Generalized Grover's quantum algorithm
 Luigi Accardi
 Ruben Sabbadini
 Centro Vito Volterra
 Università degli Studi di Roma "Tor Vergata" Via Orazio Raimondo, 00173 Roma, Italia

Abstract

The Necessary and Sufficient Conditions in order that an unitary $=$ operator can amplify the component of a generic vector related to $=$ a particular base vector, at other components' expence, are = investigated. This leads to a class of suitable methods in wich is = possible to choose the optimum one, related to the problem we want to $=$ solve, i.e. the vector whose component we want to amplify. = Grover's quantum algorithm is demonstrated to be in that class, = very near to the optimum method. A possible application to the the $=$ Ohya - Masuda quantum SAT algorithm is shown as an example for $=$ further improvements. $=20$

1 An algorithm to increase the probability of $\mid 0>$ at each step $=$ for every vector $|a\rangle$

THEOREM Given the linear functionals:

$$
\begin{equation*}
\eta(a) \sum_{i 0}^{N} \eta_{i} a_{i} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
c(a) \sum_{i 0}^{N} \gamma_{i} a_{i} \tag{2}
\end{equation*}
$$

with γ_{i} and η_{i} real, Necessary and Sufficient Conditions $=$ in order that the operator \mathbf{U} :

$$
\begin{equation*}
\mathbf{U} \sum a_{i}\left|i>\varepsilon_{1}\left(a_{0}+\eta(a)\right)\right| 0>+\varepsilon_{2} \sum_{i \phi}=\left(a_{i}+c(a)\right) \mid i> \tag{3}
\end{equation*}
$$

were unitarian are:

$$
\left\{\begin{array}{ccc}
\gamma_{0} \varepsilon_{5} \frac{\sqrt{1-\beta_{0}^{2}}}{=\sqrt{N-1}} & & (a) \tag{4}\\
\eta_{i} \varepsilon_{3} \gamma_{0} & = & (b) \\
=\gamma_{i}-\frac{1+\varepsilon_{3} \beta_{0}}{N-1} & = & (c) \\
\eta_{0}-1+\varepsilon_{4} \beta_{0} & & (d)
\end{array}\right.
$$

with $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5} \pm 1 .=20$

PROOF

The following isomery condition is a necessary condition:

$$
\begin{gather*}
\sum a_{i}^{2}\left(a_{0}+\eta\right)^{2}+\sum_{i \emptyset}\left(a_{i}+c\right)^{2} a_{0}^{2}+\eta^{2}+2 a_{0} \eta+\sum_{i \phi} a_{i}^{2}+(N-1) c^{2}+2 c \sum_{i \phi} a_{i} \\
\eta^{2}+2 a_{0} \eta+(N-1) c^{2}+2 c \sum_{i \phi} a_{i} 0 \tag{5}
\end{gather*}
$$

The equation (??) has the following structure:

$$
\begin{equation*}
\eta^{2}+2 a_{0} \eta+\gamma 0 \tag{6}
\end{equation*}
$$

with:

$$
\begin{equation*}
\gamma(N-1) c^{2}+2 c \sum_{i \phi} a_{i} \tag{7}
\end{equation*}
$$

and its possible solutions are:

$$
\begin{equation*}
\eta-a_{0}+\varepsilon_{4} \sqrt{a_{0}^{2}-\gamma} \tag{8}
\end{equation*}
$$

The case $\gamma 0$ is trivial because it leads to $\eta 0$ or to $=\eta-2 a_{0}$; in any case we have:

$$
\mathbf{U} \sum a_{i}\left|i> \pm \varepsilon_{1} a_{0}\right| 0>+=\varepsilon_{2} \sum_{i \gamma}\left(a_{i}+c\right) \mid i>
$$

that leaves the probability of $\mid 0>$ the same. We must look for $=\gamma \quad / 0$ solutions to modify the component a_{0} of a.

But $\gamma \varnothing$ corresponds to the following condition linked to $=$ the linearity of the funzional $\eta(a)$:

$$
\begin{equation*}
a_{0}^{2}-\gamma\left(\sum_{j} \beta_{j} a_{j}\right)^{2} \tag{9}
\end{equation*}
$$

with the β_{j} indipendent from a; then the (??) must be $=$ valid $\forall a_{0}$, $=$ $20 \ldots, a_{N}=20$

The further linearity condition of the funtional $c(a)$ leads to:

$$
\begin{equation*}
c(a) \sum_{j} \gamma_{j} a_{j} \tag{10}
\end{equation*}
$$

with the γ_{i} indipendent from a. From (??) we have:

$$
\begin{align*}
& -a_{0}^{2}+(N-1)\left(\sum_{j} \gamma_{j} a_{j}\right)^{2}+\left(\sum_{j} \beta_{j} a_{j}=h t\right)^{2}+2 \sum_{j} \gamma_{j} a_{j} \sum_{i \phi} a_{i} 0 \\
& -a_{0}^{2}+2 \sum_{j} \gamma_{j} a_{j} \sum_{i \phi} a_{i}+\sum_{i, j}\left[=(N-1) \gamma_{i} \gamma_{j}+\beta_{i} \beta_{j}\right] a_{i} a_{j} 0 \\
& a_{0}^{2}\left[(N-1) \gamma_{0}^{2}+\beta_{0}^{2}-1\right]+\sum_{i, j \neq 0}\left[2 \gamma_{j}+(N-1) \gamma_{i} \gamma_{j}+\beta_{i} \beta_{j}\right] a_{i} a_{j}+ \\
& \quad+2 \sum_{i \phi}\left[\gamma_{0}+(N-1) \gamma_{0} \gamma_{i}+\beta_{0} \beta_{i}\right] a_{0} a_{i} 0 \tag{11}
\end{align*}
$$

If the previous (??) must be valid $\forall a_{0}, \ldots, a_{N}$, $=$ then its coefficients ought each to be zero, then:

$$
\left\{\begin{array}{rlc}
=(N-1) \gamma_{0}^{2}+\beta_{0}^{2}-10 & & (a) \tag{12}\\
2 \gamma_{j}+(N-1) \gamma_{i} \gamma_{j}+\beta_{i} \beta_{j} 0 & \forall=i, j \emptyset & (b) \\
2 \gamma_{i}+(N-1) \gamma_{i}^{2}+\beta_{i}^{2} 0 & \forall=i \emptyset & (c) \\
\gamma_{0}+(N-1) \gamma_{0} \gamma_{i}+\beta_{0} \beta_{i} 0 & \forall=i \emptyset & (d)
\end{array}\right.
$$

¿From the (??d) we have:

$$
\begin{equation*}
\gamma_{i}-\frac{\gamma_{0}+\beta_{0} \beta_{i}}{\gamma_{0}(N-1)} \tag{13}
\end{equation*}
$$

that, substituted into the (??c), gives:

$$
-\frac{2\left(\gamma_{0}+\beta_{0} \beta_{i}\right)}{\gamma_{0}(N-1)}+\frac{\left(\gamma_{0}+\beta_{0}=\beta_{i}\right)^{2}}{\gamma_{0}^{2}(N-1)}+\beta_{i}^{2} 0
$$

or:

$$
\left[=(N-1) \gamma_{0}^{2}+\beta_{0}^{2}\right] \beta_{i}^{2} \gamma_{0}^{2}
$$

then, using (??a):

$$
\begin{equation*}
\beta_{i} \varepsilon_{3} \gamma_{0} \varepsilon_{5} \frac{\sqrt{1-\beta_{0}^{2}}}{=\sqrt{N-1}} \tag{14}
\end{equation*}
$$

with $\varepsilon_{3} \pm 1 .=20$
Substituted the (??) into the (??) we arrive to:

$$
\begin{equation*}
\gamma_{i}-\frac{1+\varepsilon_{3} \beta_{0}}{N-1} \tag{15}
\end{equation*}
$$

The equation (??a) let us to write:

$$
\begin{equation*}
\beta_{0} \cos \theta ; \quad \sqrt{N-1} \gamma_{0} \sin \theta \tag{16}
\end{equation*}
$$

i.e. the parameters β_{0} and γ_{0} live onto the enlipse in $=$ the $\beta_{0} \gamma_{0}$-plane Substituting the (??), the $=(? ?)$ and the (??) into the (??) and the $=(? ?)$, we finally obtain:

$$
\begin{gather*}
\eta=(a)\left(-1+\varepsilon_{4} \beta_{0}\right) a_{0}+\varepsilon_{4} \varepsilon_{3} \gamma_{0} \sum_{k \phi} a_{k}\left(-1=+\varepsilon_{4} \beta_{0}\right) a_{0}+\varepsilon_{4} \varepsilon_{3} \varepsilon_{5} \frac{\sqrt{1-\beta_{0}^{2}}}{=\sqrt{N-1}} \sum_{k \phi} a_{k} \\
\left(-1+\varepsilon_{4} \cos \theta\right) a_{0}+\varepsilon_{3} \varepsilon_{4} \varepsilon_{5} \frac{\sin =\theta}{\sqrt{N-1}} \sum_{k \phi} a_{k} \tag{17}\\
c(a) \gamma_{0} a_{0}-\frac{1+\varepsilon_{3} \beta_{0}}{N-1} \sum_{k \phi} a_{k} \varepsilon_{5} \frac{\sqrt{1-\beta_{0}^{2}}}{=\sqrt{N-1}} a_{0}-\frac{1+\varepsilon_{3} \beta_{0}}{N-1} \sum_{k \phi} a_{k} \\
\varepsilon_{5} \frac{\sin \theta}{\sqrt{N-1}} a_{0}-\frac{1+\varepsilon_{3} \cos \theta}{=N-1} \sum_{k \phi} a_{k} \tag{18}
\end{gather*}
$$

that are the same as in the (??), the (??) and the $=(? ?)$.

Let us go now to verify that the (??) are also Sufficient $=$ Conditions. We are going to see that the isometric condition (??) = is satisfied by the operator \mathbf{U} of eq. (??) (with the free $=$ parameters given by the (??)). Substituting the (??) and $=(? ?)$ - really obtained using conditions (??) into the $=(? ?)$ and the (??) - into the (??) to have:

$$
\eta(a)^{2}\left(-1+\varepsilon_{4} \beta_{0}\right)^{2} a_{0}^{2}+\frac{1-\beta_{0}^{2}}{N-1}=\left(\sum_{k \phi} a_{k}\right)^{2}+2 \varepsilon_{4} \varepsilon_{3} \varepsilon_{5} a_{0}\left(-1+\varepsilon_{4} \beta_{=} 0\right) \frac{\sqrt{1-\beta_{0}^{2}}}{\sqrt{N-1}} \sum_{k \phi} a_{k}
$$

$$
2 a_{0} \eta=(a) 2\left(-1+\varepsilon_{4} \beta_{0}\right) a_{0}^{2}+2 \varepsilon_{4} \varepsilon_{3} \varepsilon_{5} a_{0} \sqrt{1-\beta_{0}^{2}} \bar{o} v e r \sqrt{N-1} \sum_{k \phi} a_{k}
$$

$$
\eta(a)^{2}+2 a_{0} \eta(a)\left(-1+\beta_{0}^{2}\right) a_{0}^{2}+\frac{1-\beta_{0}^{2}}{=N-1}=\left(\sum_{k \phi} a_{k}\right)^{2}+2 \varepsilon_{3} \varepsilon_{5} a_{0} \beta_{0} \frac{\sqrt{1-\beta_{=} 0^{2}}}{\sqrt{N-1}} \sum_{k \phi} a_{k}
$$

$$
\begin{gathered}
(N-1) c(a)^{2}\left(1-\beta_{0}^{2}\right) a_{0}^{2}+\frac{\left(1+\varepsilon_{3} \beta_{0}\right)^{2}}{(N-1)^{2}}=\left(\sum_{k \phi} a_{k}\right)^{2}=-2 \varepsilon_{5} a_{0} \frac{\sqrt{1-\beta_{0}^{2}}}{\sqrt{N-1}}\left(1+\varepsilon_{3} \beta_{0}\right) \sum_{k=t 0} a_{k} \\
2 c(a) \sum_{k \phi} a_{k} 2 \varepsilon_{5} a_{0} \frac{\sqrt{1-\beta_{0}^{2}}}{=\sqrt{N-1}} \sum_{k \phi} a_{k}-2 \frac{1+\varepsilon_{3} \beta_{0}}{N-1}=\left(\sum_{k \phi} a_{k}\right)^{2}
\end{gathered}
$$

We can now verify that $\eta(a)^{2}+2 a_{0} \eta(a)-\gamma$:

$$
\begin{gathered}
\left(\beta_{0}^{2}-1\right) a_{0}^{2}+\frac{1-\beta_{0}^{2}}{N-1}=\left(\sum_{k \phi} a_{k}\right)^{2}+2 \varepsilon_{3} \varepsilon_{5} a_{0} \beta_{0} \frac{\sqrt{1-\beta_{=0} 0^{2}}}{\sqrt{N-1}} \sum_{k \phi} a_{k} \\
\left(-1+\beta_{0}^{2}\right) a_{0}^{2}= \\
-\frac{\left(1+\varepsilon_{3} \beta_{0}\right)^{2}}{(N-1)^{2}}\left(\sum_{k \phi} a_{k}\right)^{2}+==2 \varepsilon_{5} a_{0} \frac{\sqrt{1-\beta_{0}^{2}}}{\sqrt{N-1}}\left(1+\varepsilon_{3} \beta_{0}\right) \sum_{k \neq 0} a_{k}+ \\
-2 \varepsilon_{5} a_{0} \frac{\sqrt{1-\beta_{0}^{2}}}{\sqrt{N-1}} \sum_{k \phi} a_{k}=+2 \frac{1+\varepsilon_{3} \beta_{0}}{N-1^{2}}\left(\sum_{k \phi} a_{k}\right)^{2}
\end{gathered}
$$

that leads to:

$$
\begin{gathered}
\left(\beta_{0}^{2}-1\right) a_{0}^{2}+\frac{1-\beta_{0}^{2}}{N-1}=\left(\sum_{k, \gamma} a_{k}\right)^{2}+2 \varepsilon_{3} \varepsilon_{5} a_{0} \beta_{0} \frac{\sqrt{1-\beta_{=0}}}{\sqrt{N-1}} \sum_{k \phi} a_{k} \\
\left(-1+\beta_{0}^{2}\right) a_{0}^{2}=+\frac{2\left(1+\varepsilon_{3} \beta_{0}\right)-\left(1+\varepsilon_{3} \beta_{0}\right)^{2}}{(N-1)^{2}}=\left(\sum_{k \phi} a_{k}\right)^{2}+ \\
\quad+=2 \varepsilon_{5} a_{0} \frac{\sqrt{1-\beta_{0}^{2}}}{\sqrt{N-1}}\left(1+\varepsilon_{3} \beta_{0}-1\right) \sum_{k=o t 0} a_{k}
\end{gathered}
$$

that rapresents an identity.
We have then obtained the proof that the operator \mathbf{U} described in $=$ the (??), under the conditions (??),(??) and = (??), rapresents all and only the isometric operators that modify $=$ a component at other components' expence. But an operator on a finite $=$ Hilbert space is isometric if and only if it is unitary, and this $=$ completes the proof.

COROLLARY 1 Grover's method (see the following eq.s $=(21)$ and (22)) corresponds to the choise $\varepsilon_{1} \varepsilon_{4} 1,=\varepsilon_{2}-1, \varepsilon_{3} 1, \beta_{0} \frac{N-2}{N},=\gamma_{0} \frac{2}{N(N-1)}$, then $t g=\theta \frac{2 \sqrt{N-1}}{N-2}$.

PROOF

¿From eq.s (??) and (??) we have:

$$
\begin{align*}
& \varepsilon_{1}\left[a_{0}+\eta(a)\right] \varepsilon_{1} \varepsilon_{4}\left(\beta_{0} a_{0}+\varepsilon_{3} \gamma_{0} \sum_{k \emptyset} a_{k}\right) \bar{l} \text { abelgr } 19 \tag{19}\\
& \varepsilon_{2}\left[a_{i}+c(a)\right]=\varepsilon_{2}\left(a_{i}+\gamma_{0} a_{0}-\frac{1+\varepsilon_{3} \beta_{0}}{N-1} \sum_{k \neq 0} a_{k}\right) \tag{20}
\end{align*}
$$

with:

$$
\beta_{i} \varepsilon_{5} \frac{\sqrt{1-\beta_{0}^{2}}}{\sqrt{N-1}}
$$

that, compared with (20) and (21) gives:

$$
\varepsilon_{1} \varepsilon_{4} \beta_{0} \frac{N-2}{N}
$$

da cui $\varepsilon_{1} \varepsilon_{4} 1$ and $\beta_{0} \frac{N-2}{N}$ and:

$$
\gamma_{0} \sqrt{\frac{\frac{1-(N-2)^{2}}{N^{2}}}{N-1}} \varepsilon_{5} \frac{2}{=N}
$$

as in (21) and in (22) with $\varepsilon_{2}-1$. And finally:

$$
-\varepsilon_{2} \frac{1+\varepsilon_{3} \beta_{0}}{N-1} \frac{1+\varepsilon_{3} \frac{N-2}{N}}{N-1} \frac{N+\varepsilon_{3} N-2 \varepsilon_{3}}{N(N-1)}
$$

$=20$ that gives the right parameter $\gamma_{0} \frac{2}{N}$ if and only if $=\varepsilon_{3} 1$. The goniometric form of the previous equations easily $=$ comes from the (??).

COROLLARY 2 Optimum method for the case looked into = by Grover, i.e. a vector a of the form:

$$
\left|a_{G}>: a_{0}\right| 0>+b \sum_{i \phi} \mid i>
$$

with:

$$
\begin{equation*}
a_{0}^{2}+(N-1) b^{2} 1 \tag{21}
\end{equation*}
$$

demands the following choise for the free parameters $=\varepsilon_{1} \varepsilon_{4} \varepsilon_{3} \varepsilon_{5} 1, \beta_{0} a_{0}$, then $t g=\theta \sqrt{N-1} \frac{b}{a_{0}}$.

PROOF

¿From eq.s (??) and (??) we have:

$$
\begin{gathered}
\mathbf{U} \mid a_{G}>: \mathbf{U}\left(a_{0}\left|0>+b \sum_{i \emptyset}\right| i>\right) \\
\varepsilon_{1} \varepsilon_{4}\left[\beta_{0} a_{0}+\varepsilon_{3} \varepsilon_{5} \sqrt{(N-1)\left(1-\beta_{0}^{2}\right)} b \bar{r} i g h t\right] \mid 0>+ \\
\left.+\varepsilon_{2}\left[b+\varepsilon_{5} \frac{\sqrt{1-\beta_{0}^{2}}}{=\sqrt{N-1}} a_{0}-\left(1+\varepsilon_{3} \beta_{0}\right) b\right] \sum_{i \emptyset} \right\rvert\, i>= \\
\varepsilon_{1} \varepsilon_{4}\left(\cos \theta a_{0}+\varepsilon_{3} \varepsilon_{5} \sqrt{N-1} \operatorname{sen}=\theta b\right) \mid 0>+ \\
\left.+\varepsilon_{2}\left(\varepsilon_{5} \frac{\operatorname{sen} \theta}{\sqrt{N-1}} a_{0}-\varepsilon_{3} \cos =\theta b\right) \sum_{i \phi} \right\rvert\, i>
\end{gathered}
$$

and the maximum is reached for:

$$
\begin{gathered}
\frac{\partial}{\partial \beta_{0}}\left(\cos \theta=a_{0}+\varepsilon_{3} \varepsilon_{5} \sqrt{N-1} \operatorname{sen} \theta b\right) \\
\quad-\operatorname{sen} \theta a_{0}+\varepsilon_{3} \varepsilon_{5} \sqrt{N-1} \cos \theta b 0
\end{gathered}
$$

then:

$$
\operatorname{tg} \theta \varepsilon_{3} \varepsilon_{5} \sqrt{N-1} \frac{b}{a_{0}}
$$

that gives $\beta_{0} \cos \theta \pm a_{0}$. And, choosing the $+=$ sign, we have:

$$
a_{0} \mapsto \varepsilon_{1} \varepsilon_{4}\left[a_{0}^{2}+\varepsilon_{3} \varepsilon_{5}\left(1-a_{0}^{2}\right)\right] 1
$$

where the last passage derives form the choise $=\varepsilon_{1} \varepsilon_{4} \varepsilon_{3} \varepsilon_{5} 1$. And:

$$
b \mapsto \varepsilon_{2}\left(\varepsilon_{5} b a_{0}-\varepsilon_{3} a_{0} b\right) 0
$$

and this completes the proof.

2 Here Grover's algorithm is applied to a generic vector $|a\rangle$
 $=20$

Let

$$
\left|a>: \sum_{i} a_{i}\right| i>
$$

and

$$
\left|v>: \frac{1}{\sqrt{N}} \sum_{k}\right| k>
$$

be two vectors.
Let then:

$$
\left|\tilde{a}>: \mathbf{U}_{f} \mathbf{Z} \mathbf{U}_{f}\right| a>-a_{0}=\left|0>+\sum_{i \phi} a_{i}\right| i>
$$

be another vector followed from a.
Calculating in advance:

$$
<v\left|\tilde{a}>\frac{1}{\sqrt{N}} \sum_{k}\right| k>\left(-a_{0}=\left|0>+\sum_{i \emptyset} a_{i}\right| i>\right) \frac{1}{\sqrt{N}}\left(-a_{0}+\sum_{k \emptyset} a_{k}\right)
$$

Then, given $\mathbf{P}:|v><v|$:

$$
\begin{aligned}
& \mathbf{D}|\tilde{a}>:(-1+2 \mathbf{P})| \tilde{a}>-|\tilde{=} a>+2<v| \tilde{a}>\left|v>-\left|\tilde{a}>+\frac{2}{\sqrt{N}}\left(-a_{0}=+\sum_{k \phi} a_{k}\right)\right| v>\right. \\
& {\left[\left(1-\frac{2}{N}\right) a_{0}+\frac{2}{=N} \sum_{k \phi} a_{k}\right]\left|0>+\sum_{i \gamma}\left[-a_{i}+\frac{2}{N}\left(-a_{0}=+\sum_{k \phi} a_{k}\right)\right]\right| i>}
\end{aligned}
$$

Then:

$$
\begin{gather*}
a_{0} \mapsto \frac{N-2}{N} a_{0}+\frac{2}{N} \sum_{k \emptyset} a_{k} a_{0}+\eta=(a) \tag{22}\\
a_{i} \mapsto-a_{i}+\frac{2}{=N}\left(-a_{0}+\sum_{k \phi} a_{k}\right)-a_{i}+c(a) \tag{23}
\end{gather*}
$$

If $a_{k} a_{h} \forall k, h \emptyset$ (the Grover's agorithm case) then:

$$
\begin{gathered}
a_{0} \mapsto \frac{N-2}{N} a_{0}+\frac{2(N-1)}{N} a_{i} \\
a_{i} \mapsto\left[-1+\frac{2(N-1)}{N}\right] a_{i}-\frac{2}{N} a_{0}
\end{gathered}
$$

