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e–mail: accardi@volterra.mat.uniroma2.it , WEB page: http://volterra.mat.uniroma2.it

Abstract

We extend to polynomials in several variables the Accardi–Bozeiko
canonical isomorphism between 1–mode interacting Fock spaces and
orthogonal polynomials in one variable. This gives a constructive rule
to write down easily the quantum decomposition, as a sum of creation,
annihilation and number operators, of an arbitrary vector valued ran-
dom variable with moments of any order. In the multi–mode case
not all interacting Fock spaces are canonically isomorphic to spaces
of orthogonal polynomials. We characterize those which enjoy this
property in terms of a sequence of quadratic commutation relations
among finite dimensional matrices.
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1 Introduction

In the past years the theory of interacting Fock spaces has been used in
a multiplicity of different contexts (cf. [Hash97], [HaHoOb01],[HaObTa01],
[Asai01], [Das01a], [Das01b]). In many of these papers the natural correspon-
dence between interacting Fock spaces and orthogonal polynomials played a
relevant role.

This correspondence was proved, for one–mode interacting Fock spaces
by Accardi and Bozeiko who shewed that the theory of 1–mode interacting
Fock spaces is canonically isomorphic to the theory of orthogonal polynomi-
als in one variable, i.e. with respect to a probability measure on the real line
with finite moments of any order. The canonical feature of this isomorphism
is exhibited by the fact that it maps the multiplication operator by the inde-
pendent variable into a linear combination of the creation, annihilation and
number operators of the corresponding interacting Fock space.

The problem to extend this isomorphism to polynomials in several vari-
ables has been open for a few years. In the present paper we discuss a solution
of this problem. The main new feature with respect to the one–mode case is
that, in the multi–mode case, case not all interacting Fock spaces are canon-
ically isomorphic to spaces of orthogonal polynomials. We characterize those
which enjoy this property in terms of a sequence of quadratic commutation
relations among finite dimensional matrices. This gives in particular a con-
structive rule to write down easily the quantum decomposition, as a sum of
creation, annihilation and number operators, of an arbitrary vector valued
random variable with moments of any order.

Let d ∈ N. We denote µ a probability measure on Rd with finite moments
of any order; x = (x1, ..., xd) any element of Rd; xj denote the coordinates
in the canonical basis; X0 = (X0

1 , ...,X0
d) : (Rd, µ) → Rd the Rd-valued

coordinate random variable, characterized by:

X0
j (x) = xj ; j = 1, ..., d

Definition 1 The complex ∗-algebra P = Pd, with identity, generated (alge-
braically) by the X0

j (j = 1, ..., d) and the constant functions with pointwise
addition and multiplication and f∗(x) = f̄ (x)-complex conjugate) is called
the ”polynomial algebra in d indeterminates”.

In the following, the dimension d will be fixed, so we will frequently omit
the super–script d and write, for example, P instead of Pd.
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The µ-integral defines a state on P and the GNS construction, applied
to the pair {P, µ} [Sak71] gives a Hilbert space Hµ, a representation

πµ : P → B(Hµ)

(the bounded linear operators on Hµ) and a unit vector 1µ, cyclic for π(P).
Hµ is a closed sub-space of L2(Rd, µ) and coincides with it if and only if the
measure µ is uniquely determined by its moments. Thus the space Hµ gives
in some sense a measure of the non uniqueness of the moment problem for
µ.

Definition 2 We will say that µ is generic if
(i) the union of the coordinate hyperplanes xj = 0 (j = 1, . . . , d) has

µ–measure zero
(ii) πµ is injective (notice that this implies that also the map p ∈ P →

πµ(p) · 1µ is injective).

This is surely the case if πµ has a density with respect to the Lebesgue
measure. In the generic case the ∗–algebra

Pµ := π (P ) (1)

is isomorphic to P and also the elements of Pµ will be called polynomials.
They are bounded operators on Hµ if and only if µ has compact support.

Define the coordinate multiplication operators

X0
j f(x) := xj f(x); j = 1, ..., d

and their action on Hµ:

π (X0
j )|Hµ =: Xj ; j = 1, ..., d (2)

Condition (i) above implies that the operators Xj (j = 1, ..., d) are invertible
in Hµ. In the following we will identify the elements of Hµ to elements of
L2(Rd, µ) so that, for each j = 1, ..., d, Xj acts by multiplication on H:

Xj f(x) = xj f(x); f ∈ H (3)

and defines a symmetric pre-closed operator on H on the dense invariant
domain Pµ · 1µ. The algebra Pµ is generated by the monomials

Xn1
1 ...Xnd

d ; ∀n1, ..., nd ∈ N (4)
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and the vectors
Xn1

1 ...Xnd
d · 1µ (5)

are total in Hµ by construction.
In the following, when no confusion can arise, we shall denote with the

same symbol both the vectors (5) and the corresponding multiplication op-
erators (4) in Pµ.

Definition 3 For each n ∈ N define

Pd
n := linear span of {Xn1

1 ...Xnd
d ; nj ∈ N,

d∑

j=1

nj ≤ n }

It is clear that Pd
n is the vector space of all polynomials in the variables

X1, ...,Xd of degree at most n, where the degree of the monomial Xn1
1 ...Xnd

d

is
∑d

j=1 nj and the degree of a polynomial P is defined to be the highest,
among the degrees of the monomials which appear in P with a non zero
coefficient. Notice that, for each j = 1, ..., d,

Xj Pd
n ⊆ Pd

n+1. (6)

Define inductively

V0 = C · 1µ = Pd
0 · 1µ (7)

V d
n+1 := (

n⊕

k=0

V d
k )⊥ ∩ Pd

n+1 · 1µ (8)

Lemma 1 . For each n ∈ N:

Pd
n · 1µ =

n⊕

k=0

V d
k

In particular:

V d
n+1 = (

n⊕

k=0

V d
k )⊥∩{ linear span ofXn1

1 ...Xnd
d with : nj ∈ N, (j = 1, ..., d),

d∑

j=1

nj = n+1}
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Proof. Clear.

For n1 + ... + nd = n, denote : Xn1
1 ...Xnd

d : the orthogonal projection of
Xn1

1 ...Xnd
d · 1µ in

⊕
k < n Vk = Pn−1 · 1µ. By linearity the symbol : pn(X) : is

defined for any polynomial pn of degree n.

The vectors : Xn1
1 ...Xnd

d : span Vn but in general, they are not orthogonal.

Lemma 2 . (Linear independence) For any fixed n, the vectors : Xn1
1 ...Xnd

d :,
with

∑d
j nj = n, are linearly independent. In particular V d

n ≡ Crd
n with

rd
n :=

(
n + d − 1

n

)
(9)

and the vectors : Xn1
1 ...Xnd

d : are a basis of V d
n .

Proof. Fix n ∈ N. The genericity of µ implies that the map pn 7→: pn :
is injective (pn polynomial of degree n). Therefore, ∀nj ∈ N with

∑d
j nj =

n, the : Xn1
1 ...Xnd

d : are linearly independent because, by the genericity
condition, such are the Xn1

1 ...Xnd
d · 1µ. Therefore the cardinality of the set

{: Xn1
1 ...Xnd

d :, nj ∈ N,
d∑

j

nj = n}

is
(

n+d−1
n

)
. Since dimPd

n =
(

n+d
d

)
[KrSh67], using the identity

(
n + d

d

)
−
(
n + d − 1

d

)
=

(
n + d − 1

n

)

we can conclude that

dimV d
n = dimPd

n − dimPd
n−1 =

(
n + d − 1

n

)

This proves the lemma, since the set {: Xn1
1 ...Xnd

d :, nj ∈ N,
∑d

j nj = n}
generates V d

n .
Remark. Since the elements of any orthonormal basis of Vn are in one-to-one
correspondence with the solutions (in N) of the equation

n1 + ... + nd = n
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we will often use the notation

|n̄ >= |n1, ..., nd > (10)

to denote an arbitrary orthonormal basis of Vn. When confusion can arise
we will use the more explicit notation

φn̄ = φn1,...,nd

The recurrence relations among orthogonal polynomials are consequences
of the following result:

Theorem 1 . For any n ∈ N, if k /∈ {n − 1, n, n + 1} then for each
j = 1, ..., d,

Xj Vn ⊥ Vk

Proof. Let |n̄ >∈ Vn and f ∈ Pn−2, then for each j = 1, ..., d, Xj f ∈
P d

n−1 hence, by the symmetry of Xj and (6):

< Xj n̄, f >=< n̄, Xj f >= 0

because by assumption |n̄ >∈ Vn ⊥ Pn−1.
If f ∈ Vk with k > n + 1, then f ⊥ Xj |n̄ > because Xj |n̄ > is a

polynomial of degree n + 1. This proves the statement.
Denote Pm the orthogonal projection on Vm. The following is a multidi-

mensional generalization of the Jacobi relations for 1-dimensional orthogonal
polynomials.

Corollary 1 (Recurrence relations) Let us fix, for any n ∈ N, an or-
thonormal basis {|n̄ >= |n1, ..., nd >;

∑d
j nj = n} of Vn. For each n̄ =

(n1, ... , nd) ∈ Nd with
∑d

j nj = n, and for each j = 1, ..., d we have

Xj Pn = Pn+1 Xj Pn + Pn Xj Pn + Pn−1 Xj Pn (11)

Proof. We know from Theorem 1 that for each j = 1, ..., d, n ∈ N,
|n̄ >∈ Vn,

Xj |n̄ >∈ Vn+1 ⊕ Vn ⊕ Vn−1 (12)

Since Pn+1 + Pn + Pn−1 is the orthogonal projection on Vn+1 ⊕ Vn ⊕ Vn−1

(12) implies that
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Xj |n̄ >= Pn+1 Xj |n̄ > +Pn Xj |n̄ > +Pn−1 Xj |n̄ >;

and, since |n̄ >∈ Vn is arbitrary, this is equivalent to (11).

Now define the following operators:

D+
n (j) := Pn+1 Xj Pn |Vn ∈ B(Vn, Vn+1) (13)

D0
n(j) := Pn Xj Pn |Vn ∈ B(Vn, Vn) = B(Vn) (14)

D−
n (j) := Pn−1 Xj Pn |Vn ∈ B(Vn, Vn−1) (15)

Given any orthonormal basis (|n̄ >) of Vn, we can write the finite dimen-
sional operators (13), (14), (15) as matrices:

D0
n(j) =

∑

m̄, n̄

|m̄ >< m̄|D0
n(j) n̄ >< n̄| =:

∑

|m̄|=|n̄|=n

D0
m̄, n̄(j) |m̄ >< n̄| (16)

D+
n (j) =

∑

n̄, m̄

|m̄ >< m̄|D+
n (j) n̄ >< n̄| =:

∑

|n̄|=n, |m̄|=n+1

D+
n̄, m̄(j) |m̄ >< n̄|

(17)

D−
n (j) =

∑

n̄, m̄

|m̄ >< m̄|D−
n (j) n̄ >< n̄| =:

∑

|n̄|=n, |m̄|=n−1

D−
n̄, m̄(j) |m̄ >< n̄|

(18)
where, if n = (n1, . . . , nd), we use the notation |n| = n1 + . . . + nd.

We note that

D+
n (j) is represented by an rd

n × rd
n+1 matrix

D0
n(j) is represented by an rd

n × rd
n matrix

D−
n (j) is represented by an rd

n × rd
n−1 matrix
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Lemma 3 . The operators (13), (14), (15) satisfy the following relations:

D+
n+1(i)D+

n (j) = D+
n (j)D+

n+1(i) (19)

D0
n+1(i)D+

n (j) + D+
n (i)D0

n(j) = D0
n+1(j)D+

n (i) + D+
n (j)D0

n(i) (20)

D+
n−1(i)D−

n (j) + D0
n(i)D0

n(j) + D−
n+1(i)D+

n (j) =

D+
n−1(j)D−

n (i) + D0
n(i)D0

n(j) + D−
n+1(j)D+

n (i) (21)

for i 6= j, 1 ≤ i, j ≤ d and n ≥ 0, where D+
−1(i) = 0.

Proof. We have

D+
n+1(j)D+

n (i) = Pn+2 Xj Pn+1 |Vn+1 Pn+1 Xi Pn |Vn= Pn+2 Xj Pn+1 Xi Pn |Vn

(22)
Thus, exchanging i and j:

D+
n+1(i)D+

n (j) = Pn+2 Xi Pn+1 Xj Pn |Vn (23)

On the other hand, since Xi Xj = Xj Xi, it follows that

Pn+2 Xi Xj Pn = Pn+2 Xj Xi Pn (24)

Using (11) we see that the left hand side of (24) is equal to

Pn+2 Xi Pn+1 Xj Pn + Pn+2 Xi Pn Xj Pn + Pn+2 Xi Pn−1 Xj Pn

and the right hand side to

Pn+2 Xj Pn+1 Xi Pn + Pn+2 Xj Pn Xi Pn + Pn+2 Xj Pn−1 Xi Pn

Since

Pn+2 Xi Pn Xj Pn = Pn+2 Xj Pn−1 Xi Pn = Pn+2 Xj Pn Xi Pn = Pn+2 Xi Pn−1 Xj Pn = 0
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this is equivalent to

Pn+2 Xi Pn+1 Xj Pn = Pn+2 Xj Pn Xi Pn

Therefore (22) and (23) are equal, which proves (19).

In a similar way we observe that

Pn+1 Xi Xj Pn = Pn+1 Xj Xi Pn

is equivalent to

Pn+1 Xi Pn+1 Xj Pn + Pn+1 Xi Pn Xj Pn + Pn+1 Xi Pn−1 Xj Pn =

Pn+1 Xj Pn+1 Xi Pn + Pn+1 Xj Pn Xi Pn + Pn+1 Xj Pn−1 Xi Pn (25)

Since
Pn+1 Xi Pn−1 Xj Pn = Pn+1 Xj Pn−1 Xi Pn = 0

the relation (25) implies

D0
n+1(i)D+

n (j) + D+
n (i)D0

n(j) = D0
n+1(j)D+

n (i) + D+
n (j)D0

n(i)

which proves (20).

To prove (21) we apply the recurrence relation to the two sides of the
equality

Pn Xi Xj Pn = Pn Xj Xi Pn

and argue as above.

Lemma 4 . The operators D+
n (j), D−

n (j), D0
n(j) are such that

(D+
n (j))∗ = D−

n+1 ; (D0
n(j))∗ = D0

n(j) (26)

Proof.
(D0

n(j))∗ = (Pn Xj Pn)∗ = Pn Xj Pn = D0
n(j)

(D+
n (j))∗ = (Pn+1 Xj Pn)∗ = Pn Xj Pn+1 = D−

n+1

9



Lemma 5 . If µ is generic, then D+
n (j) is injective for any n ∈ N and

j = 1, ..., d.

Proof. If there exists n̄ ∈ Vn such that

Pn+1 Xj n̄ = 0

then
Xj n̄ = Pn Xj n̄ + Pn−1 Xj n̄

But the left hand side of this equality is a polynomial of degree n + 1 and
the right hand side is a polynomial of degree n. Because of the genericity
of µ they can be equal if and only if they are both zero. Also because of
genericity Xj is invertible in Hµ, hence

Xj n̄ = 0 =⇒ n̄ = 0

It follows that Pn+1 Xj Pn = D+
n (j) is injective.

Lemma 6 . For each n ∈ N, the family D+
n (1), ..., D+

n (d) : Vn −→ Vn+1

is surjective, in the sense that the linear span of the ranges of D+
n (j) is the

whole of Vn+1.

Proof. Let ξ ∈ Vn+1 be an element orthogonal to the range of all D+
n (j)’s

(j = 1, ..., d). Then for any n̄ ∈ Vn and for any j = 1, ..., d

0 =< ξ, D+
n (j) n̄ >=< ξ, Pn+1 Xj n̄ >=< ξ, Xj n̄ >

But, by definition of Vn, it also follows that ξ ⊥ Xj Vk for any k ≤ n−1.
By taking linear combinations we see that ξ is orthogonal to all polynomials
of the form Xj qn where qn ∈ Pn. But, taking linear combinations of these,
we obtain all possible polynomials of degree n + 1 without constant term.
This contradicts the fact that ξ ∈ Vn+1.

2 Interacting Fock spaces

Let us recall the definition of interacting Fock space. We use here the defini-
tion introduced by [AcSk99] which, although equivalent to the original one
of [AcLu92], [AcLuVo97], is more suitable for our purposes.
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Definition 4 Let H0
1 be a pre–Hilbert space. An interacting Fock space based

on H0
1 is an Hilbert space H, with a gradation indexed by N

H =
⊕

n≥0

Hn = C · Φ ⊕
⊕

n≥1

Hn (27)

and with the following property.
∀ v ∈ H0

1, there exists a densely defined linear operator a+(v) on H such
that:

(i) the map v ∈ H0
1 7→ a+(v) is complex linear.

(ii) ∀n ∈ N the set

{a+(vn)...a
+(v1)Φ : v1, ..., vn ∈ H0

1} (28)

is contained in the domain D(a+(v)) of a+(v). For fixed n ∈ N, we will
denote Nn the linear subspace (algebraically) generated by the vectors (28).
(iii) The union of all the Nn (n ∈ N) is a dense subspace of H.
(iv) a+(v) maps Nn onto Nn+1.
(v) Each a+(v) has an adjoint a(v) defined on N :=

⋃
n Nn.

Remark. The direct sum in (27) is in the Hilbert space sense. We will
denote

H0 =
algebraic⊕

n≥0

Hn ; H0 = C · Φ (29)

the algebraic direct sum, i.e. the subspace of H of the vectors which have
a non zero component only on a finite number of spaces Hn.

Now let us fix the following choices:

H = Hµ ; H0
µ =

algebraic⊕

n

Hµ ; H0
1 = Cd ; Hn = V d

n

where the operators a+
j are defined by the following:
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Proposition 1 In the notation (10) let, for n ∈ N, |n̄ >= |n1, ..., nd >
denote an arbitrary orthonormal basis of Vn and let Dε

m̄, n(j) denote the ma-
trices in this basis, of the operators Dε

n(j) (ε = +,−, 0, n ∈ N) as defined by
(16) , (17) , (18). Then:

(i) For each j = 1, ..., d the operator a+
j , defined on the vectors |n1, ..., nd >

by
a+

j |n1, ..., nd >= D+
n (j) |n̄ >=

∑

|m̄+ |=n+1

D+
n̄, m̄+

(j) |m̄+ > (30)

has an adjoint, also defined on the vectors |n1, ..., nd > by

a−
j |0, ..., 0 >= 0 (31)

a−
j |n̄ >= D−

n (j) n̄ =
∑

|m̄−|=n−1

D−
n̄, m̄−(j) |m̄− > (32)

(ii) The operators a0
j (j = 1, ..., d) defined by

a0
j |n̄ >=

∑

|m̄|=n

D0
n̄,m̄(j) |m̄ > (33)

is symmetric on H0
µ.

(iii) The following identity holds on H0
µ:

Xj := a+
j + a0

j + a−
j , j = 1, ..., d (34)

Remark. Notice that that definition of the operators a+
j depends on the

choice of the orthonormal basis |n1, ..., nd >.
An intrinsic definition is possible, but makes the intuitive connection with

ordinary multiplication operators more obscure.

Proof. Since, for each n̄ 6= 0̄, a+
j |n̄ > is always in some Vk with k ≥ 1, one

has
< 0̄, a+

j n̄ >= 0

Moreover since, by definition,

a+(j) |Vn = D+
n (j) = Pn+1 Xj Pn

and
a−(j) |Vn+1 = D−

n+1(j)
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it follows that
(D+

n (j))∗ = Pn Xj Pn+1 = a−
n+1(j), (35)

which means that a−(j) is the adjoint of a+(j) on H0
µ. Similarly

a0(j) |Vn = D0
n(j) = Pn Xj Pn = (Pn Xj Pn)∗ = (D0

n(j))∗ (36)

Therefore the operator a0
j is symmetric on H0

µ. For each n ∈ N the
identity

Xj Pn = (a+
j + a0

j + a−
j )Pn

follows from the definition of the Dε
n(j), ε = +,−, 0 and this implies (34).

Conversely:

Theorem 2 Let be given a Hilbert space H with a N-gradation

H =
⊕

n∈N

Vn ; V0 = C · Φ

such that
Vn ≡ Crd

n ∀n ∈ N

and let be given:

(i) d sequences of (finite dimensional) operators

D+
n (j) ∈ B(Vn, Vn+1)

D0
n(j) ∈ B(Vn, Vn)

D−
n (j) ∈ B(Vn, Vn−1)

satisfying the conditions (19), (20), (21).

(ii) For each n ∈ N an orthonormal basis of Vn, denoted

|n̄ >= |n1, ... nd > ; |n̄| :=
d∑

j=1

nj = n

Then, on H, there exists a structure of interacting Fock space over Cd,
with creation and annihilation operators given by (30), (31), (33) respectively.
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If, in addition the commutativity relations (19), (20), (21) are satisfied, then
the operators

Xj := a+
j + a0

j + a−
j ; j = 1, . . . , d (37)

are a commuting family of symmetric operators satisfying the relations (11),
Pn being the orthonogonal projection onto Vn. Moreover Φ is a cyclic vector
for the polynomial algebra generated by the Xj and the identity.

Proof. Let us fix arbitrarily, for each n ∈ N, an orthonormal basis (|n̄ >)
of Vn. Define the operators a+

j , a−
j , a0

j by (30), (32), (33), (j = 1, ..., d)
respectively.

The symmetry of the a0
j comes from the fact that the D0

n(j) are symmetric
and the fact that a−

j is the adjoint of a+
j comes from the relation D−

n (j) =
(D+

n (j))∗ as in the proof of Proposition (1). This implies that the operators
Xj , defined by (37) are symmetric on H0

µ and the relation (11) holds.
The commutativity of the family (X1, ..., Xd) comes from the relations

(19), (20), (21) as follows.
For each i, j = 1, ..., d and n ∈ N we have

Xi Xj |n̄ >=

(a+(i) + a0(i) + a−(i)) (a+(j) + a0(j) + a−(j)) |n̄ >=

(a+(i) a+(i) + a+(i) a+(0) + a+(i) a+(−)) |n̄ > +

(a0(i) a+(i) + a0(i) a+(0) + a0(i) a+(−)) |n̄ > +

(a−(i) a+(i) + a−(i) a+(0) + a−(i) a+(−)) |n̄ >=

(D+
n+1(i)D+

n (j) + D+
n (i)D0

n(j) + (D+
n−1(i)D−

n (j)) |n̄ > +

(D0
n+1(i)D+

n (j) + D0
n(i)D0

n(j) + (D0
n−1(i)D−

n (j)) |n̄ > +

(D−
n+1(i)D+

n (j) + D−
n (i)D0

n(j) + (D−
n−1(i)D−

n (j)) |n̄ >=
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D+
n+1(i)D+

n (j) |n̄ > +(D+
n−1(i)D+

n (j)+D0
n(i)D0

n(j)+D−
n+1(i)D+

n (j)) |n̄ > +

(D−
n (i)D0

n(j) + D0
n−1(i)D−

n (j) + D−
n−1(i)D−

n (j)) |n̄ > +

(D0
n+1(i)D+

n (j) + D+
n (i)D0

n(j)) |n̄ >

The relations (19), (20), (21) imply that the above expression is equal to

Xj Xi |n̄ >

which proves the commutativity.

By assumption, each D+
n (j) is injective. Therefore the operators a+

j are
injective.

By assumption, for each n ∈ N the linear span of the ranges of the
operators D+

n (j) (j = 1, ..., d) is the whole of Vn. Therefore the vectors of
the form (28) are total in H. Finally denote PD the (polynomial) algebra
generated by the Xj and the identity. Then Φ ∈ PD · Φ and since, due to
(31)

(a+
j + a0

j + a−
j )Φ = a+

j Φ + D0
0(j)Φ

D0
0(j) is a constant, also the vectors of the form a+

j Φ are in PD · Φ. Now
suppose, by induction, that

n⊕

k=0

Vk ⊆ PD · Φ

Then, because of the relation (11), for any |n̄ >∈ Vn, one has

Xj |n̄ >= Pn+1 Xj |n̄ > +Pn Xj |n̄ > +Pn−1 Xj |n̄ >

and, by the induction assumption

Pn Xj |n̄ > +Pn−1 Xj |n̄ >∈
n⊕

k=0

Vk ⊆ PD · Φ

It follows that also
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Xj |n̄ > − (Pn Xj |n̄ > +Pn−1 Xj |n̄ >= a+
j |n̄ >= D+

n (j) |n̄ >∈ PD · Φ

The surjectivity condition then implies that Vn+1 ⊆ PD ·Φ and therefore the
thesis follows by induction.
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The interacting Fock space defined by the theorem (??) will be denoted

HD (38)

Theorem 3 Suppose all the conditions of Theorem 2 are fullfilled. Then
there exists a state µ on the *-algebra A of the polynomials in d variables
such that, denoting L2(Rd, µ) the GNS space of the pair {A, µ}, there exists
an unitary isomorphism

U : L2(Rd, µ) −→ HD

such that for any j = 1, ..., d

U Xj U∗ = a+
j + a0

j + a−
j (39)

U 1 = Φ

Proof: We define

µ(P ) =< 0, P (X1, ...,Xd) |0 >, for each polynomial P ∈ A

It is clear that µ is a state on A. Define

U : L2(Rd, µ) −→ HD

by
U(P ) = P (X1, ...,Xd)0̄, for each polynomial P ∈ A

It is easy to verify that U is an unitary isomorphism wich satisfies (39).
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