions, essentially all of the type (1.7), under some additional
conditions , the limit

lim
x→0

ϕ⊗ ϕQz
(
U+
t/x2(X ⊗ 1)Ut/x2

)
(21)

exists and is equal to
ϕ(Tt(X))
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where {Tt}t≥0 is a quantum Markovian semigroup. The techniques introdu-
ced in the series papers ([1], ... , [15]) allowed to control the limits, as x→ 0
of expressions of the form

ψ ⊗ ϕQz
(
1⊗W (fx) Ut/x2 1⊗W (f ′x)

)
(22)

and
ψ ⊗ ϕQz

(
1⊗W (fx) Ut/x2(X ⊗ 1)U+

t/x2 1⊗W (f ′x)
)

(23)

where ψ is any normal linear functional on the system space and

fx := x

∫ T/x2

S/x2
Sufdu , f ∈ K (24)

(in the Fermi case, instead of collective coherent vectors we use collective
number vectors which are defined in an analogous way). In (1.22) x = λ
(WCL) or z1/2 (LDL) and, in the WCL case ϕQz is any quasi-free state. In
the control of the limit, as x→ 0, of the expressions (1.21) and (1.21a), the
basic difference between the low density and the weak coupling case is that
in the low density case the wave operator Ut/z depends on z (the fugacity)
only through the rescaling of the time (t 7→ t/z), while in the weak coupling

case the wave operator U
(λ)

t/λ2 depends on λ (the coupling constant) in its very
structure. On the other hand, the reservoir state is independent of λ in the
weak coupling limit, but dependent of z in the low density limit.

Both in the WCL and LDL cases, the first step in our investigation will
be to control the limit of expressions of the form

lim
x→0

< u⊗W (x

∫ T/x2

S/x2
Sufdu)Φ, Ut/x2 · v ⊗W (x

∫ T ′/x2

S′/x2
Suf

′du)Φ > (25)

in the Fock case. Our experience with several models suggests that the most
difficult step consists in controlling this limit and understanding the equation
(usually stochastic) it satisfies. Once this is done, the passage to the finite
temperature case and to the Langevin equation (i.e. the limit (1.21a)) is
by no means trivial, but the difficulties are mainly of a technical nature.
A possible exception is the fact that in the LDL case, the limit (1.21) can
be controlled for all t ∈ R in the Fock case, while the same limit in the
finite temperature case and the limit (1.21a) can be controlled only for t in a
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certain interval. It is not yet clear if this difficulty is of a fundamental nature
or a purely technical one. In the present paper we shall:

-state the main results obtained up to now both in the WCL and LDL;
-outline the main strategy of the proofs;
-give the basic idea about how control the limit (1.23) both in the WCL

and the LDL cases (we shall restrict ourselves to the Boson case);
-discuss the differences and the common points between the two kinds of

limit (WCL and LDL);
-explain why in the Fock case one can hope to obtain both the WCL and

the LDL limit for the same “collective coherent vectors (cf. Section 7) of the
present paper).

-identify the unitary operator, driving the SDE deduce in [9] (and [11])
for the LDL in the Fock case, with a matrix element of the T−operator of
the Hamiltonian system consisting of the system and one reservoir particle.
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§2 The meaning of the low density limit in the Fock case

From (1.1) it is clear that the Fock case corresponds to z = 0. But, since
the LDL means that we consider the limit z → 0, the following problem
naturally arises: what does “low density” mean in the Fock case?

In order to answer this question let us recall an argument due to Palmer
([28]) and consider the LDL interaction (1.7b) in the case z 6= 0. This means
that, in (1.7b), the creation and annihilation operators are referred to the
cyclic representation of the state ΦQz , defined by (1.1) and (1.2). Denoting
ΓQz(H1) this space and Γ(H1) the corresponding Fock space, we know that
there is a unitary isomorphism of

ΓQz(H1) −→ Γ(H1)⊗ Γ(H ι
1) (26)

where H ι
1 is the conjugate Hilbert space of H1 (cf. [4]). Under this isomor-

phism, one has the correspondences:

ΦQz −→ ΦF ⊗ Φι
F (27)

and
WQz(f) −→ W (Q+f)⊗W (Q−f) (28)

AQz(f) −→ A(Q+f)⊗ 1 + 1⊗ A+(Q−f) (29)

where,

Q+ :=

√
Qz + 1

2
, Q− = ι

√
Qz − 1

2
(30)

Notice that

Qz =
1 + ze−βH

1− ze−βH
(31)

So, expanding in z, we obtain:

Qz + 1

2
=

1

1− ze−βH
= 1 + ze−βH + z2e−2βH +O(z3) (32)

and
Qz − 1

2
=

ze−βH

1− ze−βH
= ze−βH + z2e−2βH +O(z3) (33)

Therefore,

Q+ = 1 +
1

2
ze−βH + o(z) , Q− = ι z1/2e−

β
2
H + o(z) (34)
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so that, in the correspondence (2.4),

AQz(f) −→ A(f)⊗1+
z

2
·A(e−βHf)⊗1+z1/2 ·1⊗A+(ι e−βH/2f)+o(z) (35)

and naturally

A+
Qz

(f) −→ A+(f)⊗1+
z

2
·A+(e−βHf)⊗1+z1/2 ·1⊗A(ι e−βH/2f)+o(z) (36)

Thus, in the canonical representation, one has:

A+
Qz

(f)AQz(g) −→ A+(f)A(g)⊗1+z1/2·
(
A+(f)⊗ A+(ι e−βH/2g) + A(g)⊗ A+(ι e−βH/2f)

)
+

+
z

2

(
A+(f)A(e−βHg) + A(g)A+(e−βHf)

)
⊗ 1 + o(z3/2) (37)

The z1/2-terms are dealt with techniques similar to the WCL the z terms will
give a very simple contribution in the limit. Therefore the only qualitative
new feature is given by the term A+(f)A(g)⊗ 1, which acts trivially on the
conjugate Fock space. This is qualitatively new with respect to the WCL
case because the term A+(f)A(g) corresponds to a finite interaction, i.e. not
vanishing for z → 0. These considerations lead to study the interaction

i(D+ ⊗ A+(f)A(g)−D ⊗ A+(g)A(f)) (38)

in the Fock space. Motivated by the analogy with the weak coupling limit
Accardi and Lu ([9]) were led to consider the same collective coherent vectors
as in the WCL limit, i.e. to study the limit

< u⊗W (x

∫ T/x2

S/x2
Sufdu)Φ, Ut/x2v ⊗W (x

∫ T ′/x2

S′/x2
Suf

′duΦ > (39)

With an appropriate generalization of the techniques developed for the WCL
limit, in [9] it was proved (cf. also the following Sections) that the limit (2.12)
as x→ 0, exists for all t ∈ R and satisfies a QSDE driven by a pure number
process (cf. Theorem (II) of Section 4)). In view of the difference between
the interactions in the WCL and LDL (cf. (1.7a), (1.7b)), it might seem quite
surprising that the limit (2.12) exists in the LDL case. The qualitative reason
why this should happen is that the finiteness (i.e. independence on x) of the
LDL interaction will be compensated by the fact that the interaction is of
second degree. This balance is very delicate and, due to its importance (both
technical and conceptual), the entire Section 7) will be devoted to explain it.
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Later results [10], [12] showed, however, that the natural extension of the
above mentioned procedure to the finite temperature case and the Langevin
equation leads to a breakdown of unitarity in the limit evolution. These
results, as in the WCL nonlinear case, maturated the conviction that the
analogy between the WCL and the LDL case is a touchy point as far as the
collective vectors are concerned and that the choice of the collective coherent
vectors (1.18b) should be replaced by a more subtle one. However, since the
problem of the new general choice is still open, and since in any case we
expect that the techniques needed to deal with the more general case will be
modifications of the techniques already developed, we confine our discussion
to the simpler case.
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§3 Convergence of the collective process

In this Section we show that, at a purely kinematical level, i.e. with
t = 0 in (1.23) and with the given choice of the collective vectors, the low
density limit coincides with the weak coupling limit and the limiting process
is the Fock Brownian motion on L2(R, dt;K) where K is the Hilbert space
described after (1.19). This will give the limit space on which our limit
processes live.

In order to formulate our result, let us recall from [2] the definition of
Boson Quantum Brownian Motion:

DEFINITION(3.1) Let K be a Hilbert space, T an inteval in R. Let
Q ≥ 1 be a self-adjoint operator on K with domain D(Q) and let

{HQ, πQ,ΨQ} (40)

denote the GNS representation of the CCR over L2(T, dt;K) with respect to
the quasi-free state ϕQ on W (L2(T, dt;K)) characterized by

ϕQ(W (ξ)) = e−
1
2
<ξ,1⊗Qξ> ; ξ ∈ D(Q) ⊂ L2(T, dt;K) (41)

The stochastic process, in the sense of [18]{
HQ , A(χ(s,t] ⊗ f) , A+(χ(s,t] ⊗ f) ; (s, t] ⊆ T , f ∈ K

}
(42)

on the domain of coherent vectors, where A(·) , A+(·) denote respectively
the annihilation and creation fields in the representation (3.1) , is called
the Boson Q-Quantum Brownian Motion on L2(T, dt;K). The 1-
Quantum Brownian Motion will be called the Fock Brownian Motion
. In this case the space HQ = H1 is isomorphic to the Fock space over
L2(T, dt; K) and denoted Γ(L2(T, dt; K)).

LEMMA(3.2) For each f, f ′ ∈ K,S, S ′, T, T ′ ∈ R, one has

lim
x→0

< x

∫ T/x2

S/x2
Sufdu, x

∫ T ′/x2

S′/x2
Suf

′du >=< χ[S,T ], χ[S′,T ′] >L2(R) ·
∫
R

< f, Stf
′ > dt

=:< χ[S,T ] ⊗ f, χ[S′,T ′] ⊗ f ′ >L2(R,dt;K) (43)
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PROOF See Lemma (3.2) of [2].

LEMMA (3.3) In the notations of Definition (3.1), for each n ∈ N, {fk}nk=1 ⊂
K, {Sk, Tk}nk=1 ⊂ R, {αk}nk=1 ⊂ R,

lim
x→0

< ΦQz ,W (α1x

∫ T1/x2

S1/x2
Suf1du) · · ·W (αnx

∫ Tn/x2

Sn/x2
Sufndu)ΦQz >

=< Ψ,W (α1χ[S1,T1] ⊗ f1) · · ·W (αnχ[Sn,Tn] ⊗ fn)Ψ > (44)

Moreover the convergence is uniform for {αk}nk=1, {Sk, Tk}nk=1 in a bounded
set of R, where W (ψ ⊗ f) (ψ ∈ L2(R, dt), f ∈ K) are Weyl operators of the
Fock Brownian motion on L2(R, dt;K), Ψ is the vacuum (moreover, in LDL
case, Fock vacuum) of Γ(L2(R, dt;K)). PROOF See Lemma (2.1) of [9].

In the following we shall use the notation, similar to (1.18b),

Ψ(ξ ⊗ f) := W (ξ ⊗ f)Ψ , ξ ∈ L2(R) and f ∈ K (3.6)
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§4 The main results

Before entering into technical details, it is useful to have at least an idea
of the results achieved so far. This will also help to clarify one’s ideas about
further developements.

In this section we list, without proofs, the main results corresponding to
the weak coupling and low density limits. The basic ideas of the proofs will
be given in the following sections

THEOREM(I.) (WCL: linear and Fock case) In the notations of Lemma
(2.1), for all u, v ∈ H0, f, f ∈ K; S, T , S ′, T ′ ∈ R the limit, as λ→ 0, of

< u⊗ Φ

(
λ

∫ T/λ2

S/λ2
Sufdu

)
, U

(λ)

t/λ2v ⊗ Φ

(
λ

∫ T ′/λ2

S′/λ2
Suf

′du

)
> (45)

exists and is equal to:

< u⊗Ψ
(
χ[S,T ] ⊗ f

)
, U(t)v ⊗Ψ

(
χ[S′,T ′] ⊗ f

)
> (46)

where U(t) is the (unitary) solution of the QSDE

dU(t) =
{
D ⊗ dA+

t (g)−D+ ⊗ dAt(g)− (g|g)−D
+D ⊗ 1dt

}
U(t) (47)

with the initial condition
U(0) = 1 (48)

and where

(f |g)− :=

∫ 0

−∞
< f, Stg > dt (49)

PROOF See Theorem (II.) of [2].

In order to state the result in the LDL case we introduce the new simbol:

‖g‖2
− :=

∫ 0

∞
| < g, Stg > |dt (50)

THEOREM(II.) (LDL: Fock case) In the Fock case, if

16‖D‖2 ·max(‖g0‖−, ‖g1‖−) < 1 (51)

20



then for all t ∈ R, the limit of (2.12), as z → 0, exists and is equal to

< u⊗W (χ[S,T ] ⊗ f)Ψ, U(t)v ⊗W (χ[S′,T ′] ⊗ f ′)Ψ > (52)

where U(t) satisfies the pure jump QSDE:

U(t) = 1 +

∫ t

0

∑
ε∈{0,1}

(D1(ε)⊗ dNs(gε, g1−ε) +D2(ε)⊗ dNs(gε, gε))U(s) (53)

where, by definition,

Nt(f, g) := N(χ[0,t] ⊗ |f >< g|) (54)

is the number process on the Fock space over L2(R, dt;K) and N(χ[0,t] ⊗
|f >< g|) is characterized by the property:

< Φ(ξ1⊗h1), dN(χ[0,t]⊗|f >< g|)Φ(ξ2⊗h2) >= ξ̄1(t)·ξ2(t) < h1, f >< g, h2 > dt
(55)

D1(ε) := (1− Tε)−1Dε =
∞∑
n=0

T nε Dε (56)

D2(ε) := (g1−ε|g1−ε)−DεD1−ε(1− Tε)−1 (57)

and
Tε := (gε|gε)−(g1−ε|g1−ε)−DεD1−ε (58)

Moreover, U(t) is unitary. PROOF See Theorems (6.1) and (6.2) of [9].

REMARK: Contrarily to what happens in the WCL case, the proof the
unitarity of the limit procees U(t) in LDL case is quite nontrivial. Moreover
the equation (4.9) was deduced in a purely mathematical way in [9]. It is
a remarkable fact that its coefficients are in fact matrix elements of the T-
operator on the one particle space. This connection will be explained in
Section 5).

The result for the WCL limit Fock case with nonlinear type interaction,
i.e. p > 1 in (1.7a) is the following

THEOREM(III.) (WCL: nonlinear case) For all u, v ∈ H0, f, f ∈ K;
S, T, S ′, T ′ ∈ R the limit, as λ→ 0, of

< u⊗ Φ

(
λ

∫ T/λ2

S/λ2
Sufdu

)
, U

(λ)

t/λ2v ⊗ Φ

(
λ

∫ T ′/λ2

S′/λ2
Suf

′du

)
> (59)
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exists formally and is equal to:

< u⊗Ψ
(
χ[S,T ] ⊗ f

)
, U(t)v ⊗Ψ

(
χ[S′,T ′] ⊗ f

)
> (60)

where U(t) is equal to

exp
(
−tD+D ·

∫ 0

−∞
p! < g, Stg >

p dt
)
⊗ 1 (61)

Here “formally means that we expand U
(λ)

t/λ2 in (4.14) using the iterated series,
consider term-by-term limit of the series and finally we resum the limiting
series. For p = 2, the limit is not only formal but also exact.

REMARK The fact that in this case the limit is not unitary and has
no stochastic part provided the first indication that the choice of the “col-
lective vectors” should depend on the interaction. This opened a new line of
investigation. A first result in this direction is in [16].

The reason why for p > 2, we have a weaker result is that, in this case,
the uniform estimate of Section 11) below which allows to exchange the limit
(as λ → 0) and the sum ( for n = 0, 1, · · ·), is not available. PROOF See

Theorem (4.1) of [8].

THEOREM(IV.) (WCL: finite temperature case) For all u, v ∈ H0,
f, f ∈ K; S, T, S ′, T ′ ∈ R the limit, as λ→ 0, of

< u⊗ ΦQ

(
λ

∫ T/λ2

S/λ2
Sufdu

)
, U

(λ)

t/λ2v ⊗ ΦQ

(
λ

∫ T ′/λ2

S′/λ2
Suf

′du

)
> (62)

exists and is equal to:

< u⊗ΨQ

(
χ[S,T ] ⊗ f

)
, U(t)v ⊗ΨQ

(
χ[S′,T ′] ⊗ f

)
> (63)

where ΨQ(ψ ⊗ f) (ψ ∈ L2(R, dt), f ∈ K) are the coherent states of the
Q-quantum Brownian motion over L2(R, dt;K), and U(t) is the (unitary)
solution of the QSDE

dU(t) =
{
D⊗dA+

t (g)−D+⊗dAt(g)−
[
(g|g)−1

2
(Q+1)

D+D ⊗ 1 + (g|g)−1
2

(Q−1)
DD+ ⊗ 1

]
dt
}
U(t)

(64)
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with initial condition U(0) = 1 and where

(g|g)−1
2

(Q±1)
:=

∫ 0

−∞
< g, St

1

2
(Q± 1)g > dt (65)

PROOF See Theorem (1.7) of [3].

THEOREM(V.) (LDL: finite temperature case) In the finite temperature
case, if (4.7) holds and t is small, then the limit, as z → 0, of

< u⊗ ΦQz

(
z1/2

∫ T/z

S/z

Sufdu

)
, Ut/zv ⊗ ΦQz

(
z1/2

∫ T ′/z

S′/z

Suf
′du

)
> (66)

exists and is equal to

< u⊗ΨQ

(
χ[S,T ] ⊗ f

)
, U(t)v ⊗ΨQ

(
χ[S′,T ′] ⊗ f

)
> (67)

where U(t) satisfies the QSDE

U(t) = 1+

∫ t

0

∑
ε∈{0,1}

(D1(ε)⊗dNs(gε, g1−ε)+D2(ε)⊗dNs(gε, gε)+D3(ε)ds)U(s)

(68)
where, D1(ε) and D2(ε) are the same as in the Fock case

D3(ε) :=
∞∑
n=1

M(ε, n− 1)(DεD1−ε)
n (69)

and

M(ε, n) :=

∫ 0

−∞
dt1 · · ·

∫ 0

−∞
dt2n+1 < g1−ε, St1g1−ε >< gε, St2gε > · · ·

< g1−ε, St2n−1g1−ε >< gε, St2ngε >< g1−ε, St2n+1g1−ε > < gε, St2n+1+···+t2e
− 1

2
βHgε >

(70)

PROOF See Theorem (7.1) of [12].

REMARK The presessce of dt-term in (4.23) shows that in general U(t)
is not unitary. This discovery led us to look for a choice of the collective
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coherent vectors different from (1.18b). At moment, although several condi-
dates have been proposed and are under examination, this research has not
yet come to an end (cf. the Remark after Theorem (III.)).

THEOREM(V I.) (WCL: finite temperature, Langevin case) For all u, v ∈
H0, f, f ∈ K; S, T, S ′, T ′ ∈ R and X ∈ B(H0) the limit, as λ→ 0, of

< u⊗ΦQ

(
λ

∫ T/λ2

S/λ2
Sufdu

)
, U

(λ)

t/λ2(X ⊗ 1)U
(λ)∗
t/λ2v⊗ΦQ

(
λ

∫ T ′/λ2

S′/λ2
Suf

′du

)
>

(71)
exists for t small and is equal to:

< u⊗ΨQ

(
χ[S,T ] ⊗ f

)
, U(t)(X ⊗ 1)U(t)∗v ⊗ΨQ

(
χ[S′,T ′] ⊗ f

)
> (72)

where ΨQ is mean-zero gauge invariant quasi free state with covariance 1⊗Q
and U(t) is the (unitary) solution of the QSDE (4.9) with initial condition
U(0) = 1. PROOF See Theorem (4.1)’ of [3].

THEOREM(V II.) (LDL: Fock, Langevin case) For all u, v ∈ H0, f, f ∈
K; S, T, S ′, T ′ ∈ R and X ∈ B(H0) the limit, as z → 0, of

< u⊗ ΦQz

(
z

∫ T/z2

S/z2
Sufdu

)
, Ut/z2(X ⊗ 1)U∗t/z2v ⊗ ΦQz

(∫ T ′/z2

S′/z2
Suf

′du

)
>

(73)
exists and is equal to:

< u⊗Ψ
(
χ[S,T ] ⊗ f

)
, U(t)(X ⊗ 1)U(t)∗v ⊗Ψ

(
χ[S′,T ′] ⊗ f

)
> (74)

where Ψ is the Fock vacuum and U(t) is the (unitary) solution of the QSDE
(4.19) with initial condition U(0) = 1. PROOF See Theorem (4.7) of [10].

Several other results concerning other cases: (dropping the rotating wave
approximation, Fermion reservoir, squeezing initial state, ..., ), have been
obtained (cf. [4], [6], [7], [14] and [15]), but we shall not list them here.
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§5 The low density limit and its connection with scattering
theory

While in the WCL the situation can be considered clearly understood,
at least in its basic qualitative features, and we expect that the main pro-
gresses in this direction will concern the specific models of interest for phy-
sical applications, on the lines of what has already been done for the linear
and quadratic models, in the LDL, despite some important achivements, the
problem is not yet closed.

The first problem to be solved was: how to substantiate mathematically
Frigerio and Maassen’s intuition that in some sense the Poisson process
should be obtained as low density limit of something. Palmer’s argument,
explained in detail in Section 2) above, showed that even if physically the LDL
makes sense only at finite temperature, the basic new mathematical feature
(with respect to the WCL), i.e. the presence of a term in the interaction
not vanishing with the fugacity, involved only the Fock space. It was then
natural as a first level of attack to the problem, to single out this term of
the interaction and to try and extract the maximum information from it.
This was done in [9] and the result is that effectively (and a posteriori quite
surprisingly) one obtains, in the LDL for this model, an SDE driven by pure
number (zero intensity Poisson) processes.

Contrarily to what happens in the WCL, the operator coefficients of the
number processes in the SDE obtained in [9] were related in a highly non-
trivial way to the operator coefficients of the original Hamiltonian. Conse-
quently:

(i) The proof of the unitarity of the solution of the SDE had to be obtained
with direct calculations, any direct reference to the general theory of [31]
being impossible (cf. [9] and the even more complicated proof given in the
first LDL paper [11]).

(ii) No physical interpretation of the coefficients of the number processes
could be given in [9].

In order to overcome these drawbacks, the second problem to be solved
was to clarify the connection between these coefficients and the generator of
the reduced evolution in the LDL case, which had been previously found by
Dümcke (with completely different techniques based on the BBGKY hierar-
chy and scattering theory) and which had a direct physical interpretation,
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being related to the 1-particle scattering operator of the orginal Hamiltonian
system.

A first step towards the solution of this problem was done by Alicki and
Frigerio in [39], who recast the Dümcke generator in a form that could be
directly related to the general theory of [25], and therefore more suitable for
the comparison with the results of [9]. In the remaining of this Section we
shall complete the analysis of [9] by showing that the coefficients of SDE
deduced in [9] can in fact be identified with some particular matrix elements
of the 1-particle T-operator of the original Hamiltonian system. A first fall
out of this result is that now the laborious direct proofs of the unitarity
condition given in [9] become useless, since we can obtain them as a corollary
of the general unitarity theorem of [40]. The last, and mathematically most
difficult, problem, which is still open at the moment, is to obtain the LDL
in its full generality. The solution of this problem will probably require a
synthesis of all the techniques developed up to now to deal with the LDL,
the linear WCL and the nonlinear WCL.

In the remaining of this Section we shall concentrate ourselves on the con-
nection between the coefficients of the SDE deduced in [9] and the T-operator.
In order to do that in full generality, and to explain the physical meaning of
the various simplifying assumptions introduced in the model studied in [25],
we shall slightly generalize this model. For the sake of definiteness, we shall
take H1 = L2(R3) and H = −1

2
∆.

Note that, because of number conservation for interactions of scattering
type, the closed subspace of H0 ⊗HR generated by vectors of the form u ⊗
A+(f)Φ (u ∈ H0, f ∈ H1), which is naturally isomorphic to H0 ⊗ H1,
is globally invariant under the time evolution operator exp[i(HS ⊗ 1 + 1 ⊗
HR+V )t], and the restriction of the time evolution operator to this subspace
corresponds to an evolution operator on H0 ⊗H1 given by

exp[i(HS ⊗ 1 + 1⊗H + V1)t], (75)

where
V1 = i(D ⊗ |g0〉〈g1| − c.c.) (76)

Dümcke’s results ([25]) tell us that the reduced evolution of observables
in B(H0) is completely determined, in the LDL, by the scattering operator
for the evolution (5.1) on H0 ⊗H1 and by the temperature of the reservoir.
This corresponds to the physical intuition that particles of a dilute gas should
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scatter independently, one at a time, on the system. The relevant operators
are the Møller wave operators

Ω± = s− lim
t→±∞

exp[−i(HS ⊗ 1 + 1⊗H +V1)t] exp[i(HS ⊗ 1 + 1⊗H)t] (77)

the T operator
T = V1Ω+ (78)

and the S operator
S = Ω∗−Ω+ (79)

Under rather general assumptions, which are satisfied in the present case, S
is unitary.

In the following we shall take advantage of the simple form (5.2) of the
interaction V1 to compute the T and the S operator explicitly; this will allow
us to make contact between our Theorems (II.) and (VII.) and Dümcke’s
result ([25]).

In Section 1) and 2) we have assumed that [HS, D] = 0 (cf. (1.9)). In
order to better understand the physical meaning of this assumption, let us
generalize it by assuming that, for some ω ≥ 0, one has [HS, D] = −ωD
(rotating wave approximation). Define now the group {St : t ∈ R} of unitary
operators on H1 by

St := exp[i(H − ω0P0 − ω1P1)t]; t ∈ R (80)

where ω0, ω1 are real numbers with

ω = ω0 − ω1 , ω0, ω1 > 0 (81)

and where P0, P1 are mutually orthogonal projections commuting with H
and such that

Pεgε = gε ; ε = 0, 1 ; (82)

this construction is possible since we have assumed (cf. (1.10)) that

〈g0, exp[−iHt]g1〉 = 0 ∀t ∈ R (83)

We denote by {ej : j = 0, 1, . . .} a complete orthonormal set of eigenvec-
tors of HS in H0, with

HS ej = µjej; j = 0, 1, . . . (84)
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and denote by {ej′j; j, j′ = 0, 1, . . .} the corresponding matrix units

ej′j = |ej′〉〈ej| ; j, j′ = 0, 1, . . . (85)

For the sake of definiteness, we shall assume that ω ≥ 0 and that µ0, µ1

are negative, with
µ0 = −ω0 ≤ µ1 = −ω1 < 0 (86)

Denote by H ′ the infinitesimal generator of St:

H ′ = H − ω0P0 − ω1P1 (87)

(more generally, we might take µ0 = ω∗−ω0, µ1 = ω∗−ω1, H ′ = H−ω0Po−
ω1P1 + ω∗1, but this would only make the notation heavier, without adding
to understanding). The operator 1 ⊗ H ′ in H0 ⊗ H1 may be interpreted as
effective total unperturbed energy operator in place of HS⊗1+1⊗H,
since, for all real s, we have

V1(s) := exp[−i(HS ⊗ 1 + 1⊗H)s] · V1 · exp[i(HS ⊗ 1 + 1⊗H)s] =

= exp[−i1⊗H ′s] · V1 · exp[i1⊗H ′s] = i
∑

ε∈{0,1}

Dε ⊗ |S−sgε〉〈S−sg1−ε| (88)

where, as in the previous sections, D0 = D, D1 = −D+. It is clear from (5.3)
– (5.5) and (5.14) that the same scattering operators Ω±, T and S will be
obtained if H0⊗ 1 + 1⊗H is replaced by 1⊗H ′ as total unperturbed energy
operator; so we shall make this replacement in the rest of this section. In
this interpretation, the total unperturbed energy is carried by the reservoir
particle, gε carrying an additional (negative) energy −ωε = µε corresponding
to the energy levels of the system with which the reservoir particle interacts.

So we see that (1.9) can be satisfied by means of a redefinition of HS as 0
and H as H ′, which does not alter the relevant operators. We introduce some
generalizations of the notation in Section 2). For the sake of definiteness, we
shall assume that

H1 = L2(R3), H = −1

2
∆ (89)

and for any f , g ∈ K and E ∈ R, let

(g|f)(E) =

∫
R

exp[−iEt]〈g, Stf〉dt (90)
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so that (g|f) corresponds to the special case E = 0. In particular, with the
choice (5.14a) and for g = gε, we have

(gε|f)(E) =

∫
R

exp[−i(E + ωε)t]〈gε, exp[iHt]f〉dt =

=

∫
R3

d3k 2πδ

(
E − 1

2
k2 + ωε

)
ĝε(k)f̂(k) (91)

where f̂(k) denotes the (unitary) Fourier transform of f evaluated at k.
Note that (5.16) vanishes for E ≤ −ωε. With the interpretation of 1⊗H ′

as effective total unperturbed energy operator, we may interpret

(Gf)ε(E) := [2π(gε|gε)(E)]−1/2(gε|f)(E)

=

∫
R3 d

3kδ
(
E − 1

2
k2 + ωε

)
ĝε(k)f̂(k)[∫

R3 d3kδ
(
E − 1

2
k2 + ωε

)
|ĝε(k)|2

]1/2 if (gε|gε)(E) > 0 (92)

(Gf)ε(E) := 0 if (gε|gε)(E) = 0 (93)

as the component of f on gε carrying total energy E (decomposed as the sum
of −ωε = µε and 1

2
k2).

In analogy with the notation of Section 4), define also

(g|f)−(E) :=

∫ 0

−∞
exp[−iEt]〈g, Stf〉 dt (94)

Tε(E) := (gε|gε)−(E)(g1−ε|g1−ε)−(E)DεD1−ε (95)

(again, the definitions of Section 4 correspond to the special case E = 0).
Note that for all real E one has

|(g|g)−(E)| ≤
∫ 0

−∞
|〈g, Stg〉| dt = ‖g‖2

−

so that, under the assumption that

16‖D‖2 max(‖g0‖−, ‖g1‖−) < 1 (96)

(see Theorem (II.)), we have the convergent geometric series

∞∑
n=0

Tε(E)n = (1− Tε(E))−1 (97)
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Define also
R00(E) = (g1|g1)−(E) D0D1(1− T0(E))−1 (98)

R01(E) = (1− T0(E))−1D0 (99)

R10(E) = (1− T1(E))−1D1 (100)

R11(E) = (g0|g0)−(E) D1D0(1− T1(E))−1 (101)

LEMMA(5.1). With the above assumptions and notations we have, for all

u,∈ H0, f ∈ k,

T (u⊗ f) =
i

2π

∑
ε,ε′=0,1

∫ ∞
−ωε

Rε′ε(E)u⊗ gε′(gε|f)(E) dE (102)

PROOF. We may expand T as an iterated series

T = s− lim
t→∞

∞∑
n=0

(−i)n
∫
. . .

∫
0=s0≤s1≤...≤sn≤t

V1(s0)V1(s1) . . . V1(sn)ds1 . . . dsn

where V1(s) is given by (1.16). Performing the change of variables tj =
sj−1 − sj : j = 1 , . . . , n, and taking the limit as t→∞ we obtain

T (u⊗ f) = i
∞∑
n=0

∑
ε∈{0,1}n+1

(
n

Π
j=1

δ1−εj−1,εj)Dε0Dε1 . . . Dεnu⊗ gε0

·
∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtn(

n

Π
j=1
〈gεj , Stjgεj〉)〈St1+...+tng1−εn , f〉

Using (5.20) we obtain

〈St1+...+tng1−εn , f〉 =
1

2π

∫
dE exp[−iE(t1 + . . .+ tn)](g1−εn|f)(E)

Hence

T (u⊗ f) =
i

2π

∞∑
n=0

∑
ε∈{0,1}n+1

(
n

Π
j=1

δ1−εj−1,εj)Dε0Dε1 . . . Dεnu⊗ gε0·
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·
∫

dE(
n

Π
j=1

∫ 0

−∞
dtj exp[−iEtj]〈gεj , Stjgεj〉)(g1−εn|f)(E) (103)

Due to the factor (
n

Π
j=1

δ1−εj−1,εj), the summation
∑

ε∈{0,1}n+1

reduces to a sum-

mation over the four possible values of the pair (ε′ , ε): = (ε0 , 1− εn). Then
one can identify the convergent geometric series of the form (5.21) appearing
in (5.24); and (5.23) follows.

In order to introduce the S operator, it is convenient to use the following
notation. Any bounded operator A on H0 ⊗H1 can be expressed through a
matrix–valued integral kernel Aj′j(k

′ , k): j , j′ = 0, 1 , . . . ; k, k′ ∈ R3, such
that, for all u, u′ ∈ H0, f , f ′ ∈ H1 one has

〈u′ ⊗ f ′ , Au⊗ f〉

=
∑
j,j′

∫
R3

d3 k

∫
R3

d3 k′ 〈ej′ , u′〉f̂ ′(k′)Aj′j(k′, k)〈ej, u〉f̂(k) (104)

In general, this kernel will be a distribution rather than an ordinary function
of k, k′. With this notation, we have the following well–known result of
scattering theory:

(S − 1)j′j(k
′ , k) = −2πiδ

(
1

2
k′

2 − 1

2
k2 + wj′ − wj

)
Tj′j(k

′, k) (105)

LEMMA(5.2). With the above assumptions and notations, define

Sε′ε(E) = δε′ε1 + [(gε′ |gε′)(E)]1/2Rε′ε(E)[(gε|gε)(E)]1/2 (106)

Then, for all u, u′ ∈ H0, f , f ′ ∈ K, one has, in the notations (5.17a), (5.17b)

〈(u′ ⊗ f ′), S(u⊗ f)〉 = 〈(u′ ⊗ f ′), (u⊗ f)〉+

+
∑

ε,ε′=0,1

∫ ∞
−ωε

dE〈u′, [Sε′ε(E)− δε′ε1]u〉(Gf ′)ε′(E)(Gf)ε(E) (107)

PROOF. A straightforward application of Lemma (5.1) gives

Tj′j(k
′k) = i

∑
ε,ε′=0,1

〈ej′ , Rε′,ε

(
1

2
k2 − ωε

)
ej〉ĝε′(k′)ĝε(k) (108)
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Inserting (5.29) into (5.27) and using (5.16), (5.17) one obtains (5.28);
the only difficulty is to keep track of powers of 2π.

REMARK(5.3). Equation (5.28) is the representation of the operator S,
which commutes with the unperturbed energy operator 1⊗H ′, as a matrix–
valued multiplication operator in the direct integral decomposition of H0⊗H1

into fibers corresponding to H ′ = E. Unitary of S amounts to the fact that,
for every E, the operator S(E) ∈ B(H0)⊗M(2,C) given by

S(E) =
∑

ε,ε′=0,1

Sε′ε(E)⊗ eε′ε (109)

(eε′ε : ε, ε′ = 0, 1 being matrix units of M(2,C)) is unitary. S(E) may be re-
garded as the S operator on the energy shell of total energyE. REMARK(5.4).

The stochastic differential appearing in Theorem (II.) (Equation (4.9)) can
be readily seen to be∑

ε,ε′=0,1

Rε′ε(0)⊗ dNs(gε′ , gε) = dNs(S(0)− 1; 0) (110)

in the notation of [40]. This is the quantum Poisson process of zero intensity
corresponding to the S operator on the energy shell of total energy E = 0.
Then unitarity of the solution U(t) of equation (4.9), which has been proved
in [9], follows from unitarity of S(0) and the general theory of [40].

The notation (5.28), (5.30) allows us to give a particularly transparent
form to the generator L(LDL) of the semigroup obtained by Dümcke [25] in the
low density limit: the following Proposition may be regarded as a rigorous
version of some hand–waving arguments in [40]. PROPOSITION(5.5).

With the above assumptions and notations, the explicit form of L(LDL) is
given by

L(LDL)(x) =
1

2π

∑
ε,ε′=0,1

∞∫
−ωε

dE exp[−β(E + ωε)] · (Sε′ε(E)+XSε′ε(E)− δε′εX)

(111)
for all X in B(H0). PROOF. It has been shown by Dümcke in [25] that

L(LDL)(X) = Ψ(X) + Z+X +XZ ; X ∈ B(H0), (112)
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where the completely positive map Ψ on B(H0) is given by

Ψ(X) = 2π
∑

w∈Sp[HS , ·]

∫
R3

d3k

∫
R3

d3k′δ

(
1

2
k
′2 − 1

2
k2 + w

)

· exp[−βk2/2]T+
w (k′, k)XTw(k′, k) (113)

and where the element Z of B(H0) is given by

Z = −i
∫
R3

d3k exp[−βk2/2]T0(k, k) (114)

In the above formulas, Tw(k′, k) is defined by

Tw(k′, k) =
∑

j,j′:wj′−wj=w

Tj′j(k
′, k)ej′j (115)

Then we can insert the explicit expression (5.29) of Tj′j(k
′, k) and perform

the integrations over k, k′, recalling that from (5.16), (5.9) we have∫
R3

d3kδ

(
E − 1

2
k2 + ωε

)
ĝε′(k) · ĝε(k) = δε′ε(2π)−1(gε|gε)(E) (116)

With the use of (5.27), we obtain

Ψ(X) =
1

2π

∑
ε,ε′=0,1

∞∫
−ωε

dE exp[−β(E+ωε)] · [Sε′ε(E)+−δε′ε1]X[Sε′ε(E)−δε′ε1]

Z =
1

2π

∑
ε=0,1

∞∫
−ωε

dE exp[−β(E + ωε)][Sεε(E)− 1] (117)

Combining (5.33), (5.37) and (5.38) the result follows. REMARK(5.6).

The semigroup with generator (5.32) admits a unitary dilation in terms of a
quantum Poisson process, see [40]. We introduce the Hilbert space

K := L2((−ω0,∞), dE)⊕ L2((−ω1,∞), dE) (118)
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(note that (5.39) is not the same K as in the rest of the paper) and the von
Neumann subalgebra M of L∞(R, dE; M(2,C)) of functions E 7→ {Yε′ε(E) :
ε′ε = 0, 1} such that Yε′ε(E) = 0 for E < −ωε.

M acts on K in the obvious way. Define a positive linear functional µ on
M by

µ(Y ) :=
1

2π

∑
ε=0,1

∞∫
−ωε

dE exp[−β(E + ωε)]Yεε(E) = 〈ξ, Y ξ〉K (119)

where ξ ∈ K is given by

ξ(E) := (2π)−1/2{χ(−ω0,∞)(E) exp

[
−β

2
(E + ω0)

]
⊕χ(−ω1,∞)(E) exp

[
−β

2
(E + ω1)

]
}

(120)
The function E 7→ S(E), S(E) given by (5.30), can be regarded as an

element S of B(H0) ⊗M . With this notation, the generator (5.32) can be
rewritten in the form of [40] as follows:

L(LDL)(X) = (id⊗ µ)(S+(X ⊗ 1)S − (X ⊗ 1)) (121)

Then it follows from [40] that, for all X ∈ B(H0) and t ∈ R+,

exp[L(LDL)t](X) = E[U+(t)(X ⊗ 1)U(t)] (122)

where U(t) is the (unitary) solution of the QSDE

dU(t) = dNt(S − 1; ξ)U(t) , U(0) = 1 (123)

REMARK(5.7). In the finite temperature case and with a suitable choice

of collective vectors (not the collective coherent vectors of Section 4)), the
matrix elements of Ut/z should converge, in the limit as z → 0, to matrix
elements of the solution U(t) of a QSDE of a form similar to (5.44). The
main conceptual difficulty in order to verify this conjecture consists in the
individuation of the collective vectors with which to form the matrix elemen-
ts. Once this is done, it is possible to expect that a combination of all the
techniques developed up to now (both for the WCL and the LDL) should
lead, after some hard work, to the desired result. The only surprises, arising
from the further mathematical developements should concern (as it was for
WCL) the resulting space of “test function”.
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For the moment we only wish to explain why, in contrast with the Fock
case where only S(0) appears, here we have continuously many values for the
total energy E, and an integration over E weighted by the Boltzmann factor
exp[−β(E + ωε)].

In the equilibrium state at strictly positive temperature T = 1/β, par-
ticles of all energies are present, with numbers which become proportional
to z exp[−βk2/2] in the limit as z → 0. The total energy of a particle with
momentum k and of type ε (ε ∈ {0, 1}) is redefined to be E = 1

2
k2 − ωε, to

keep into account the energies of the energy levels of the system on which
the reservoir particles scatter. This allows to describe scattering of a particle
on the system by saying that a scattering particle changes its type from ε to
ε′ = 1− ε, while its total energy remains unchanged: 1

2
k2 − ωε = 1

2
k
′2 − ωε′ .

At the same time, the system performs a transition under the action of the
operator Dε′ . The particle type ε ∈ {0, 1} remains a quantum degree of
freedom, interacting with the quantum system. On the other hand, the total
energy E becomes a classical variable (with continuous spectrum), since the
uncertainty relation ∆E∆(t/z) ≥ ~ involving energy and rescaled time t/z
is no longer a restriction in the limit as z → 0. This gives rise to the peculiar
structure of M as an algebra of 2× 2 matrices whose entries are functions of
E. Each value E of total energy contributes to L(LDL) with the Boltzmann
factor exp[−βk2/2] = exp[−β(E + ωε)] for an incoming particle of type ε.

35



§6. Main strategy of the proof

In the folllowing we list the main steps in the strategy of the proof of
the above results. We have formulated these steps so to include all the
situations in which these results could be obtained (Boson and Fermion,
WCL and LDL, linear and nonlinear interaction, with or without rotating
wave approximation, ... ). Of course the techniques of the proof depend
heavily on the specific situation, however the following steps seem to be a
common factor.

-step (1). Expand Ut/x2 in the iterated series

Ut/x2 =
∞∑
n=0

(−i)n
∫ t/x2

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnVλ(t1) · · ·Vλ(tn) (124)

-step (2). Expand Vλ(t1) · · ·Vλ(tn) and find a sum of many tems of the
form

xn ·Dε1 · · ·Dεn ⊗ Aε1(St1g) · · ·AεN (Stng) (125)

where N is equal to pn and, p is the degree of the interaction, supposed
to be a homogeneous polynomial in the creation and annihilation operators.
Moreover,

xn :=

{
xn, WCL
1, LDL

(126)

-step (3). By normal ordering of the product (6.2) we find a sum of terms
of the form

m∏
h=1

< StpkG,StqkG
′ > ·A+(Stα1g

(1)) · · ·A+(Stαν g
(ν))·A(Stβ1g(1)) · · ·A(Stβµg(µ))

(127)
where, G,G′, g(1), · · · , g(ν), g(1), · · · , g(µ) are equal to g in WCL case and to g0

or g1 in LDL case.
-step (4). Separate the negligible (type II) terms from the relevant ones

(type I). In all cases (with the only exception of LDL finite temperature
case), the type I terms are those terms of the form (6.4) in which all the time
pairs (tpk , tqk), in the product for h = 1, · · · ,m, are time consecutive in
the sense that:

pk = qk − 1 (6.4a)

for each k = 1, · · · ,m. All the other terms are called type II.
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-step (5). Apply various generalizations of the Pulè inequality to prove
that a sum of order n! terms of matrix elments with respect to appropriate
“collective vectors of products of the form (6.4) is estimated by

Cm/(n−m)! t ∈ [0, T ] (128)

where C is a constant depending only on g, g0, g1 and m is the number of
scalar products arising from exchanges of creators and annihilators. We shall
see that the basic difference between WCL and LDL is that in the former
case, m ≤ n

2
so that (6.5) is always less than or equal to Cm/[n/2]!, while in

the latter case m can be very close to n (e.g. equal to n− 1).
-step (6). Use (6.5) to prove the uniform convergence (in x) of the iterated

series so that we can exchange limx→0 and
∑∞

n=0

-step (7). Compute the explicit limit of the non negligible (type I) terms
and show that the limit of negligible (type II) terms tends to zero as x→ 0.

-step (8). Compute the limit of

lim
x→0

d

dt
< u⊗W (x

∫ T/x2

S/x2
Sufdu)Φ, U

(x)

t/x2v ⊗W (x

∫ T ′/x2

S′/x2
Suf

′du)Φ > (129)

-step (9). By means of step (8) prove that the limit, as x→ 0, of

< u⊗W (x

∫ T/x2

S/x2
Sufdu)Φ, U

(x)

t/x2v ⊗W (x

∫ T ′/x2

S′/x2
Suf

′du)Φ > (130)

satisfies an integral equation.
-step (10). Apply step (9) to identify this equation with a QSDE.

Notice that it is by no means true that the n−th term of the iterated
series of (6.7) converges to the n−th term of the iterated series solution of
the QSDE. This is the reason why a good deal of quantum stochastic calculus
intuition is needed in order to guess the correct form of the limiting equation.

-step (11). Reduce the finite temperature case to the Fock case.
-step (12). The Langevin equation. This requires some new techniques

with respect to the Ut-evolution.
However our experience is that the bsic difficulties, both technical and

conceptual, are those concerning the limits of the matrix elements of the U
(x)

t/x2

operator. Once the correct equation for the limit unitary evolution U(t) has
benn individuated, it is usually a question of time to get the convergence of
the corresponding Langevin equation.
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§7. Why can one hope to obtain both the weak coupling and
the low density limits

with the same type of coherent vectors

In Section 4) we said that we shall consider the WCL and LDL for the
same type of coherent vectors even if the interactions are different, now let
us outline the basic idea of how can one hope to obtain both the WCL and
the LDL with the same type of coherent vectors.

Both in the LDL and the WCL limit, the n− th iterated integral of the
perturbation series is of the form

xn

∫ t/x2

0

dt1 · · ·
∫ tn−1

0

dtnV (t1) · · ·V (tn) (131)

where, V is not the same as (1.7) but has the following form:

V =

{
i(D ⊗ (A+(g))p − c.c.) for WCL
i(D ⊗ A+(g0)A(g1)− c.c.) for LDL

(132)

and xn is defined in (6.3) (i.e. the λ factors have been taken out of V and
put into xn).

Using the explicit form of V and neglecting the system operators D,D+

(inessential for our considerations) we are reduced to compute matrix ele-
ments in some collective coherent vectors of the form (1.18b), of expressions
of the form

xn
∫ t/x2

0

dt1 · · ·
∫ tn−1

0

dtn(Aε1(St1g))p · · · (Aεn(Stng))p WCL (133)

∫ t/x2

0

dt1 · · ·
∫ tn−1

0

dtnA
+(St1gε1)A(St1g1−ε1) · · ·A+(Stngεn)A(Stng1−εn) LDL

(134)
Bringing the products in the integrals (7.3) and (7.4) to normally ordered

form we find that
(Aε1(St1g))p · · · (Aεn(Stng))p (135)

and
A+(St1gε1)A(St1g1−ε1) · · ·A+(Stngεn)A(Stng1−εn) (136)

38



have both the form:∑
m,{ph,qh}mh=1

m∏
h=1

< G,Stqh−tphG
′ > (A+ · · ·)r1(A · · ·)r2 (137)

where (A+ · · ·)r (resp. (A · · ·)r) denotes a product of r creation (resp.
annihilation) operators of the form A+(Stjgε) (resp. A(Stjgε); G,G

′ are equal
to g in the WCL case and g0 or g1 in the LDL case. Moreover (7.7) means that
there are exactly m scalar products which have been produced by application
of the CCR so that exactly m creators and m annihilators

r1 + r2 =

{
pn− 2m, for WCL
2n− 2m, for LDL

(138)

With the change of variables

x2tj = sj, j = 1, · · · , n (139)

in (7.7) and applying the adjoints of the creators on the coherent vectors on
the left:

W (x

∫ T/x2

S/x2
Sufdu)Φ (140)

and the annihilators on the coherent vectors on the right:

W (x

∫ T ′/x2

S′/x2
Suf

′du)Φ (141)

for each product (A+ · · ·)r1 , (A · · ·)r2 we obtain the following factor

r1∏
h=1

x

∫ T/x2

S/x2
< Suf, Ssαh/x2G > du

r2∏
h=1

x

∫ T ′/x2

S′/x2
< Ssβh/x2G

′, Suf
′ > du

(142)
with G,G′ as explained above. Notice that the limit of the expressions∫ T/x2

S/x2
< Suf, Ssαh/x2G > du (143)

and ∫ T ′/x2

S′/x2
< Ssβh/x2G

′, Suf
′ > du (144)
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exist always because of (1.6), so the quantity

∑
m,{ph,qh}mh=1

xn

∫ t/x2

0

dt1 · · ·
∫ tn−1

0

dtn

m∏
h=1

< G,Stqh−tphG
′ >

< W (x

∫ T/x2

S/x2
Sufdu)Φ, (A+ · · ·)r1(A · · ·)r2W (x

∫ T ′/x2

S′/x2
Suf

′du)Φ > (145)

has the form∑
m,{ph,qh}mh=1

xr1+r2−2n · xn
∫ t

0

ds1 · · ·
∫ sn−1

0

dsn

m∏
h=1

< G,S(sqh−sph )/x2G
′ > ·C(x)

(146)
where C(x), which is a product of integrals of the form (7.11), (7.12), tends
to some limit as x→ 0.

Now for each integral in (7.14) of the form

· · ·
∫ sph−1

0

dsph · · ·
∫ sqh−1

0

< G,S(sqh−sph )/x2G
′ > dsqh

∫ sqh

0

dsqh+1 · · · (146)

(7.14)
withthechangeofvariables

(sqh − sph)/x2 = tqh(147)one gets

· · ·x2 ·
∫ sph−1

0

dsph · · ·
∫ (sqh−1−sph )/x2

−sph/x2
< G,StqhG

′ > dtqh

∫ x2tqh+sph

0

dsqh+1 · · ·

(148)
as x→ 0 the integral (7.16) converges to a limit which is either

· · ·x2 ·
∫ sph−1

0

dsph · · ·
∫ 0

−∞
< G,StqhG

′ > dtqh

∫ sqh−1

0

dsqh+1 · · · (149)

or zero. In this sense we say that the scalar product (7.14a) produces a
factor x2. For the WCL linear case (p = 1) and the LDL case, in the product∏m

h=1 < G,S(sqh−sph )/x2G
′ > the pairs of indices (sph , sqh) are all mutually

different, therefore this product produces a factor x2m.
On the other hand, for the WCL nonlinear case (p ≥ 2), because of the

choice of the interaction (7.2), we can have more than one annihilation or
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creation at the same time and therefore, it is possible that for some 1 ≤ h 6=
h ≤ m, ph = ph′ and qh = qh′ , in this case one has

· · ·
∫ sph−1

0

dsph · · ·
∫ sqh−1

0

< G,S(sqh−sph )/x2G
′ >< G,S(sqh′−sph′ )/x

2G′ > dsqh

∫ sqh

0

dsqh+1 · · ·

= · · ·x2·
∫ sph−1

0

dsph · · ·
∫ (sqh−1−sph )/x2

−sph/x2
< G,StqhG

′ >2 dtqh

∫ x2tqh+sph

0

dsqh+1 · · ·

(150)
So the product

∏m
h=1 < G,S(sqh−sph )/x2G

′ > gives only a factor x2m′ for
some m′ ≤ m. Obviously by the above explaination, one can take m′ as the
cardinality of the set {qh}mh=1 i.e. the maximum number of qh different among
themselves. Summing up we conclude that (7.14) is of the following form∑

m,{ph,qh}mh=1

xr1+r2−2n · xn · x2m0C1(x) (151)

where xn is given by (6.3), C1(x) tends to some limit as x→ 0 and

m0 = card {q1, · · · , qm} =

{
m, for LDL and WCL linear cases
m′, for WCL nonlinear cases

(152)

Since in both cases the product
∏m

h=1 < G,S(sqh−sph )/x2G
′ > produces the

factor x2m0 we see that the power of x in (7.18) becomes
-In the LDL case,

xr1+r2−2n · xn · x2m0 = x2n−2m−2n+2m = 1 (153)

-In the WCL linear case

xr1+r2−2n · xn · x2m0 = xn+(n−2m)−2n+2m = 1 (154)

For this reason one can obtain the limit both in LDL and WCL linear cases.
In the WCL nonlinear case again a factor x2m0 is produced, however in

this case:

xr1+r2−2n · xn · x2m0 = xn+(pn−2m)−2n+2m′ = x(p−1)n−2m+2m′ (155)

and since at each time index we have at most p creators and m′ labels the
different time indices of creators, it follows that m ≤ m′p. Therefore,

(p− 1)n− 2m+ 2m′ ≥ (p− 1)n− 2m+ 2m/p = (p− 1)n− 2m
p− 1

p
(156)
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This shows that if 2m < pn then the right hand side of (7.23) is strictly
greater than

(p− 1)n− pnp− 1

p
= 0

So also in the WCL nonlinear case that the limit (7.18) exists but in this case
only the pure scalar product terms (pn = 2m) may give a non-zero contribu-
tion. This is a typical central limit effect (cf. [19] where ideas and techniques
borrowed from the WCL and LDL have been used to prove quantum central
limit theorems).
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§8. The role of the interaction

The first difference between LDL and WCL is that in the LDL case the wa-
ve operator at time t depends on x (keep in mind that in LDL case x = z1/2)
only via the time scaling t → t/x2, while in the WCL limit the interaction
itself is multiplied by x, which gives a factor xn in the n − th term of the
iterated series. In the notation (6.3) for xn and (1.15) for V (t), this series is

Ut/x2 =
∞∑
n=0

(−1)nxn

∫ t/x2

0

dt1 . . .

∫ tn−1

0

dtnV (t1) . . . V (tn) (157)

Both in the WCL and the LDL case we shall consider the limits of the
matrix elements of Ut/x2 in the same family of vectors (collective coherent
vectors) i.e.

W (x

∫ T/x2

S/x2
Sufdu)Φ

In the Fock case, if the interactions V were the same for the WCL and
the LDL, the existence of the limit in the LDL case would imply that the
corresponding limit in the WCL case is identically zero.

Notice that this is not necessarily true in the finite temperature case. In
fact in that case the vacuum vector will depend on x = z1/2 in the LDL case
but will not depend on x = λ in the WCL case. Therefore in this case both
limits might exist.

The crucial role, in the Fock case, is played by the difference in the
interactions which, in the LDL case, is of number type, i.e. of the form:

i(D ⊗ A+(g0)A(g1)− c.c.)

and in the WCL case of the form

i(D ⊗ (A+(g))p − c.c.)

Notice that we have obtained a nonzero WCL in the case p > 1, therefore,
for the argument given above, the limit cannot exist (for this interaction) in
the LDL Fock case.

This shows that the number preserving form of the interaction and not
the degree (2 versus 1) is the essential factor. However before that we want
to explain why the number preserving character of the interaction is crucial
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and for a generic interaction of d degree one should not expect the existence
of both the WCL and the LDL. If we show that this interaction has a WCL
limit then by the argument in this Section it will be impossible that it has
also a LDL.
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§9. On the sum
∑

m,{ph,qh}mh=1

In this Section we shall illustrate two basic differences among the terms
of the iterated series for the WCL and LDL case. In Sections 11), 14) and 15)
we shall prove that these differences lay at the root of the fact that, in the
QSDE obtained in the LDL case, the coefficients of the noises are power series
of products of the coefficients of the original Hamiltonian system weighted
with appropriate scalars, while in the linear WCL case the coefficients of the
creation and annihilation noises are the same as those of the creation and
annihilation terms in the original Hamiltonian system.

In order to explain this differences we must go back to the products
(7.6), (7.7)and study the common normally ordered form (7.8). The crucial
difference between the products (7.6) and (7.7) is that, in (7.6) (i.e. in the
WCL case)

i) For p = 1, all the indices tj which appear under the product (A+ · · ·)r1(A · · ·)r2 ,
are different from all the tph , tqh appearing in the product

∏m
h=1.

ii) No tph , tqh are equal to some tqk , tpk if k 6= h.
In (7.7) however (i.e. in the LDL case) neither i) nor ii) above are true.

As a consequence of the failure of i) and ii), the change of variables like
(7.15), which involves (tqh − tph)/x2, will affect not only the

∏m
h=1 integral

but also the integrals of the form of (7.11) and (7.12).
More precisely: the failure of i) is related to the fact that we consider a

nonlinear (degree ≥ 2) interaction. The failure of ii) depends more on the
specific form of the interaction. For example, for the interaction i(D+⊗A2(g)
- c.c.) no tph can be equal to some tqk with k 6= h (however it could be equal to
some tpk) but property i) fails. While for the interaction i(D+⊗A+(g0)A(g1)
- c.c.) (or more generally, for any interaction which involves a product of
both creation and annihilation operators) both properties i) and ii) fail.

To illustrate the origin of the failure of properties i) and ii), let us consider
the case n = 3. Then

A+(St1g0)A(St1g1)A+(St2g1)A(St2g0)A+(St3g0)A(St3g1)

= A+(St1g0) < St1g1, St2g1 >< St2g0, St3g0 > A(St3g1) + something (158)

In this case, looking at the first and the second scalar product we have the
situation:

(t1, t2) = (tp1 , tq1); (t2, t3) = (tp2 , tq2) (159)
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so that tq1 = tp2 . Moreover the operators A+(St1g0) and A(St3g1) will act on
the collective coherent vectors so that i) can not hold.

Summing up for the pair of indices tph , tqh , i.e. those pairs corresponding
to scalar products arising from the commutators of creation and annihilation
operators, we have the following possible situations:

{p1, . . . , pm} ∩ {q1, . . . , qm} = ∅ (160)

card {p1, . . . , pm} = card {q1, . . . , qm} = m (161)

For interactions of the form

i(D ⊗ A+(g)p − c.c.) (162)

(9.3) holds but (9.4) holds only for p = 1. For interactions of the form

i(D ⊗ A+(g0)A(g1)− c.c.) (163)

only (9.4) is true.
Moreover since m is the number of scalar products which appear in the

normally ordered form and each scalar product uses exactly one creation and
one annihilation operator, we deduce that for interactions of the form (9.5)
with p = 1, m ≤ n/2; for interactions of the form (9.5) with p > 1, m′ ≤ n/2
(m′ is the cardinality of the time index set {qh}mh=1); but for interactions of
the form (9.6) (i.e. LDL case), m ≤ n − 1 so that m can be very near to n
and this implies, as we shall see in more detail in Section 11), that in order
to assure the uniform convergence of the series we need a bound of the norm
of D in the LDL case, contrarily to what happens in the WCL case.

Now let us see the difference in the behaviour of the index set {ph, qh}mh=1

in the two cases.
For each fixed n ∈ N and ε ∈ {0, 1}n, denote by j1 < · · · < jk the set

{j ∈ {1, · · · , n} : ε(j) = 1}

In the WCL case the inidces jh are characterized by the property that in time
tjh (h = 1, · · · , k) one has a creator and at all other times an annihilation
operator. This shows that, in the WCL case, we have {ph}mh=1 ⊂ {1, · · · , n}\
{jh}mh=1 and {qh}mh=1 ⊂ {jh}mh=1 (one can assume that the set is ordered),
which is an improvement of (9.3), but this is not necessary for the LDL
case since for each time we have one creation and one annihilation operator.
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Moreover, since {ph}mh=1 labels the annihilators which are used to produce
scalar product with the creators, labeled by {qh}mh=1, one has ph < qh for any
h = 1, · · · ,m. This implies that in the WCL linear case (i.e. p = 1), one has
the identity:

∑
m,{ph,qh}mh=1

=

[n/2]∑
m=0

∑
1≤q1<···<qm≤n,{qh}mh=1⊂{jh}

k
h=1

∑
{ph}mh=1⊂{1,···,n}\{jh}

k
h=1,|{ph}

m
h=1|=m

ph<qh,h=1,···,m
(164)

In the nonlinear case (p ≥ 2), we can produce at most [pn/2] scalar products,
i.e. 0 ≤ m ≤ [pn/2] and moreover some ph (qh) can be equal to some other
ph′ (qh′), therefore we can only conclude that

1 ≤ q1 ≤ · · · ≤ qm ≤ n, |{ph}mh=1| ≤ m (165)

It follows that in the WCL nonlinear case,

∑
m,{ph,qh}mh=1

=

[pn/2]∑
m=0

∑
1≤q1≤···≤qm≤n,{qh}mh=1⊂{jh}

k
h=1

∑
{ph}mh=1⊂{1,···,n}\{jh}

k
h=1,|{ph}

m
h=1|≤m

ph<qh,h=1,···,m
(166)

In the LDL case (9.3) is not true and 0 ≤ m ≤ n − 1, but (9.4) is true so
that one has

∑
m,{ph,qh}mh=1

=
n−1∑
m=0

∑
1≤q1<···<qm≤n

∑
1≤p1,···pm≤n,|{ph}mh=1|=m

ph<qh,h=1,···,m

(167)
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§10. Pulè inequalities

The prototype of the inequalities we are going to consider in this Section
is in Lemma (3) of [29]. For this reason we call them Pulè inequalities. They
play a basic role in the proof of the uniform estimate.

For t ∈ R+ and any natural integer n, we denote

∆
(n)
t := {(t1, · · · , tn) ∈ Rn : t ≥ t1 ≥ · · · ≥ tn ≥ 0} (168)

With this notation the most general Pulè inequality used up to now in the
weak coupling or low density problem is the following: LEMMA (10.1) Let

f : R −→ R+ be a positive integrable symmetric (i.e. f(t) = f(−t))
function. Let n,m ∈ N, 1 ≤ m ≤ n − 1 and let 2 ≤ q1 < · · · < qm ≤ n;
1 ≤ p1 ≤ · · · ≤ pm ≤ n− 1; ph < qh, h = 1, · · · ,m.

For {ph, qh}mh=1 as above, let Sm denote the group of permutations of m
elements and let

S1
m := {σ ∈ Sm : ph < qσ(h), h = 1, · · · ,m} (169)

Then, for any function F ∈ L1
loc(R

n−m), one has

λ−2m

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn
∑
σ∈S1m

m∏
h=1

f(
tqσ(h) − tph

λ2
)F (t1, · · · , t̂q1 , · · · , t̂qm , · · · , tn)

≤
[∫ 0

−∞
f(t)dt

]m ∫
∆

(n−m)
t

dτ1 · · · d̂τq1 · · · d̂τqm · · · dτnF (τ1, · · · , τ̂q1 , · · · , τ̂qm , · · · , τn)

(170)

PROOF In our notations and using the symmetry of f , the left hand
side of (10.3) becomes

λ−2m
∑
σ∈S1m

∫
σ∆

(n)
t

dt1 · · · dtn
m∏
h=1

f(
tqh − tph
λ2

)F (t1, · · · , t̂q1 , · · · , t̂qm , · · · , tn)

(171)
where, for each fixed q1, · · · , qm as above, the action of Sm on Rn is defined
by

σ(t1, · · · , tq1 , · · · , tqm , · · · , tn) = (t1, · · · , tqσ(1) , · · · , tqσ(m)
, · · · , tn) (172)
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Clearly since F does not depend on the q-variables, it remains unchanged
under the action of σ. But since σ∆

(n)
t ∩ σ′∆

(n)
t = ∅ for σ 6= σ′, (10.4) is

equal to

λ−2m

∫
⋃
σ∈S1m

σ∆
(n)
t

dt1 · · · dtn
m∏
h=1

f(
tqh − tph
λ2

)F (t1, · · · , t̂q1 , · · · , t̂qm , · · · , tn)

(173)
Now let us introduce the change of variables

xh := (tqh − tph)/λ2 ; h = 1, · · · ,m (174)

yj := tj for j ∈ {1, · · · , n} \ {q1, · · · , qm} (175)

Because of our conditions qj 6= qk for j 6= k and therefore the cardinality of the
set of the indices j in (10.7) is exactly n−m. Moreover, since (t1, · · · , tn) ∈
∆

(n)
t and the indices j in (10.7) are chosen in the complement of the set
{q1, · · · , qm} it follows that

j < j′ =⇒ t ≥ yj ≥ yj′ ≥ 0 (176)

Equivalently, by relabeling the indices j, we can assume that (y1, · · · , yn−m) ∈
∆

(n−m)
t . Moreover since tph ≥ tqh , the variables xh are in R− for each λ. The-

refore, after the change of the variables (10.7), (10.8) and above mentioned
relabeling of the yj, the integral (10.6) is majorized by∫

∆
(n−m)
t

F (y1, · · · , yn−m)dy1 · · · dyn−m
∫
Rm
−

m∏
h=1

f(xh)dx1 · · · dxm (177)

which is precisely the right hand side of (10.3).

The general form (10.2) of the Pulè inequality will be used in the de-
duction of the Langevin equation for the low density limit and in the more
general approach to the low density limit suggested in [10]. In the weak cou-
pling limit the following two simpler forms of the inequality will be sufficient.

COROLLARY (10.2) In the notations and assumptions of Lemma (10.1),
suppose that F is a symmetric function of n−m variables and let

S0
m := {σ ∈ Sm : pσ(h) < qh, h = 1, · · · ,m} (178)
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Then

λ−2m

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn
∑
σ∈S0m

m∏
h=1

f(
tpσ(h) − tqh

λ2
)F (t1, · · · , t̂q1 , · · · , t̂qm , · · · , tn)

≤
[∫ 0

−∞
f(t)dt

]m ∫
∆

(n−m)
t

dτ1 · · · d̂τq1 · · · d̂τqm · · · dτnF (τ1, · · · , τ̂q1 , · · · , τ̂qm , · · · , τn)

(179)

PROOF We have only to remark that, due to symmetry of F the left
hand side of (10.12) is equal to

λ−2m
∑
σ∈S0m

∫
σ∆

(n)
t

dt1 · · · dtn
m∏
h=1

f(
tph − tqh
λ2

)F (t1, · · · , t̂q1 , · · · , t̂qm , · · · , tn)

(180)
the remaining part of the proof is the same as in Lemma (10.1).

REMARK Corollary (10.2) is used in the low density and weak coupling
limit with F (t1, · · · , t̂q1 , · · · , t̂qm , · · · , tn) = 1; in this case the bound (10.10)
becomes

λ−2m

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn
∑
σ∈Som

m∏
h=1

f(
tpσ(h) − tqh

λ2
) ≤ tn−m

(n−m)!

[∫ 0

−∞
f(t)dt

]m
(181)

These inequalities allow to obtain, for a sum of card(S0
m) terms, the same

estimate that (6.5) gives for each single term. Since

card(S0
m) ∼ m!

and m can be [n/2] in the weak coupling and n− 1 in the low density case,
the improvement is quite substantial.
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§11. The uniform estimate

In the present section, we apply the Pulè inequality to obtain a uniform
estimate (in x) for the matrix elements of (7.4) (WCL) and (7.5) (LDL) in
the same family of collective coherent vectors (7.10a), (7.10b).

We know from the analysis of Section 7) that it is sufficient to deduce
a bound for expressions of form (7.14). In this Section we shall prove this
estimate in the LDL case and WCL case with linear interaction (p = 1).

Notice that in (7.14), the quantity C(x) is a r1 + r2 factor’s product and
each factor has the form of (7.11) and (7.12). Moreover, from (7.9), if we
denote

C := 1
∨

max
F=f,f ′; G=g,g0,g1

∫ ∞
−∞
| < G,StF > |dt (182)

then the module of C(x) in (7.14) is majorized by C2(n−m). Therefore the
module of (7.14) is majorized by

∑
m,{ph,qh}mh=1

xr1+r2−2n·xn
∫ t

0

ds1 · · ·
∫ sn−1

0

dsn

m∏
h=1

| < G,S(sqh−sph )/x2G
′ > |·C2(n−m)

(183)
and in any case, from (6.3), (7.20) and (7.21), one has

xr1+r2−2n · xn = x−2m (184)

The sum
∑

m,{ph,qh}mh=1
in (11.2) is given by (9.7) and (9.10) respectively.

Notice that, if in the two summations over {ph}mh=1 and over {qh}mh=1, we
neglect the restrictions

{qh}mh=1 ⊂ {jh}kh=1 (185)

and
{ph}mh=1 ⊂ {1, · · · , n} \ {jh}kh=1 (186)

then (11.2) is majorized by

′∑
m

∑
1≤q1<···<qm≤n

∑
1≤p1,···,pm≤n, ph<qh,h=1,···,m

|{ph}mh=1|=m

C2(n−m)x−2m

∫ t

0

ds1 · · ·
∫ sn−1

0

dsn

m∏
h=1

| < G,S(sqh−sph )/x2G
′ > | (187)
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where, the only difference between the WCL (linear) and the LDL case is
that in the summation

∑′
m

- m = 0, 1, · · · , n/2 in the WCL case;
- m = 0, 1, · · · , n− 1 in the LDL case.
Notice that for each fixed m, 1 ≤ q1 < · · · < qm ≤ n and function f ,∑

1≤p1,···,pm≤n, ph<qh,h=1,···,m
|{ph}mh=1|=m

f(sqh − sph) =

=
∑

1≤p1,···,pm≤n, ph<qh,h=1,···,m

∑
σ∈S0m

f(sqh − spσ(h)) (188)

where, S0
m is defined in (10.11). Summing up, if we denote

f(t) := max
G,G′=g,g0.g1

| < G,StG
′ > | (189)

then f is a positive, symmetric L2 function and (11.6) is dominated by

′∑
m

∑
1≤q1<···<qm≤n

∑
1≤p1,···,pm≤n, ph<qh,h=1,···,m

C2(n−m)x−2m

∫ t

0

ds1 · · ·
∫ sn−1

0

dsn

m∏
h=1

f(sqh−sph)

(190)
Applying Corollary (10.2) with F = 1 to (11.9), one gets the majorization of
(11.6) by

′∑
m

∑
1≤q1<···<qm≤n

∑
1≤p1,···,pm≤n, ph<qh,h=1,···,m

C2(n−m) tn−m

(n−m)!
·
(∫ 0

∞
f(t)dt

)m

≤
′∑
m

(
n

m

)2

· (C2t)n−m

(n−m)!
·
(∫ 0

∞
f(t)dt

)m
(191)

where, the factor
(
n
m

)2
comes from the sums∑

1≤q1<···<qm≤n

∑
1≤p1,···,pm≤n, ph<qh,h=1,···,m

and the other factors from the Pulè inequality.
In WCL (linear) case, 0 ≤ m ≤ n/2 and therefore the right hand side of

(11.10) (so (11.6)) is dominated by

Cn
0 /[n/2]! (192)
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where constant C0. But in LDL case, m runs from 0 to n-1, i.e. it might be
near n, so that n−m might be very small. For this reason we need that the
quantity

∫ 0

∞ f(t)dt is small. More precisely, denoting

‖g‖2
− :=

∫ 0

−∞
f(t)dt (193)

(in view of (11.8) this notation is compatible with (4.6)) and supposing,
without loss of generality, that

‖g‖− 6= 0

the right hand side of (11.10) is less or equal than

n−1∑
m=0

‖g‖2m
− ·

(C2t)n−m

(n−m)!
· 4n = (4 · ‖g‖2

−)n
n−1∑
m=0

(C2t)n−m

(n−m)! · ‖g‖2(n−m)
−

(194)

So putting k = n−m, (11.13) becomes

(4 · ‖g‖2
−)n

n∑
k=1

(C2t)k

k! · ‖g‖2k
−
≤ (4 · ‖g‖2

−)n · exp(
C2t

‖g‖2
−

) (195)

Summing up, we have proved the following uniform estimate:

THEOREM(11.1) The quantity

| < u⊗Φ(x

∫ T/x2

S/x2
Sufdu),

∫ t

0

dt1 · · ·
∫ tn−1

0

dtnV (t1) · · ·V (tn)v⊗Φ(x

∫ T ′/x2

S′/x2
Suf

′du) > |

(196)
is majorized by

Cn :=

{
Cn/[n/2]! , WCL
(‖g‖2

− · 8‖D‖)
n · exp(C2t/‖g‖2

−), LDL
(197)

where, C is a constant.
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§12. Absence of the dA, dA+, dt terms in the low density limit:
Fock case

In this Section we explain why in the LDL Fock limit we should expect
that the SDE for U(t) does not contain terms in dA, dA+, dt.

By inspection of (7.7), we see that, in all the terms appearing in the n−th
term of the iterated series, the first operator is always a creator and the last
one always annihilator. This implies that the normally ordered form of the
n− th term of the iterated solution of Ut cannot contain a purely scalar term
(i.e. a term in which all pairs of creators and annihilators have seen used to
produce a scalar product). As already remarked in Section 6) it is in general
not true that the n − th term of the iterated series converges to the n − th
terms of the iterated solution of the SDE. However if we write the solution
of a given SDE

dU(t) = FαdMα(t)U(t) ; U(0) = 1

where the driving noises are of the form

dA+
t (g), dAt(g), dNt(g), dt

and the Fα are operators in the initial space, in terms of the iterated series

U(t) = 1 +
∞∑
n=1

U (n)(t) (198)

U (n+1)(t) =

∫ t

0

FαdMα(s)U (n)(s) ; U (0)(t) = 1 (199)

then, the explicit expression for U (n)(t) will be a sum of iterated stochastic
integrals of the form∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

Fα1Fα2 · · ·FαndMα1(t1) · · · dMαn(tn) (200)

over all possible indices αj.
We say that a term of the form (12.3) is a pure dt term if

dMα1(t1) · · · dMαn(tn) = dt1 · · · dtn (201)

with this terminology the following statement is true: The sum of the matrix
elements of all the purely dt−terms in the iterated series expansion of the
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SDE is always equal to the limit of the sum of the matrix elements of all the
purely scalar terms in the normally ordered form of the interaction. This
is due to the fact that the coefficient of this terms cannot contain the test
functions f, f ′ of the two coherent vectors with respect to which we are
considering the matrix elements, while the matrix element of any non scalar
term will always produce a scalar product of some gε with f or f ′.

Since we have seen in Section 7) that in the Fock LDL case there are no
purely scalar terms in the normally ordered form of any term of the iterated
series, it follows that the equation for U(t), supposing it exists, cannot contain
a dt−term.

On the other hand, if U(t) is unitary, then if it contains some dA and dA+

terms, then it must contain also some dt−terms. Therefore also the presence
of dA and dA+ terms, in the equation for U(t), is ruled out. This also explains
why there is hope that the limit process in LDL finite temperature is
unitary: in this case in fact we obtain dt−term but not dA and dA+ terms.
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§13. The negligible terms: Fock case

As already seen in Section 7), both in the WCL and the LDL case, after
the normal ordering, the matrix element in some collective coherent vectors
of the n− th term of the iterated series is a sum of expressions of the form

x2n−2m

∫
∆

(n)

t/x2

dt1 · · · dtn
m∏
n=1

< G,Stqh−tphG
′ > ·C(x) (202)

where, for each n ∈ N and t ∈ R

∆
(n)
t := {(t1, . . . , tn) ∈ Rn: t ≥ t1 ≥ t2 ≥ . . . ≥ tn} (203)

and C(x) is a product of the terms with the forms (7.11) and (7.12).
In the limit x → 0 some of the terms (13.1) will vanish and some not.

In the Fock case (but not in the finite temperature one!) the criterium to
distinguish the relevant terms from the neglible ones is the same both in the
WCL and the LDL case and does not depend on the interaction. Namely:
the neglible terms (called terms of type II) are those in which, in the product

m∏
h=1

< g, Stqh−tphg >

there exists some index h such that

qh − ph > 1 (204)

In other terms, the only surviving terms in the limit (called terms of type I),
are those corresponding to the products

m∏
h=1

< g, Stqh−tqh−1g > (205)

arising from the communtators

[A(Stqh−1g), A+(Stqh )]

Let us first explain how one can prove the terms of type II tends to zero as
x→ 0. To this goal notice that (13.1) is majorized in modules by a constant
to the power n times a integral with the form
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· · ·
∫ tqh−2

0

dtqh−1x
−2

∫ tqh−1

0

dtqh| < G,S(tqh−tph )/x2G
′ > |

∫ tqh

0

dtqh+1 · · ·

(206)
With the change of variable

(tqh − tph)/x2 = τh

we obtain

· · ·
∫ tqh−2

0

dtqh−1

∫ (tqh−1−tph )/x2

−tph/x2
dτh| < G,SτhG

′ > |
∫ λ2τh+tph

0

dtqh+1 · · ·

(207)
Notice that in the dτh-integral in (13.6) goes from −tph/x2 to (tqh−1− tph)/x2

which is < 0 a.e. if the condition (13.3) holds.
Due to the integrability of τ →< G,SτG

′ >, it follows that

lim
λ→0

∫ (tqh−1−tph )/x2

−tpj /x2
dτh| < G,SτhG

′ > | = 0 (208)

almost everywhere (in tqh−1 and tph) and, since∣∣∣∣∣
∫ (tqh−1−tph )/x2

−tph

dτh < G,SτhG
′ >

∣∣∣∣∣ ≤
∫ +∞

−∞
| < G,StG

′ > |dt (209)

we have that

lim
λ→0

∫
∆

(n)

t/x2

dt1 . . . dtn

m∏
h=1

< G,Stqh−tphG
′ >= 0 (210)

by dominated convergence.

§14. The limit of the type I terms

Now let us explain how one can control the explicit form of the limit of
type I terms as x→ 0. We begin to consider the integral (13.1) in the LDL
case, which is the most difficult since several indices qα can be equal among
themselves. Notice that each fixed m and {ph, qh}mh=1 determine a unique
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decompose of the set {qh}mh=1 into maximal increasing chains with respect to
the property qβ = qβ+1 − 1, i.e. a decomposition

{qh}mh=1 = {q1, · · · , qα} ∪ · · · ∪ {qβ, · · · , qm} (211)

with the properties:

q1 = q2 − 1, · · · , qα−1 = qα − 1, but qα < qα+1 − 1 (212)

· · ·
qβ−1 < qβ − 1, but qβ = qβ+1 − 1, · · · , qm−1 = qm − 1 (213)

The WCL linear case corresponds to a particular decomposition

{q1, · · · , qm} = {q1}, {q2}, · · · , {qm} (214)

We rewrite the integarl (13.1) to the following form

· · ·x−2m

∫ tq1−1

0

dtq1 < G,S(tq1−tq1−1)/x2G
′ >

∫ tq1

0

dtq1+1 < G,S(tq1+1−tq1 )/x2G
′ > · · ·

∫ tqα−1

0

dtqα < G,S(tqα−tqα−1)/x2G
′ >

∫ tqα

0

dtqα+1 · · ·

· · ·
∫ tqβ−1

0

dtqβ < G,S(tqβ−tqβ−1)/x2G
′ >

∫ tqβ

0

dtqβ+1 < G,S(tqβ+1−tqβ )/x2G
′ >

· · ·
∫ tqm−1

0

dtqm < G,S(tqm−tqm−1)/x2G
′ >

∫ tqm

0

dtqm+1 · · ·C(x) (215)

where, C(x) is given by (14.14) below. With the change of variables

(tqh − tqh−1)/x2 = τh (216)

the integral (14.5) becomes

· · ·
∫ 0

−tq1−1/x2
dτ1 < G,Sτ1G

′ >

∫ 0

−tq1−1/x2−τ1
dτ2 < G,Sτ2G

′ > · · ·

∫ 0

−tq1−1/x2−τ1−···−τα−1

dτα < G,SταG
′ >

∫ tq1−1+x2(τ1+···+τα)

0

dtqα+1 · · ·C(x)

(217)
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For simplicity we shall discuss only the first chain of integral since the other
ones are dealt with the same idea. In (14.7) there are two types of integrals:
the chain∫ 0

−tq1−1/x2
dτ1 < G,Sτ1G

′ >

∫ 0

−tq1−1/x2−τ1
dτ2 < G,Sτ2G

′ > · · ·

· · ·
∫ 0

−tq1−1/x2−τ1−···−τα−1

dτα < G,SταG
′ > (218)

and the term

· · ·
∫ tq1−1+x2(τ1+···+τα−1)

0

dtqα+1 · · · (219)

Now, as x→ 0, (14.8a) tends to∫ 0

−∞
dτ1 < G,Sτ1G

′ >

∫ 0

−∞
dτ2 < G,Sτ2G

′ > · · ·
∫ 0

−∞
dτα < G,SταG

′ >

(220)
and (14.8b) tends to ∫ tq1−1

0

dtqα+1 · · · (221)

Therefore, both in the WCL and the LDL cases, from the integral of the
product

∏m
h=1 < G,S(tqh−tqh−1)/x2G

′ > we obtain the quantity

m∏
h=1

∫ 0

−∞
< G,StG

′ > dt (222)

Notice that in the WCL case, G = G′ = g so (14.10) is simply the form

(

∫ 0

−∞
< g, Stg > dt)m (223)

But in the LDL case G,G′ are equal to g0 or g1, more precisely, by (1.16)
we know that for each fixed n ∈ N and ε ∈ {0, 1}n, if ε(qh) = 0 then
G = G′ = g0, otherwise G = G′ = g1. So if we introduce the notation

m1 :=
m∑
h=1

ε(qh) (224)
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then (14.10) is equal to

(

∫ 0

−∞
< g0, Stg0 > dt)m−m1 · (

∫ 0

−∞
< g1, Stg1 > dt)m1 (225)

Now let see what happens to C(x), i.e. to the product

r1∏
h=1

∫ T/x2

S/x2
< Suf, Ssαh/x2G > du ·

r2∏
h=1

∫ T ′/x2

S′/x2
< Ssβh/x2G

′, Suf
′ > du (226)

which comes from the action of the annihilators on the coherent vectors.
Since {αh}mh=1 label the remaining creators, i.e. {αh}mh=1 ⊂ {1, · · · , n} \
{qh}mh=1, we know that the change of variables (14.5) does not affect the first
product in (14.14). Therefore, after the change of variables

vh := u− sαh/x2, h = 1, · · · , r1 (227)

it tends to
r1∏
h=1

χ[S,T ](sαh) · (f |G) (228)

where, G = g for WCL case and g0 or g1 for LDL case.
In the WCL case, the second product is also simple, since {βh}r2h=1 label

the remaining annihilators and therefore {βh}r2h=1∩{qh}mh=1 = ∅. This implies
that the change of variables (14.5) does not affect the second product (notice
that now we consider only the WCL case) in (14.14). So by the change of
variables

vh := u− sβh/x2, h = 1, · · · , r2 (229)

it tends to
r2∏
h=1

χ[S′,T ′](sβh) · (g|f ′) (230)

But in the LDL case, the second product is not so simple since the change
of variables (14.5) influnce the variables {βh}r2h=1. More precisely, because
of qα < qα+1 − 1, ... , (see (14.2)) and considering only the terms of type I
(ph = qh − 1 for any h = 1, · · · ,m), one knows that A(Stqαgε(qα)) is not used
to produce scalar product, i.e. qα is equal to some βh. Thus with the change
of variables (14.5), this tβh becomes equal to

tq1−1/x
2 + (τ1 + · · ·+ τα−1) (231)
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It follows that the integral∫ T ′/x2

S′/x2
< Stqα/x2G

′, Suf
′ > du (232)

is equal to ∫ T ′/x2

S′/x2
< Stq1−1/x2+(τ1+···+τα−1)G

′, Suf
′ > du (233)

and gives the limit
χ[S′,T ′](tq1−1) · (G′|f ′) (234)

A similar phnomenoma happens in the right end points of each of the q-
subsets ({q1, · · · , qα}, · · · , {qβ, · · · , qm}). Thus, we obtain the following

THEOREM(14.1) For each n ∈ N the limit (13.1) exists both in the
WCL and the LDL cases and their explicit form can be formulated (cf.
Theorem (6.1) in [2] and Lemma (3.4) in [9]).

Putting together Theorem (14.1), Section 12) and the uniform estimate
one has the following

COROLLARY (14.2) Limit (1.21) exists both in the WCL and the LDL
cases (in the LDL case we need the condition (4.7)) and their explicit form
can be formulated (cf. Theorem (5.4) in [2] and Theorem (5.1) in [9]).
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§15. Deduction of the SDE: the basic strategy

In this Section we give a qualitative outline of the basic ideas which allow
to deduce an equation for the limit (2.12). First of all, we would like to remark
that the discussion in this section is only necessary in the WCL linear and
the LDL cases. The result in the WCL nonlinear case is trivial since (with
the given coherent vectors) the limit is only a pure scalar product term.

As already remarked in Section 6) this equation cannot be deduced by
inspection from the explicit form of the limit (2.12) because, as it will be
clear a posteriori, the n–th term of the iterated series does not converge to
the n–th term of the iterated solution of the SDE. We begin our discussion
for a general polynomial interaction. First define a vector Gx(t) of the system
space by:

< u⊗ Φx(x

∫ T/x2

S/x2
Sufdu), Ut/x2v ⊗ Φx(x

∫ T ′/x2

S′/x2
Suf

′du) >=:< u,Gx(t) >

(235)
Our goal is to find an integral equation (in weak form) for Gx(t).

Differentiating (in t) the left hand side of (15.1) we obtain

< u⊗ Φx(x

∫ T/x2

S/x2
Sufdu),−ix−2Vλ(t/x

2)Ut/x2v ⊗ Φx(x

∫ T ′/x2

S′/x2
Suf

′du) >

(236)
where, Vλ(t) is defined in (1.15), i.e. Vλ(t/x

2) is a sum of terms of the form

i · y · C ⊗ P (t) (237)

x = y = λ in the WCL case and x = z1/2, y = 1 in LDL case, C = D or
D+ and P (t) is a product of creators and annihilators in the test functions
St/x2gj (for some gj ∈ K ⊂ H1) where j runs in a finite set (gj = g in the
WCL case gj = g0, g1 in the LDL case).

Now we bring C to the left hand side of the scalar product and we let
all the creators on the left of the product P (t) act on the coherent vector

Φx(x
∫ T/x2
S/x2

Sufdu).

As a result, we find that (15.2) is expressed as a sum of terms of the form:

h∏
j=1

x

∫ T/x2

S/x2
< Suf, St/x2gj >
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< y · C+u⊗ Φx(x

∫ T/x2

S/x2
Sufdu), x−2(1⊗Q(t))Ut/x2v ⊗ φ′x) (238)

where h is the number of creators on the left of the product P (t) and Q(t)
is a product only of annihilation operators.

Bringing 1⊗Q(t) to the right of Ut/x2 one replaces in (15.4) by a sum of
2 terms: one of the form

h∏
j=1

x

∫ T/x2

S/x2
< Suf, St/x2gj >

< y ·C+u⊗Φx(x

∫ T/x2

S/x2
Sufdu), x−2[1⊗Q(t), Ut/x2 ]v⊗Φx(x

∫ T ′/x2

S′/x2
Suf

′du) >

(239)
where, [·, ·] denotes the commutator and another of the form

d∏
j=1

x

∫ T ′/x2

S′/x2
< St/x2g

′
j, Suf

′ >
h∏
j=1

x

∫ T/x2

S/x2
< Suf, St/x2gj >< y·C+u, x2Gx(t) >

(240)
Moreover, in the WCL case for each time we have either one creator or one
annihilator, therefore h = 0 in (15.5) and h = 1, d = 0 or h = 0, d = 1
in (15.6). On the other hand, in the LDL case, due to the number type
interaction, the first operator is always a creator, so h = 1 in (15.5) and
h = d = 1 in (15.6). This implies that both in the WCL and the LDL cases,

xh · y · x−2 = x−1 (241)

The form of the terms (15.5), (15.6) shows again the connection between the
choice of the collective vectors and the interaction. In fact in the WCL case
with linear interaction we have that

d+ h = 1 ; x = y = λ (242)

hance the factor λd+h · y · λ−2 is equal to 1.
In the LDL case we have that

d+ h = 2 ; x = z, y = 1 (243)

so that again zd+h · y · z−2 = 1.
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In both cases therefore the expression (15.6) is equal to

d∏
j=1

∫ T ′/x2

S′/x2
< St/x2g

′
j, Suf

′ >
h∏
j=1

∫ T/x2

S/x2
< Suf, St/x2gj >< C+u, Gx(t) >

(244)
and this is easy to control since

lim
x→0

< C+u,Gx(t) >=< C+u,G(t) > (245)

lim
x→0

∫ T/x2

S/x2
du < Suf, St/x2G >= χ[S,T ](t) · (f |G) (246)

and

lim
x→0

∫ T ′/x2

S′/x2
du < St/x2G

′, Suf
′ >= χ[S′,T ′](t) · (G′|f ′) (247)

for any G,G′ ∈ K
The crucial step in the deduction of the equation both in the WCL and

the LDL case is then to prove that also the expression (15.5) is a sum (maybe
infinite) of terms of the form (15.6) plus something that goes to zero as x→ 0.

The basic reason why this happens is the following: expanding Ut/x2 and
using the iterated series, (15.5) becomes a series whose n-th term is

h∏
j=1

x

∫ T/x2

S/x2
< Suf, St/x2gj >

∫
∆

(n)

t/x2

< C+u⊗ Φx(x

∫ T/x2

S/x2
Sufdu),

x−1[1⊗Q(t), V (t1) · · ·V (tn)]v ⊗ Φx(x

∫ T ′/x2

S′/x2
Suf

′du) > (247)

(15.11)

Expandingthecommutatorin(15.11)givesrisetoasumoftermsinwhichthecommutators

[1⊗Q(t), V (tj)](248)appear. Each of these terms will produce some scalar
product of the form

< St/λ2gh, Stjgk > (249)

so that, if j 6= 1, we always obtain a term of type II in the sense of Section
12), i.e. something that goes to zero. Thus the commutator in (15.11) is
equal to (up to something that goes uniformly to zero)

[1⊗Q(t), V (t1)]V (t2) · · ·V (tn) (250)
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Replacing, in (15.11), the commutator term by the expression (15.14) one
obtains, in the weak coupling limit, a multiple of < C+u,Gx(t) > plus
something which tends to zero.

In the LDL case, the situation is more difficult. In fact, since now the
interaction is of number type, the commutator in (15.14) is equal to a sca-
lar product times an annihilator. Bringing the annihilator to the right of
V (t2) · · ·V (tn) we obtain two terms with the following forms:

V (t2) · · ·V (tn) · annihilator (251)

and
[C ⊗ annihilator, V (t2) · · ·V (tn)] (252)

In (15.15) we can apply the annihilator on the right to the coherent vector
and get a multiple of < C ·C+u,Gx(t) >. But (15.16) has again the form of
(15.14). So in the iterated series of Ut/x2 , for each n ∈ N, we have to repeat
the procedure n − 1 times. This explains again why in the LDL case the
coefficients of the limiting SDE are expressed as series.
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