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1 How old is an electron?

The notion of time is baffling mankind since many centuries. We attribute
an age to many things: living beings, archaeological findings, rocks, stars,
and even universe. But we are less confident when we try to attribute an
age to a single atom, or to an electron or to a photon. We speak of lifetimes
of elementary particles, but we cannot distinguish an “old” electron from a
“young” one. So, to answer questions like: “does time pass for an electron?”,
we have to clarify our ideas on time.

Philosophical knowledge is based on descriptions. This has some advan-
tages but it is not easy to decide if the meaning attributed by different people
to the same definition is the same or not. For example suppose one asks you
to interpret the following definition of time:

“... The parts of time have their being from the coupling or continuation
through the indivisible present instant, given that it be always other and
other, from its parts other and other succeed each other and always exist.
...”

and to frame it into an historical context by attributing it to either:
(i) Heiddeger or (ii) Lacan or (iii) Henry of Gent
I wonder how many would guess that the correct attribution is to Henry

of Gent (1279) (the original statement being:
“... Partes temporis habere esse ex copulatione seu continuatione ad

instans indivisible praesens, licet illud semper sit aliud et aliud ex partes
eius succedunt et semper sunt aliae et aliae ...”).

Saint Augustine (in the Confessioni) expresses more clearly the same
idea:
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“... Past no longer exsists, future not yet exsists. But if present would
remain always present and never fade away in the past, there would not be
time, but ethernity. ...”

In the classical physics of Galilei and Newton space and time are contain-
ers with an onthological autonomy:

“... Time, absolute, true, mathematical, in itself and by its own nature
without any relation with anything external, flows uniformly ...” (Principia
mathematica).

According to Kant space and time are not objects but forms of the human
knowledge: we do not “know” space and time, but our knowledge is organized
in a space–time manner:

“... The idea of time does not originate from senses, but is presupposed by
them ... Time is not something objective and real. It is neither substance, nor
accident, nor relation, but a necessary subjective condition, due to the nature
of human mind, to coordinate within itself all perceptible things according
to a fixed law. ... (from: De mundis sensibilis atque intelligibilis forma et
principiis).

Lucrezio had a similar point of view: tempus item per se non est.
This is an appealing point of view but leaves the following question open:

how to speak of space and time before the emergence of human conscience
in the Universe?

The attempt to reconcile the time of physics with the psychological time
is usually attributed to Bergson (time as interior duration), but his known
statement: time is an invention or nothing is (surprisingly, due to the fact
the two thinkers considered their ideas on time in mutual disagreement) near
to the well known and widely quoted passage from Einstein’s condolence
letter Michele Besso’s sister (marzo 1955): “... For us practicing physicists,
the distinction between past, present and future is only an illusion, even if a
tenacious one ....”

The artistic arbitrariness in Borges’ statement:
“... time is a river that sweeps me away, but I am the river; it is a tiger

that tears me to pieces, but I am the tiger; it is a fire that devours me, but
I am the fire.

should be compared with the empty arbitrariness in Hawking’s statement:
“... The concept imaginary time is the fundamental concept on the basis

of which the mathematical model has to be formulated; ordinary time would
be in this case a derived model that we invent – as a part of a mathemat-
ical model – with the goal of describing subjective impressions about the
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universe” (Halley Lectures, 1989).
The list of metaphorae used to described time could continue indefinitely

and in some sense they all confirm the famous saying of St. Augustine
according to which time belongs to that class of concepts that everybody
believes they are clear but nobody can explicitly define. This impossibility
has been even theorized Paul Ricoeur in the three volume work “Temps
et récit” [Ricoe99] whose main thesis is that the nature of time cannot be
object of rational thinking, but only of a “poetic resolution” through the
production of histories, tales and novels,through which we acquire an indirect
comprehension of the notion of “time” and of our existence in it.

A similar purely esthetic attitude, even if not so explicit, but with a
slightly encyclopedic character and with original combinations of text and
images can be found in [Priest74]. The philosophical and theological aspects
of the debate on time are developed in parallel with the scientific aspects in
the book by Castagnino and Sanguineti [CaSa00].

In this paper we will look at time from the point of view of mathematics.
Scientific knowledge is based on a different kind of metaphorae, called defini-
tions, models and procedures (protocols). Scientists do not illude themselves
to overcome completely the intrinsic ambiguity of language, but they try to
limit it with the help of models. In some sense contemporary scientists think
in terms of models.

A model is a simple example of an axiomatic theory: usually the term
“model” is referred to a very specific situation and the term “axiomatic
theory” to a wider enterprise such as the unification of different contexts,
however the logical structure of the two are the same: to define a context
(axioms) and to draw consequences from it according to the rules of logic.

The maturity of a science is measured by the degree in which it succeeds
in condensating its knowledge in mathematical models, or equivalently ax-
ioms, and in deducing its procedures from them. The multiplicity of possible
models is an healthy antidote to the illusions of certitude.

Scientific activity oscillates among the three poles of:
(i) inventing new models;
(ii) deducing observable consequences from them;
(iii) verifying experimentally these consequences.
In the present paper we will play this game with the notion of time. Em-

phasis will be on incompleteness (in the sense explained below): even on an
extremely basic and fundamental level our ideas on time are not sufficiently
precise to fix a unique class of mathematical models. In the first part of
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this paper this idea will be illustrated with simple geometrical models; in the
second part we will concentrate on time reflections and discuss the various
attempts which have been made in the physical and mathematical literature
to substantiate this notion.

The goal of an axiomatic theory of time should be that of challenging
clever physicists to discover empirically observable differences between dif-
ferent mathematical models of time. The examples discussed below show
that this challenge might not be a trivial one. For example, according to
the principle of “topological relativity”, discussed in section (4) below it is
not possible to distinguish experimentally between the western tradition of
linear time and the Indian tradition of circular time. In particular, as shown
in section (4), circular time does not necessarily imply eternal recurrence of
history.

In Greek philosophy change and movement was related to imperfection.
Perfection was related to immobility. Thus perfect objects, like fixed stars,
don’t feel the flow of time. Contemporary science has shifted its idea of
perfection from immobility (like fixed stars) to elementarity. When we try
to describe our idea of the flow of time, i.e. of irreversibility, independently
of mathematical formulae, unavoidably we end up in describing a situation
in which a multiplicity of interacting systems (i.e. a complex system) are
separated into non interacting systems (i.e. a simple system). To reconstruct
the complex system from the simple ones may not be logically impossible but
is surely much more complicated than the converse operation. In fact in order
to break many different interactions, it is simply required to create a single
interaction which dominates them all but, to reconstruct them one has to
act individually on each broken tie. For example, to put and keep a gas
in a box is a relatively simple operation if one can act collectively on the
gas as a whole, but if, after opening the box and allowing expansion, the
gas is mixed with another volume of gas made of the same molecules, to
reproduce exactly the original configuration is a task of practically (although
not logically) impossible complexity. In this sense the difference between life
and death is the same as the difference between a set of individuals and an
organization.

The above example shows that the notions of existence, identity, sys-
tem, motion, space, time, signal..., are strictly related: if some of them are
assumed as primitive, the other ones can be introduced as derived.

The question whether some of them have to be considered as “objectively
primitive” with respect to the other ones is interesting and has a long history.
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For example, Aristotle takes motion as primitive notion and defines time
as the measure of motion. In a world without conscience, hence without
knowledge, motion is still conceivable. From this point of view Aristotle is
nearer to scientific mentality than Kant in the sense that his approach allows
a more objective, human independent, definition of time. For Newton, time
and space (more generally – state) are primitive notions and “motion” is
defined as change of state in time.

In special relativity one assumes as primitive much more complex notions
such as:

(i) the notion of signal

(ii) the notion of event

(iii) the finiteness of the speed of light

and, having payed this price, one can achieve a complete “space–time democ-
racy”. These notions are used to distinguish between “space differences” and
“time differences” among events. Two events which cannot be connected by
a signal are defined to be simultaneous: if they are different, their difference
is of space type. Two events that can be connected by a signal are always
different and their difference is of time type.

Thus in relativity we can distinguish between space and time diversity,
hence motion can be introduced as a measure of time diversity. However,
since time reflection is admitted as a physical transformation, in relativity
the distinction between past and future is relative to the reference frame.

Any model of time depends on the notion of “system” but, from an holistic
point of view the notion of system itself is a quite anthropomorphic notion:
if two systems interact, what does it mean to distinguish between them? The
boundary is necessarily arbitrary and the separation depends on the choice of
some scales of magnitude (“large” distances, “weak” interactions, ...) which
might be quite natural for human beings but from a non anthropocentric
point of view are not privileged.

If we accept the existence of elementary particles, then we can give an
(approximate) definition of decay as decomposition into (approximately) non
interacting elementary constituents. But from a more sophisticated, field
theoretical point of view,which includes self–interactions, the “elementary”
particles are simply manifestations of the field and they too can decay. In
fact, from this point of view, one should not speak of “decays” but simply of
“transformations” from one manifestation of the field to another one.
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Transformations among elementary particles may be reversible, but what
does this precisely means? This question is nontrivial because of the necessity
to distinguish between the reversibility of the time evolution and the “time
reversal symmetry”, which in many theories such as nonrelativistic classical
and quantum mechanics can be defined in dependently of any specific time
evolution (cf. section (12)).

2 Time as a 1–dimensional connected contin-

uum

Any model translates one’s intuition of a physical object or phenomenon.
Abstraction of properties leads to the construction of a mathematical model.
Then one tries to go back to the original intuition, i.e. to check to what
extent this is reflected by the model.

The obstruction to this procedure is that there may be, and in general
there are, many inequivalent models. In the case of time this leads to the
following alternative:

(i) our intuition is incomplete: physical time has more properties than those
specified by the model

(ii) all models are present in nature

Here there is an historical asymmetry between space and time: in fact
it is now commonly accepted that there exist many simultaneous models
of space, while many models of time can exist but not “simultaneously”.
The postulate of homogeneity is an extrapolation from local to global, but
since all our perceptions are local both in space and in time, the way to
match together a multiplicity of local perceptions into a single global picture
necessarily introduces some elements which go beyond experimental evidence.

In the following of this section we shall discuss some consequences of the
axiom which underlies most of contemporary scientific models of time:

(A1.) Time is a 1–dimensional connected continuum.
This axiom excludes the existence of time quanta (cronons,... [CaRe78]).

Discrete models of time have been investigated in the mathematical, physical,
psychological , ... literature. We emphasize that all the mathematical models
described in the present section continue to be meaningful also in the case
of discrete time. However our point in this paper is that, even keeping a
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conservative view of time as a one dimensional connected continuum, still
there is a lot of space for non trivial inequivalent possibilities.

The continuum, like the infinite, is not accessible to human experiments
in actual form, but only in its potential form. If one believes in the time–
energy indeterminacy principle, even this potentiality is questionable from
a physical point of view because the measure of extremely small periods of
time would imply extremely large fluctuations in energy.

According to Hilbert the goal of an axiomatization of a physical theory
is: ... to formulate the physical requirements so that the mathematical model
is uniquely determined... (at least up to isomorphism). This requirement is
usually called completeness in logic.

It is clear that axiom (A1) is far from complete, in fact there exist many
1–dimensional connected continua! For example the real line R (linear time)
and the circle (circular time). The Peano curve or any other fractal curve pro-
vide additional models which satisfy axiom (A1) but which suggest different
intuitive images of time (fat time, fractal time, ...).

Peano curve

linear time

circular time

fat time

fractal time

The introduction of a unit of time is equivalent to the introduction of an
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action, on this continuum, of the positive rational numbers (multiplication).
The archimedean nature of this action is implicitly postulated when one

identifies time with the real line, but this is clearly an additional axiom and
non archimedean models of time are certainly possible from a mathematical
point of view and not necessarily implausible from the physical point of view,
as shown by the example in the following section.

3 A non archimedean model of time

The following construction was inspired by a discussion with Professor E.
Brieskorn in which he explained to me a model of extended real line due
to Hausdorff (∼ 1903). The model that follows is less sophisticated than
Hausdorff’s but it helps getting an intuition of how incomplete Axiom (A1)
is. The construction goes as follows: for each n ∈ Z fix an homeomorphism
un between the real line R and the open interval (n, n + 1). Now fix an
arbitrary sequence (αn) of increasing ordinals and associate to each n ∈ Z
the corresponding αn. This construction gives a one–to–one correspondence

u : R̂ := ∪n{(n, n+ 1)} ∪ (∪n{αn}) =: ∪n(R)n ∪ (∪n{αn})→ R

and we can define a topology on R̂ so that the map u is an homeomorphism.
Moreover we can use this map to transport on R̂ the usual order structure
on R.

an R a
n+1

R a
n+2

The usual multiplication on R can be extended to R̂ by the prescriptions:

λ · x = (λx) if x ∈ (R)n for some n

λαn = αn if λ > 0

λαn = αn+1 if λ < 0

λαn = 0 if λ = 0

This extension is such that the multiplication by positive numbers is con-
tinuous but the time reflection t → −t is not Thus R̂ is connected but the
action of R on R̂ is non–archimedean.
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Recently, in the attempt to model an intrinsic asymmetry in the time
evolution of physical systems, S. Wickramasekara [Wickr01], introduced the
topology on R, generated by the basic open sets [a, b). In this topology
multiplication by positive real numbers is continuous, but time reflection
(t → −t) is discontinuous (e.g. a+ 1/n converges to a in this topology but
−a − 1/n cannot be in any interval of the form [−a,−a + ε) with ε > 0
and therefore it doesn’t converge to −a in this topology). In this topology
past and future are not symmetric because the basic open intervals include
the left point but not the right one and the discontinuity of time reflection
reflects this asymmetry.

In the above discussed non archimedean model, past and future are sym-
metric and the discontinuity of time reflection comes from the fact that the
“special points” αn represent “singularities of time” in the sense that each of
them plays the role of “infinite past” for one interval and of “infinite future”
for another one. This interpretation reflects the idea of the simultaneous ex-
istence of infinitely many time flows (parallel universes). A more traditional
interpretation may regard each interval as an “era” and the time singularity
αn represents the “big crunch” for the n–th era and the “big bang” for the
n + 1–th. The non archimedean character of the model reflects the incom-
municability between different epochs.

4 Time in classical physics

For classical Hamiltonian mechanics time is an external parameter, i.e. strictly
speaking it is not an observable of the theory, while observables are sections
in the cotangent bundle. For Einstein they are sections in the tangent bun-
dle so that the basic observables are restricted to the kinematical observables
of classical physics: positions (space), time, their conjugate observables, ve-
locities and energy, and functions of them. In the concrete models one has
to further specify which class of functions are allowed (measurable, smooth,
analytic, compact support, rapidly decaying, ...): different choices lead to
different theories. One can conceive more general bundles whose fiber in-
cludes the tangent space and some new, non kinematical degree of freedom
(such as spin, color,...).

Classical theories (as opposed to quantum) are characterized by the uni-
versal compatibility of all the observables. A maximal family of independent
observables (i.e. such that no one of them is expressible as a function of the
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remaining ones) defines the state space, or more precisely a representation of
it (cf. [Ac81c] or [AcRe96] for a detailed analysis of this concept). In classi-
cal theories we can distinguish two main attitudes. One, which is typical of
classical relativity, could be named “space–time democracy” and according
to it the universe is a fiber bundle with a 4–dimensional manifold M4 as a
basis

x
M

4

Another one, which is at the basis of non relativistic physics, can be
named “time supremacy” and according to it:

– the universe is a fiber bundle with a 1–dimensional manifold as a basis
– the fiber is the state space S
– the time evolution T (s, t) is parallel transport from one fiber to another
The mathematical model of this scenario should be a fiber bundle with

basis R and fiber a space S. The curves on R are the ordered pairs (s, t).
They form a groupoid for the multiplication

(s, t)(r, s) = (r, t)

r s t

The dynamical evolution is a parallel transport

(s, t)→ T (s, t) : Ss → St

The existence of two time orientations gives rise to 2 multiplications

(s, t) : s→ t ; (s, t) : t→ s
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r s t

(r, s)(s, t) = (r, t)

To use motion as a measure of time only means that the parallel transport
is given a priori. To use time as order of motion means that we have a priori
decided the direction of time.

Definition 1 A temporal evolution is determined by the assignment, for each
element of family of unordered pairs {s, t} ⊆ T × T , of a map

Ts,t : Ss → St

Moreover it is required that, if the pair {s, u} is in the family and maps
Ts,t : Ss → St and Tt,u : St → Su

Tt,uTs,t = Ts,u : Ss → Su (1)

T(t,r)

S

T(t,s) T(s,r)

t s r
Time

The idea that time orders motion is expressed by the requirement that:

(i) the base manifold is ordered and parallel transport (evolution) respects
the order

r < s < t⇒ T (s, t)T (r, s) = T (r, t)
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Suppose we want to take seriously Aristotle: “... This is time in reality:
the number of motion according to the before and the after ...”
i.e. it is motion that gives the direction of time, then we might argue as
follows. A “curve” on the time manifold is given by an unordered pair {s, t}.
However the associated parallel transport must go from one fiber to another.
In other terms: the motion must have a direction. Suppose that

T{s,t} : Ss → St (2)

then we say by definition that
s < t

In other words, if the dynamics (motion) T (s, t) is physically realized, then
we say that s < t (s is in the past of t). Thus the orientation of the curve
{s, t} is given by the fact that the parallel transport T{s,t} maps the fiber at
s to the fiber at t and not conversely. In conclusion: the Aristotelean view
that motion orders time is expressed by the requirement that we use parallel
transport to induce an order on the base manifold

T (s, t)T (r, s) = T (r, t)⇒ r < s < t

This leads to the following

Definition 2 The Aristotelean future of s ∈ T is the set of all t ∈ T such
that the parallel transport (2) is well defined. Similarly we say that s ∈ T is
in the past of t ∈ T .

Definition 3 {T, {Ts,t} is called linearly ordered if no s ∈ T belongs to its
proper future. It is called without origin if the proper past of each s ∈ T is
non empty. It is called connected that s ∈ T is in the past of some t ∈ T and
in the future of some t′ ∈ T . It is called circular if every s ∈ T belongs to its
proper future.

In a circular time recurrence (of a state with respect to a given evolution)
can be defined canonically. In a linearly ordered time, in order to define
recurrence (of a state with respect to a given evolution) we need to fix an
identification of the different fibers of the basic time manifold. Without it
would be meaningless to speak of “the same state at different times”. The
minimal requirement on such an identification is that, for any t ∈ R it is given
a one–to–one map jt : St → S, where St is the fiber at t and S is a fixed space.
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For human beings this identification map is given by the “memory”, but from
a logical point of view this is non canonical and therefore, as already noticed
by Heraclitus, the notion of “the same state at different times” is problematic.

Given such an identification, we say that a state xt ∈ St is “the same” as
the state xs ∈ Ss if

jt(xt) = js(xs) ∈ S

and that a state xs ∈ Ss is “recurrent with respect to the dynamics {Ts,t} if
it is “the same” as the state Ts,txs ∈ St Furthermore, given such an identifi-
cation, one can use the structure of additive (semi)group on R to define time
homogeneity of an evolution by:

T (r, s) = T (r + τ, s+ τ ) ; ∀ τ

where the = symbol means that “the same states” , on the fibers Sr and Sr+τ

are mapped into “the same states”, on the fibers Ss and Ss+τ .
One easily sees that recurrence of a state xs in the interval [s, s+ τ ] plus

time homogeneity implies cyclicity of this state with period τ because

T (s+ nτ, s+ (n+ 1)τ )xs = T (s, s+ τ )xs = xs

r r+s t

xr rx

sx
S S

T
r,r+s

Tr,t

r r+s St
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conversely: suppose time is circular with period τ

t+ τ ≡ t on the time manifold

r r+T r+2t

xr xr xr

Tr,r+t Tt Tt

S S S

=

but that the initial state xr is “wandering”, i.e. its orbit has no loops, then
after a time cycle the state (say of the universe) cannot be the original one,

xτ = Tτx0 6= x0

hence it is not possible to prove that a time cycle has been closed.

0=t

xt

x
0

x0
x0

0 t

Ciclicity without recurrence Recurrence without ciclicity

14



Summing up we can now formulate the “topological relativity” of time as
follows: it is not possible to distinguish experimentally between:

(i) circular time and wandering state

(ii) linear time and no recurrence

The point of view (i) would lead to a cylinder as the basic model of “flat”
(i.e. without matter) space–time rather than the R4 of special relativity.
The theory of Lorentz transformations can be extended to such a space but,
again, if we insist on the usual topology for the circle, time reflection will
introduce a discontinuity. In any case from both the mathematical and the
conceptual point of view, this is an interesting possibility to investigate. An
interesting discussion of cyclic and linear time in physics and chemistry is in
the Di Meo’s monograph [DiMeo96]. Finally let us consider the connection
between reversibility and invertibility of the evolution.

S
s

St

s t

T(s,t)

Invertibility of T (s, t) means that T (s, t)−1 exists

Ss St

Tt,s

s t

but it can be of the form T (s′, t′) only if time is circular. Thus we conclude
that, if motion measures time and if T (s, t) : Ss → St is physically realized,
then if time is not circular,

T (t, s) : St → Ss

is not a physical object even if it exists as a mathematical object.
Notice that: Reversibility 6= Recurrence
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5 Reversibility and homogeneity

An homogeneous reversible system is one whose dynamics is homogeneous
and invertible, i.e.:

(T−t) T−1 exists

Reversible homogeneous discrete systems cannot go to any form of (dynam-
ical or thermodynamical) equilibrium in finite time because

T n+1x = T nx⇔ Tx = x

The same is true for continuous systems because

T t+εx = T tx⇔ T εx = x

However non time homogeneous systems can go to equilibrium in finite time
because relations such as

T (n, n+ 1) · T (n− 1, n) . . . T (0, 1)x = T (n− 1, n) . . . T (0, 1)x

T (s, t)T (0, s)x = T (0, s)x

mean only that there exists xs such that

T (s, t)xs = xs ; ∀ s > t

This identity is problematic because T (s, t) : Ss → St so we have to give a
meaning to the notion of “being the same state on different time fibers”.

6 Arrows of time

Definition. If there is an observable A and an expectation (mean) value
(i.e. a probability measure) 〈A〉 such that the map

t 7→ 〈T (s, t)[A]〉

is monotonic, then we speak of an “arrow of time”.
In the cosmological arrow A is the distance of galaxies: the expansion of

the universe gives a arrow of time. Also contraction also would be an arrow
of time. Thus, in agreement with the point of view of Aristotle, the real
arrow comes from change, i.e. from motion.
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In the thermodynamical arrow A is entropy and time flows in the di-
rection of degrading energy. The thermodynamical arrow creates conflicting
intuitions because suggests that complex structures should degrade to sim-
pler ones which is apparently in contrast with the biological or historical
evolution. This contrast might be only apparent because a global increase of
entropy is not in contradiction with a local decrease.

A more subtle arrow of time emerged from the stochastic limit of quantum
theory and is discussed in section (1.18) of [AcLuVo02]. This has to do with
the fact that the quantum transport coefficients (or generalized susceptivi-
ties), deduced from the stochastic limit of an Hamiltonian evolution in the
forward time direction, is the complex conjugate of the coefficient deduced
from the backward time evolution. Since the imaginary part of the quantum
transport coefficient describes an energy shift, it follows that a red shift in
the forward direction of time should become a blue shift in the backward
direction. A possible astrophysical interpretation of this fact, based on the
analysis of the Pioneer 6 data was discussed in [AcLaLuRi95].

7 Time reversal: axiomatic approach

The usual mathematical model of the set of states of a physical system is
given by the convex set

S := S(A)

of normal states of a von Neumann algebra A. If A = B(H) is the algebra
of all bounded operators on a Hilbert space, we will use the notation S(H)
instead of S (B(H)).

The following definition is often adopted. We will see that not all inter-
esting cases are included in it because antiautomorphisms are excluded.

Definition 4 A symmetry of a quantum system is a weakly continuous affine
bijection of the set S of states.

A time reversal is an involutory symmetry T of S = S(A) such that

T 2 = T (3)

If A = B(H), the structure of the symmetries of a quantum system is
described by the following theorem due to Wigner (cf. [CaDeViLe97] for an
elegant proof):
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Theorem 1 A map u of S(H) into itself is an affine bijection if and only if
it is of the form

u(ρ) = UρU−1 for all ρ in S(H) (4)

where U is a unitary or antiunitary operator in H, determined by u up to a
phase factor. Any operator U , satisfying (4) will be said to implement the
symmetry u.

Theorem 2 Let T be a time reversal on S = K(HS). Then there exists a
unitary or antiunitary operator T on H = HS such that

T (ρ) = TρT−1 for all ρ in K(H) (5)

Proof. It follows from Theorem (1) that a symmetry T is involutory if and
only if any unitary or antiunitary operator T implementing it in the sense of
(4), i.e.

T (ρ) = TρT−1 for all ρ in S(H) (6)

satisfies
ρ = T 2(ρ) = T 2ρT−2 for all ρ in S(H) (7)

and therefore there must exist λ ∈ C such that T 2 = λ. For a unitary
operator T this implies that T 2 = λT 2

0 where T 2
0 = ±1 and λ is a complex

number of modulus 1.

Remark. The following Lemma shows that the phase ambiguity is reduced
for antiunitary operators.

Lemma 1 An antiunitary operator T is such that T 2 = λ with λ ∈ C, then
λ = ±1.

Proof. Since T 2 = λ and T 2 is unitary, λ must have modulus 1. Moreover
∀ψ ∈ H, the identity T 2ψ = λψ and antiunitarity imply that

TT 2ψ = Tλψ = λTψ

On the other hand
TT 2ψ = T 2Tψ = λTψ

It follows that λ = λ and therefore T 2 = ±1.
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8 Examples

Example (1) Complex conjugation in L2–spaces is the basic example of
antiunitary operator.

Lemma 2 The complex conjugation in L2(S, λ) is defined by:

Cψ := ψ

C is a antiunitary operator satisfying C2 = 1.

Proof.
∀ψ ∈ S(A), ∀λ ∈ C

C(λψ) = (λψ)− = λψ = λCψ

〈Cψ1, Cψ2〉 =

∫
(Cψ1)

−(Cψ2)dλ =

∫
ψ1ψ2dλ = 〈ψ2, ψ〉

Define
T ρ = CρC

The dual map of T is defined by

TrT (ρ)X = TrρT ′(x) ; x ∈ A

Since
TrT (ρ)X = TrCρCx = TrρCXC

it follows that
T ′(x) = CXC (8)

Lemma 3
C∗ = C

Proof. Since C is antiunitary C∗C = 1. But also C2 = 1. Hence C∗ = C.

Lemma 4 T ′, defined by (8) is an antilinear *–automorphism.
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Proof. ∀x ∈ A
T ′(λx) = CλXC = λCXC = λT ′(x)

T ′(x)T ′(y) = CXC2yC = CXY C = T ′(x)

T ′(x)∗ = (CXC)∗ = CX∗C = T ′(X∗)

Remark.
For integral spin time reversal is implemented by complex conjugtion.

Example (2) Let A = M(2,C) and

τ :

(
a11 a12

a21 a22

)
−→

(
a11 a21

a12 a22

)

denote the usual transposition. Notice that

τx = Jx∗J ; J

(
z1

z2

)
=

(
z1

z2

)

Example (3) Let

τo:

(
a11 a12

a21 a22

)
−→

(
a22 −a12

−a21 a11

)

Then
τx = Kx∗K

K

(
z1

z2

)
=

(
−z1

z2

)

Remark. For Pauli matrices

τ :σ1, σ2, σ3 −→ −σ1,−σ2,−σ3

thus for spin 1/2 (in general any half integer spin), time reversal is imple-
mented byK because, in analogy with classical angular momentum, you want
spin (and orbital angular momentum) to change sign under time reversal.
Example (4). Let

τ2:

(
a11 a12

a21 a22

)
−→

(
−a22 a12

a21 −a11

)

Then
τx = Lx∗L

L

(
z1

z2

)
=

(
−z1

z2

)

Notice that now L2 = −1.
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9 Time reflections in von Neumann algebras

Wigner’s theorem, discussed in section (7) has been extended to more general
von Neumann algebras according to the following lines.

Definition 5 A Jordan ∗–automorphism of A is a linear map τ of A in
itself satisfying

τ (x∗) = τ (x)∗ ; ∀x ∈ A (9)

τ 2 = id (10)

τ (xy + yx) = τ (x)τ (y) + τ (y)τ (x) (11)

One first proves that the dual of a weakly continuous affine bijection
of the set S of normal states of a von Neumann algebra A is a Jordan ∗–
automorphism. The one defines

Definition 6 A time reflection in A is an involutive Jordan ∗–automorphism
of A

The following extension of Wigner’s theorem is due to Kadison.

Theorem 3 Let α be a Jordan ∗−automorphism of A then there exist a
maximal central projection z ∈ A such that;

α(xy) = α(x)α(y)z + α(y) α(x) (1− z) (12)

Moreover if
α2 = id

then
α(z) = z

(this is not true in general).

In particular,

Corollary 1 If A is a factor, then a Jordan ∗−automorphism is either a
∗−automorphism or a ∗−anti-automorphism.

In particular (Stormer), if A is a factor and τ is implemented, then it is
implemented by a unitary or anti-unitary hermitian operator.
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Theorem 4 If A = B (H) every involutive Jordan ∗−automorphism is given
by

τ x = Jx∗J

where J is antilinear isometric and J2 = 1, or

τ x = −Kx∗K

where K is antilinear isometric K2 = −1

The possible use of general involutory automorphisms in von Neumann al-
gebras to describe time reflections has been extensively discussed in [Maje84b],
[Maje84a], [Maje83]. A discussion more oriented towards the time reversibil-
ity of the Markov property is in [AcMo99].

10 Time reversibility and time reversal in-

variance

In general it is assumed that for any system S there exists an involutory
symmetry T of S which can be interpreted as the time reversal operation.

The problem to distinguish which additional conditions should be satisfied
by an involutive symmetry of a given state space to guarantee the uniqueness
of the time reversal requires a deep investigation. Usually these additional
conditions are expressed

(i) either in terms of privileged observables such as positions, momenta,...

(ii) or in terms of a given, privileged, dynamics.

The basic example of the attitude (i) is given by the following:

Definition 7 The time reversed state ρ̃ of a state ρ of a system S of n
strctureless particles is defined by

Tr[F ({Xj}, {Pj})ρ̃] = Tr[F ({Xj}, {−Pj})ρ] (13)

Corollary. The time reversed ρ̃ of a state ρ is unique whenever the set of
functions F is large enough to separate the states (basic example: the Weyl
algebra of the CCR).
Proof. Clear.
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Definition 8 The map
T : ρ→ ρ̃

is called time reversal .

Corollary. T is an affine map such that

T 2 = id⇔ T −1 = T
Proof. Clear.

Definition 9 A dynamics, or time evolution of a physical system, is a 2–
parameter family of symmetries ut,t0 of its set of states.

(i) For each fixed t, t0, ut,t0 is an affine map of the convex set S into itself,
i.e.:

ut,t0(αρ
′ + (1 − α)ρ′′) = αut,t0(ρ

′) + (1− α)ut,t0(ρ
′′)

for all ρ′, ρ′′ in S and for all α in (0, 1).

(ii) For all states ρ in S, all observables A, all Borel subsets I of R and all
initial times t0, the functions

t 7→ Tr[EA(I)ut,t0(ρ)]

are continuous.

(iii) For all t0 < t1 < t2, we have

ut2,t0 = ut2,t1ut1,t0

The dynamics ut,t0 is called homogeneous if

(iv) For all t > t0 and all real s,

ut,t0 = ut+s,t0+s

The dynamics ut,t0 is called reversible if

(v) ut,t0 is a one–to–one map of S onto itself.

The dynamics of conservative systems are usually reversible. The notion
of time reversal invariance is different from that of reversibility.

Definition 10 The time evolution ut is called time reversal invariant if

T utT utρ = ρ for all ρ and for all t (14)

Note that time reversal invariance implies that ut has the everywhere
defined inverse T utT , even if the time evolution had been originally defined
for positive time only. So, time reversal invariance implies reversibility (but
not the other way around).
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11 Evolutions

Let H be the Hamiltonian of a system. We will always suppose that

H ≥ 0

The Schrödinger evolution of state ψ is

ψt = e−itHψ0 = |ψt >

hence the evolution of the corresponding density matrix is given by

|ψt >< ψt| = e−itH|ψ0 >< ψ0|eitH

Therefore an arbitrary density matrix evolve according to

ρ→ e−itHρeitH

The dual evolution is defined by

TrρtA = Tr|e−itHψ0 >< ψ0|eitHA| = 〈ψ0, e
itHAe−itHψ0〉

Thus the Heisenberg evolution of an observable A is

A→ eitHAe−itH

Let A be a reflection invariant observable:

T A = A ; t ≤ 0

T u−tT A = T u−tA = T eitHAe−itH = TeitHAe−itHT = eT itHTAe−T itHt =

If T is anti unitary this is equal to

e−itTHTAeitTHT

and, if T is unitary, this is equal to

eitHAe−itH
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12 Time reversal in the Schrödinger repre-

sentation

In the representation of H as L2(R3n, dx), it is immediately seen that (13)
holds if we set

T ρ := ρ̃ = CρC (= CρC−1) , ρ ∈ K(H) (15)

where C is the natural complex conjugation on L2(R3n, dx):

Cψ := ψ

indeed, we have

CXjC = Xj , C(−i~∇j)C = i~∇j (16)

It follows that the map T transforming ρ into ρ̃ is a symmetry, implemented
by an anti unitary operator, and satisfying T 2 = 1 (the identity map). If we
define the time reversed evolution ũt by

ũt = T u−tT ; ∀ t ≤ 0 (17)

we obtain

ũtρ = exp

[
− i

~
T̃h

]
ρ exp

[
i

~
T̃h

]
(18)

where
H̃ = CHIC (19)

Note that a Hamiltonian of the form

−∆ + V (20)

satisfies CHC = H, so that ũt = ut; in words, the evolution is time reversal
invariant. In fact, let us consider the Scarödinger equation

i
∂ψ(q, t)

∂t
= Hψ(q, t) (21)

where

H = −∆

2
+ V (q) (22)

q = (q1, ..., qn) and V (q) is a real-valued function.
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Theorem 5 If ψ(q, t) is a solution of the Schrödinger equation (1) then its
time reciprocal wave function

ψ′(q, t) = ψ̄(q,−t) (23)

is also a solution of the same Schrödinger equation

i
∂ψ′(q, t)

∂t
= Hψ′(q, t) (24)

Proof. One gets from (1)

−i∂ψ(q,−t)
∂t

= i
∂ψ(q,−t)
∂(−t)

= Hψ(q,−t) (25)

Now by making the complex conjugation in (5) we get (4).
If we define ũt as in (17), we have, using also T −1 = T ,

ũtρ = exp

[
− i

~
H̃t

]
ρ exp

[
i

~
H̃t

]
(26)

where
H̃ = σT−1HT (27)

and where

σ = −1 if T is unitary (28)

σ = +1 if T is antiunitary (29)

If we require that both H and H̃ are bounded from below and unbounded
from above, we are forced to assume that T is antiunitary, in agreement with
the example (15). We shall assume in general that T is antiunitary.

13 Time reflection and positivity of the spec-

trum

.
Suppose that, in a algebraic set up, time reflection is implemented by a

self-adjoint involution

τ (A) = KA∗K ; K2 = 1
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Since
KUtK = U−t

it follows that, if K is unitary then, deriving the evolution, one has

KHK = −H

Therefore if τ is an automorphism, then the spectrum of H cannot be
positive. Hence τ , and therefore K, must be antilinear.

14 Antilinear antiautomophisms

Definition 11 Let A be a ∗–algebra. An antilinear antiautomorphism of A
is a map

ρ0 : A→ A
satisfying

ρ0(a+ b) = ρ0(a) + ρ0(b) (additivity)

ρ0(λa) = λρ0(b) (anti–linearity)

ρ0(ab) = ρ0(b)ρ0(a)

The following simple remark shows that there is a one–to–one correspon-
dence between linear *–automorphisms and antilinear *–antiautomorphisms.

Lemma 5 Let u ∈ Aut (A) be a linear *–automorphism. Then

u∗(x) := u(x∗) ; x ∈ A

Is an anti–linear *–antiautomorphism of A. Conversely, if u∗ is an antilinear
*–antiautomorphism of A, then

u(x) := u∗(x∗)

is a linear *–automorphism of A.

Proof. u∗ is clearly antilinear

u∗(xy) = u(y∗x∗) = u(y∗)u(x∗) = u∗(y)u∗(x)

(u∗(x))∗ = (u(x∗))∗ = u(x) = u∗(x∗)

Conversely, if u∗ is an antilinear *–antiautomorphism, then u is linear and

u(xy) = u∗((xy)∗) = u∗(y∗x∗) = u∗(x∗)u∗(y∗) = u(x)u(y)

(u(x))∗ = (u∗(x∗))∗ = u∗(x) = u(x∗)
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15 Anti–states

An anti–linear map, ρ0 does not map states into states. This justifies the
following

Definition 12 Let ρ0 : A → A be an antilinear map. A state ϕ on A is
called ρ0–invariant (or anti–invariant) if

ϕ ◦ ρ0 = ϕ (30)

where, by definition
ϕ(a) := ϕ(a) = ϕ(a∗) (31)

We have seen that, for anti–automorphisms ρ0, the natural notion of
invariance is

ϕ ◦ ρ0 = ϕ

If ϕ is a state on A, ϕ is defined by

ϕ(a) = ϕ(a) = ϕ(a∗)

hence it is not a state.

Definition 13 An anti–linear positive functional ϕ on A such that

ϕ(1) = 1

is called an anti–state.

Since ϕ is an anti–state if and only if ϕ is a state, all the notions and
constructions for states are extended to anti states.

16 Automorphisms with anti–invariant states

Lemma 6 Let R be an anti–unitary such that R2 = 1 (so that R∗ = R) and
define

RaR =: ρ0(a) (32)

Then ρ0 is an antilinear *–automorphism. Suppose moreover that

RΦ = Φ (33)
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and define
〈Φ, aΦ〉 =: ϕ(a)

Then
ϕ ◦ ρ0 = ϕ

Proof.
ϕ(ρ0(a)) = 〈Φ, RaRΦ〉 = 〈RRΦ, RaRΦ〉 =

= 〈aRΦ, RΦ〉 = 〈aΦ,Φ〉 = 〈Φ, a∗Φ〉 = ϕ(a∗) = ϕ(a)

That ρ0 is an automorphism is clear because

ρ0(a)ρ0(b) = (RaR)(RbR) = RaR2bR = RabR = ρ0(ab)

Finally ρ0 is a *–automorphism because R∗ = R.

17 Motivations for the definition of time re-

versal

Let (u0
t ) be a free evolution. Solving the Schrödinger equation in interaction

representation
∂tUt = −iHI(t)Ut (34)

for the interaction HI

u0
t (HI ) = HI(t)

with initial condition U0 = 1 and for positive times t, we obtain a cocycle for
the free evolution (u0

t ). Following [AcKo00b] (section (1.1.29)), let us show
that there is a unique way to extend this cocycle to negative times so that,
composing this cocycle with the free evolution, one obtains a 1–parameter
automorphism group on all the real line. This extension is called the time
reflected cocycle.

Theorem 6 Let A be an algebra, (u0
t ) a 1–parameter automorphism group

on A and (Ut)t≥0 a 1–parameter family of unitary operators in A such that
the 1–parameter family

ut := U∗
t u

0
t (·)Ut =: j0,tu

0
t ; t ≥ 0 (35)

29



is a 1–parameter semigroup of automorphisms of A. Then there exists a
unique 1–parameter automorphism group (ut) (t ∈ R) on A coinciding with
(35) for positive values of t.

Moreover ut has the form, for a ∈ A

ut(a) =

{
j0,tu

0
t (a) = U∗

t · u0
t (a) · Ut ; t ≥ 0

u0
t j

−1
0,−t(a) = u0

t (U−t) · u0
t (a) · u0

t (U−t)
∗ = u0

t (U−taU
∗
−t) ; t ≤ 0

(36)

Proof. By assumption each ut, with t ≥ 0, is invertible hence, if an (ut) as
in the thesis exists, it is uniquely defined by

u−t = (ut)
−1 ; t ≥ 0 (37)

Now let us check that (ut)
−1 is given by the right hand side of (36). For each

a ∈ A and t ≥ 0, one has

u−tut(a) = u0
−t(Ut[U

∗
t u

0
t (a)Ut]U

∗
t ) = u0

−tu
0
t (a) = a

This implies that, if 0 ≤ s < t, then

u−sut = u−susut−s = ut−s (38)

and similarly if s > t. Since (ut) is a semigroup for t ≥ 0 (hence also for
t ≤ 0, due to (37)), (38) implies that ut is a 1–parameter automorphism
group and this ends the proof.

Notice that the solution of equation (34) for t ≥ 0 is

~Te−i
∫ t
0 HI(s)ds = Ut (39)

Now suppose that there exists an anti–automorphism satisfying

ρ0(HI (s)) = HI (−s)

Then since ρ0 is an antilinear antiautomorphism, we have, with t ≥ 0:

ρ0(Ut) =
←−
T exp i

∫ t

0

HI(−s)ds =
←−
T e−

∫ −t
0

HI(σ)dσ =
←−
T ei

∫ 0
−t HI(s)ds = (40)

= (U−t)
∗
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Proceeding more constructivelylet, for t ≤ 0, u0
t be the backward free

evolution. Then if Ut is the evolution in interacting representation, we must
have because of Theorem (6):

Ut = u0
t (U−t)

∗ = u0
t (
~Te−i

∫ −t
0 HI(s)ds)∗ = u0

t (
←−
T e+i

∫ −t
0 HI(s)ds)

=
←−
T ei

∫ −t
0

u0
t (HI(s))ds =

←−
T ei

∫ −t
0

HI(s+t)ds =
←−
T ei

∫ 0
t

HI(σ)dσ

With the change of variables σ := s + t, we obtain

Ut =
←−
T ei

∫ 0
t

HI(σ)ds ; t ≤ 0

comparing this with (40) we conclude that, for t ≤ 0, one has

ρ0(U−t) = u0
t (U−t)

∗ (41)

This identity motivates the definition introduced in the following section.

18 Time reflections in local algebras

Let be given a von Neumann algebra A with a time localization. This means
a triple {A,A0, (u

0
t )} such that:

u0
t ∈ Aut (A) (42)

At := u0
t (A0) (43)

A =
∨

t∈R

At (44)

There exists at most one additive map ρ0 satisfying

ρ0(A(t1) . . . A(tn)) = A(−tn)∗ . . . A(−t1)∗ (45)

for any choice of t1, . . . , tn (not necessarily ordered). Any map with this
property satisfies, for any A,B ∈ A:

ρ0(λA) = λρ0(A)

ρ0(A
∗) = ρ0(A)∗

ρ0(AB) = ρ0(B)ρ0(A)

The first two properties are clear. The third one follows from

ρ0(A(t1) . . .A(tn)·B(s1) . . . B(sm)) = B(−sm)∗ . . .B(−s1)A(−tn)∗ . . .A(−t1)∗
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Definition 14 An anti–automorphism ρ0 : A → A satisfying (45) will be
called a time reflection with respect to the time localization {A,A0, (u

0
t )}. If

A is generated by the At’s topologically, then ρ0 is required to be continuous.

Lemma 7 Let ρ0 and u0
t be as above and let ϕ be an u0

t–invariant state.
Then ϕ ◦ ρ0 = ϕ.

Proof. For any
F ({A(s)}) ∈ A[0,t]

one has

ϕ(ρ0(F ({A(s)})) = ϕ(F ({A(−s)})∗) = ϕ(u0
2s[F ({A(−s)})∗])

= ϕ(F ({A(s)})∗) = ϕ(F ({A(s)}))
ϕ ◦ ρ0 = ϕ.

In the following we study the existence of time reflections on special alge-
bras. In fact, in section (x.) we will prove that such an anti–automorphism
can be explicitly constructed for any mean zero gauge invariant Gaussian
field with standard free evolution.

19 The adjoint and the time reversed of an

Markov semigroup

The following discussion abstracts a general scenario which is realized in sev-
eral concrete examples of physical interest in the stochastic limit of quantum
theory [AcLuVo02], [AcKo00b], [AcIm02a], [AcImLu02a], [AcImKo02a]. Let
be given:

(i) an algebra A, a state ϕ on A, and a unitary in the algebra Ut ∈ Un(A)

(ii) an antiautomorphism ρ0 ∈ Antiaut (A) of A leaving ϕ anti–invariant

ρa(ab) = ρ0(b)ρ0(a) ; ρ0(a
∗) = ρ0(a)

∗ ; ρ0 − antilinear

ϕ ◦ ρ0 = ϕ (46)

(iii) Let A be realized on a Hilbert space H and

ϕ(·) = 〈Φ, (·)Φ〉
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Then we have

ϕ(X∗U∗
t Y Ut) = 〈XΦ, U∗

t Y UtΦ〉 = ϕ(X∗U∗
t Y Ut) = ϕ(ρ0(X

∗[U∗
t Y Ut])) =

(47)
= ϕ(ρ0(Ut)ρ(Y )ρ0(U

∗
t ) · ρ0(X

∗)) = ϕ(ρ0(X)ρ0(Ut)ρ0(Y
∗)ρ0(U

∗
t ))

= 〈ρ0(X
∗)Φ, ρ0(Ut)ρ0(Y

∗)ρ0(U
∗
t )Φ〉 = ϕ(ρ0(X)ρ0(Ut)ρ0(Y

∗)ρ0(Ut))

Suppose moreover that the following conditions are satisfied:

(iv) X, Y are such that

ρ0(X) = X∗ ; ρ0(Y ) = Y ∗

(recall that ρ0 is antilinear)

(v) for some 1–parameter group (u0
t ) of automorphisms of A leaving ϕ in-

variant
ρ0(Ut) = u0

−t(Ut)
∗ ; t ≥ 0

(vi) u0
t (X) = X; u0

t (Y ) = Y ; ∀ t.

Then the identity (47) becomes, for t ≥ 0:

〈XΦ, U∗
t Y UtΦ〉 = 〈XΦ, u0

−t(Ut)Y u
0
−t(U

∗
t )Φ〉

equivalently, introducing the notations

U[0,t] := Ut ; U[−t,0] := u0
−t(U

∗
t ) = u0

−t(Ut)
∗

ϕ(X∗U∗
[0,t]Y U[0,t]) = ϕ(X∗U∗

[−t,0]Y U[−t,0])

In case of a Markovian structure compatible with ϕ, i.e. X,Y are in the time
zero algebra and

ϕ ◦ E0] = ϕ ◦ E[0 = ϕ

we obtain

ϕ0(X
∗
0]E(U∗

[0,t]Y U[0,t])) = ϕ0(X
∗E[0(U

∗
[−t,0]Y U[−t,0]))

Thus, introducing the notations

P t(Y ) := E0](U
∗
[0,t]Y U[0,t])
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P t
rev(Y ) := E[0(U

∗
[−t,0]Y U[−t,0])

we obtain the duality

ϕ0(X
∗P t(Y )) = ϕ0(X

∗P t
rev(Y )) (48)

Notice the difference between this duality and the usual duality for Markov
semigropus

ϕ0(X
∗P t(Y )) = ϕ0(P

t
+(X)∗Y ) (49)

It is well known that the adjoint semigroup P t
+ exists under severely restric-

tive conditions while, as shown above, the existence of P t
rev only requires

the time reflection invariance of ϕ which is a much weaker condition. In
fact in the above construction we have also used the invariance of the “time
zero algebra” under time reflection. This is automatically satisfied in many
concrete models, however it is not difficult to modify the above construction
so to include also a non trivial action of the time reflection of the “time zero
algebra”.

Concrete examples of time reversed semigroups, coming from stochastic
limit, are discussed in [AcIm02a], [AcImLu02a]. For a proof of the fact that
the existence of the adjoint Markov semigroup is a characteristic of equilib-
rium situations cf. Theorem (1.41) in [AcKo00b] and the discussion following
it where it is emphasized that the above conclusion strongly depends on the
existence of “sufficiently many allowed transitions among the atomic levels”.
In presence of forbidden transitions the physical situation is much richer and
the mathematical situation is much more complex and should be discussed
case by case.

20 Field algebras

Theorem 7 Let ak, a
+
k , be a Boson field and 〈·〉0 a Gaussian mean zero

gauge invariant state on it. Let ω : Rd → R be a sufficiently good function.
Then there exists a unique Boson field a(t, k), a+(t, k) and a state 〈·〉 on

it such that the map

a(t, k) 7→ e−itωkak = u0
t (ak)

extends to an isomrophism in the sense of correlators. Moreover the map

a(t, k) 7→ a(t+ s, k)

extends to a 1–parameter automorphism group u0
t of the a(t, k)–field algebra
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Proof (idea). Denote A(ω) a field algebra generated by the

e−itωkak ; ∀ t, k

by fixing a space of test functions. Then the correlations kernels defined in
terms of the elements of A(ω) with the state 〈·〉0, automatically satisfy the
compatibility conditions of the reconstruction theorem of [AcFrLe81].

The existence of (u0
t ) follows from the fact that the correlators will depend

only on the time differences t− s.

Definition 15 The algebra generated by the fields a(t, k) in Theorem (7) is
called the free field algebra.

21 Existence of a time reflection on the field

algebra

We will prove that on the field algebra there exists a unique map ρ0 such
that

(i) ρ0 is an anti–automorphism, i.e.

ρ0(AB) = ρ0(B)ρ0(A)

ρ0(A)∗ = ρ0(A)∗

(ii) If A0 ∈ A0 (time zero algebra) and u0
s is the free evolution, then ∀ s ∈ R

ρ0(u
0
s(A0)) = u0

−s(A0)
∗

(in particular the time zero algebra is left invariant)

Let be given a Boson field with a free evolution a(t, k) = e−itωkak and
let A(Stg) , A+(Stf) denote the corresponding evolutions of the smeared
fields.

a(−t, k)∗ = [e−i(−t)ωkak]
∗ = [eitωkak]

∗ = e−itωka+
k

Then an anti–automorphism ρ0, as in section (18), exists and it is character-
ized by:

ρ0(a(t, k)) = a(−t, k)∗ = e−itωka+
k

Equivalently the map ρ0 can be obtained in 2 steps:
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(i) exchange of a and a+

(ii) replacement of ωk by −ωk.

The formal proof should be given uses Theorem (7) and the fact that the
set of correlators is left invariant by the above replacements.

In terms of test functions we see that for an arbitrary test function F

[a(t, k), a+(t′, k′)] = e−itωkeit′ωk′δ(k − k′) = e−i(t−t′)ωkδ(k − k′)

ρ0(〈a, F 〉) = ρ0

(∫
dt

∫
dkF (t, k)eitωkak

)
=

∫
dt

∫
dkF (t, k)eitωka+

k

=

∫
ds

∫
dk(F (−s, k))eisωka+

k = 〈a+, F 〉

22 ρ0–invariant Gaussian states

For Gaussian states ϕ everything is reduced to the pair correlations

ϕ(A(g)A+(f)) = 〈g,Qf〉

Assuming that the one–particle free evolution commutes with the covariance:

StQ = QSt

one has
ϕ(Af(s)A

+
g (t)) = 〈f,QSt−sg〉

ϕ(A+(t)A(s)) = ϕ([A+(t), A(s)]) + ϕ(A(s)A+(t))

= 〈g, St−sf〉 + 〈g,QSt−sf〉 = 〈g, (1 +Q)St−sf〉

Therefore

ϕ(Ag(−t)A+
f (−s)) = 〈g,QS(−s)−(−t)f〉 = 〈g,QSt−sf〉 = 〈f,QSt−sg〉 = ϕ(Af(s)A

+
g (t))

Therefore
ϕ ◦ ρ0 = ϕ

i.e. any gauge invariant Gaussian state is ρ0–invariant.
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