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Università degli Studi di Roma “Tor Vergata”

Via Orazio Raimondo, 00173 Roma, Italia

ABSTRACT

The Necessary and Sufficient Conditions in order that an unitary = oper-
ator can amplify the component of a generic vector related to = a particular
base vector, at other components’ expence, are = investigated. This leads to
a class of suitable methods in wich is = possible to choose the optimum one,
related to the problem we want to = solve, i.e. the vector whose component
we want to amplify. = Grover’s quantum algorithm is demonstrated to be
in that class, = very near to the optimum method. A possible application
to the the = Ohya–Masuda quantum SAT algorithm is shown as an example
for = further improvements. =20

1 An algorithm to increase the probability of

|0 > at each step = for every vector |a >

THEOREM Given the linear functionals:

η(a)
N∑
i0

ηiai (1)
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c(a)
N∑
i0

γiai (2)

with γi and ηi real, Necessary and Sufficient Conditions = in order that the
operator U:

U
∑

ai|i > ε1(a0 + η(a))|0 > +ε2
∑
i 60

= (ai + c(a)) |i > (3)

were unitarian are:
γ0ε5

√
1−β2

0

=
√
N−1 (a)

ηiε3γ0 = (b)

= γi − 1+ε3β0
N−1 = (c)

η0 − 1 + ε4β0 (d)

(4)

with ε1, ε2, ε3, ε4, ε5 ± 1.=20
PROOF

The following isomery condition is a necessary condition:∑
a2i (a0 + η)2 +

∑
i 60

(ai + c)2a20 + η2 + 2a0η +
∑
i 60
a2i + (N − 1)c2 + 2c

∑
i 60
ai

η2 + 2a0η + (N − 1)c2 + 2c
∑
i 60
ai0 (5)

The equation (??) has the following structure:

η2 + 2a0η + γ0 (6)

with:
γ(N − 1)c2 + 2c

∑
i 60
ai (7)

and its possible solutions are:

η − a0 + ε4
√
a20 − γ (8)

The case γ0 is trivial because it leads to η0 or to = η − 2a0; in any case
we have:

U
∑

ai|i > ±ε1a0 |0 > + = ε2
∑
i 60

(ai + c) |i >
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that leaves the probability of |0 > the same. We must look for = γ 6 0
solutions to modify the component a0 of a.

But γ 6 0 corresponds to the following condition linked to = the linearity
of the funzional η(a):

a20 − γ

∑
j

βjaj

2

(9)

with the βj indipendent from a; then the (??) must be = valid ∀a0,=
20 . . . , aN .=20

The further linearity condition of the funtional c(a) leads to:

c(a)
∑
j

γjaj (10)

with the γi indipendent from a. From (??) we have:

−a20 + (N − 1)

∑
j

γjaj

2

+

∑
j

βjaj = ht)2 + 2
∑
j

γjaj
∑
i 60
ai0

−a20 + 2
∑
j

γjaj
∑
i 60
ai +

∑
i,j

[= (N − 1)γiγj + βiβj] aiaj0

a20
[
(N − 1)γ20 + β2

0 − 1
]

+
∑
i,j 6=0

[2γj + (N − 1)γiγj + βiβj] aiaj+

+2
∑
i 60

[γ0 + (N − 1)γ0γi + β0βi] a0ai0 (11)

If the previous (??) must be valid ∀a0, . . . , aN , = then its coefficients
ought each to be zero, then:


= (N − 1)γ20 + β2

0 − 10 = (a)
2γj + (N − 1)γiγj + βiβj0 ∀ = i, j 6 0 (b)

2γi + (N − 1)γ2i + β2
i 0 ∀ = i 6 0 (c)

γ0 + (N − 1)γ0γi + β0βi0 ∀ = i 6 0 (d)

(12)

¿From the (??d) we have:

γi −
γ0 + β0βi
γ0(N − 1)

(13)
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that, substituted into the (??c), gives:

−2(γ0 + β0βi)

γ0(N − 1)
+

(γ0 + β0 = βi)
2

γ20(N − 1)
+ β2

i 0

or: [
= (N − 1) γ20 + β2

0

]
β2
i γ

2
0

then, using (??a):

βiε3γ0ε5

√
1− β2

0

=
√
N − 1

(14)

with ε3 ± 1.=20
Substituted the (??) into the (??) we arrive to:

γi −
1 + ε3β0
N − 1

(15)

The equation (??a) let us to write:

β0cos θ;
√
N − 1γ0sin θ (16)

i.e. the parameters β0 and γ0 live onto the enlipse in = the β0γ0-plane
Substituting the (??), the = (??) and the (??) into the (??) and the = (??),
we finally obtain:

η = (a)(−1+ε4β0)a0 +ε4ε3γ0
∑
k 60
ak(−1 = +ε4β0)a0 +ε4ε3ε5

√
1− β2

0

=
√
N − 1

∑
k 60
ak

(−1 + ε4cos θ) a0 + ε3ε4ε5
sin = θ√
N − 1

∑
k 60
ak (17)

c(a)γ0a0 −
1 + ε3β0
N − 1

∑
k 60
akε5

√
1− β2

0

=
√
N − 1

a0 −
1 + ε3β0
N − 1

∑
k 60
ak

ε5
sin θ√
N − 1

a0 −
1 + ε3cos θ

= N − 1

∑
k 60
ak (18)

that are the same as in the (??), the (??) and the = (??).
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Let us go now to verify that the (??) are also Sufficient = Conditions.
We are going to see that the isometric condition (??) = is satisfied by the
operator U of eq. (??) (with the free = parameters given by the (??)).
Substituting the (??) and = (??) - really obtained using conditions (??) into
the = (??) and the (??) - into the (??) to have:

η(a)2(−1+ε4β0)
2a20+

1− β2
0

N − 1
=

∑
k 60
ak

2

+2ε4ε3ε5a0(−1+ε4β=0)

√
1− β2

0√
N − 1

∑
k 60
ak

2a0η = (a)2(−1 + ε4β0)a
2
0 + 2ε4ε3ε5a0

√
1− β2

0 ōver
√
N − 1

∑
k 60
ak

η(a)2+2a0η(a)(−1+β2
0)a20+

1− β2
0

= N − 1
=

∑
k 60
ak

2

+2ε3ε5a0β0

√
1− β=02

√
N − 1

∑
k 60
ak

(N−1)c(a)2(1−β2
0)a20+

(1 + ε3β0)
2

(N − 1)2
=

∑
k 60
ak

2

= −2ε5a0

√
1− β2

0√
N − 1

(1+ε3β0)
∑
k=t0

ak

2c(a)
∑
k 60
ak2ε5a0

√
1− β2

0

=
√
N − 1

∑
k 60
ak − 2

1 + ε3β0
N − 1

=

∑
k 60
ak

2

We can now verify that η(a)2 + 2a0η(a)− γ:

(β2
0 − 1)a20 +

1− β2
0

N − 1
=

∑
k 60
ak

2

+ 2ε3ε5a0β0

√
1− β=02

√
N − 1

∑
k 60
ak

(−1+β2
0)a20 = −(1 + ε3β0)

2

(N − 1)2

∑
k 60
ak

2

+ == 2ε5a0

√
1− β2

0√
N − 1

(1+ε3β0)
∑
k 6=0

ak+

−2ε5a0

√
1− β2

0√
N − 1

∑
k 60
ak = +2

1 + ε3β0
N − 12

∑
k 60
ak

2
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that leads to:

(β2
0 − 1)a20 +

1− β2
0

N − 1
=

∑
k 60
ak

2

+ 2ε3ε5a0β0

√
1− β=02

√
N − 1

∑
k 60
ak

(−1 + β2
0)a20 = +

2(1 + ε3β0)− (1 + ε3β0)
2

(N − 1)2
=

∑
k 60
ak

2

+

+ = 2ε5a0

√
1− β2

0√
N − 1

(1 + ε3β0 − 1)
∑
k=ot0

ak

that rapresents an identity.
We have then obtained the proof that the operator U described in =

the (??), under the conditions (??),(??) and = (??), rapresents all and only
the isometric operators that modify = a component at other components’
expence. But an operator on a finite = Hilbert space is isometric if and only
if it is unitary, and this = completes the proof.

COROLLARY 1 Grover’s method (see the following eq.s = (21) and (22)
) corresponds to the choise ε1ε41, = ε2 − 1, ε31, β0

N−2
N

, = γ0
2

N(N−1) , then

tg = θ 2
√
N−1

N−2 .
PROOF

¿From eq.s (??) and (??) we have:

ε1 [a0 + η(a)] ε1ε4

β0a0 + ε3γ0
∑
k 60
ak

 l̄abelgr19 (19)

ε2 [ai + c(a)] = ε2

ai + γ0a0 −
1 + ε3β0
N − 1

∑
k 6=0

ak

 (20)

with:

βiε5

√
1− β2

0√
N − 1

that, compared with (20) and (21) gives:

ε1ε4β0
N − 2

N
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da cui ε1ε41 and β0
N−2
N

and:

γ0

√√√√ 1−(N−2)2
N2

N − 1
ε5

2

= N

as in (21) and in (22) with ε2 − 1. And finally:

−ε2
1 + ε3β0
N − 1

1 + ε3
N−2
N

= N − 1

N + ε3N − 2ε3
N(N − 1)

=20 that gives the right parameter γ0
2
N

if and only if = ε31. The goniometric
form of the previous equations easily = comes from the (??).

COROLLARY 2 Optimum method for the case looked into = by Grover,
i.e. a vector a of the form:

|aG >: a0|0 > +b
∑
i 60
|i >

with:
a20 + (N − 1)b21 (21)

demands the following choise for the free parameters = ε1ε4ε3ε51, β0a0, then
tg = θ

√
N − 1 b

a0
.

PROOF
¿From eq.s (??) and (??) we have:

U|aG >: U

a0|0 > +b
∑
i 60
|i >


ε1ε4

[
β0a0 + ε3ε5

√
(N − 1)(1− β2

0)br̄ight]|0 > +

+ε2

b+ ε5

√
1− β2

0

=
√
N − 1

a0 − (1 + ε3β0) b

∑
i 60
|i >=

ε1ε4
(
cos θa0 + ε3ε5

√
N − 1sen = θ b

)
|0 > +

+ε2

(
ε5

sen θ√
N − 1

a0 − ε3cos = θ b

)∑
i 60
|i >
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and the maximum is reached for:

∂

∂β0

(
cos θ = a0 + ε3ε5

√
N − 1sen θ b

)
−sen θa0 + ε3ε5

√
N − 1cos θ b0

then:

tg θ ε3ε5
√
N − 1

b

a0

that gives β0cos θ ± a0. And, choosing the + = sign, we have:

a0 7→ ε1ε4
[
a20 + ε3ε5(1− a20)

]
1

where the last passage derives form the choise = ε1ε4ε3ε51. And:

b 7→ ε2 (ε5ba0 − ε3a0b) 0

and this completes the proof.

2 Here Grover’s algorithm is applied to a generic

vector |a >
=20

Let
|a >:

∑
i

ai|i >

and

|v >:
1√
N

∑
k

|k >

be two vectors.
Let then:

|ã >: UfZUf |a > −a0 = |0 > +
∑
i 60
ai|i >

8



be another vector followed from a.
Calculating in advance:

< v|ã > 1√
N

∑
k

|k >

−a0 = |0 > +
∑
i 60
ai|i >

 1√
N

−a0 +
∑
k 60
ak


Then, given P : |v >< v|:

D|ã >: (−1 + 2P) |ã > −|=̃a > +2 < v|ã > |v > −|ã > +
2√
N

−a0 = +
∑
k 60
ak

 |v >
(1− 2

N

)
a0 +

2

= N

∑
k 60
ak

 |0 > +
∑
i 60

−ai +
2

N

−a0 = +
∑
k 60
ak

 |i >
Then:

a0 7→
N − 2

N
a0 +

2

N

∑
k 60
aka0 + η = (a) (22)

ai 7→ −ai +
2

= N

−a0 +
∑
k 60
ak

− ai + c(a) (23)

If akah∀k, h 6 0 (the Grover’s agorithm case) then:

a0 7→
N − 2

N
a0 +

2(N − 1)

N
ai

ai 7→
[
−1 +

2(N − 1)

N

]
ai −

2

N
a0
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