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Abstract

It is shown in our previous work that in the stochastic limit of translation in-
variant Hamiltonians in quantum field theory the master field satisfies a new type
of commutation relations, the so called entangled (or interacting) commutation
relations. These relations extend the interacting Fock relations established ear-
lier in non-relativistic QED and the free (or Boltzmann) commutation relations
which have been found in the large N limit of QCD. In this paper a generalization
of these results to the case of multiparticle external states is obtained.
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1 Introduction

In recent years there has been an interest in various modifications and deformations
of the algebra of canonical commutation relations. Deformations are related with
noncommutative geometry. Noncommutative geometry appears in physics in works
of the founders of quantum mechanics. Heisenberg and Dirac have proposed that the
phase space of quantum mechanics must be noncommutative and it should be described
by quantum algebra. After works of Feynman it became clear that noncommutativity
of phase space can be replaced by randomness of trajectories in the phase space.

New deformation schemes of canonical commutation relations presumably will use
a new type of randomness. In the search of this we hope that new look at functional
integration could be usefull [1, 2]

There are two different view points on origins of deformations. In the first one
deformations of canonical commutation relation appear via dynamics. In some spe-
cial situations a deformation appears only in the spesial regime. Two examples are
known — 1/N expansion [3, 4] and stochastic limit [5]. The existence of new modified
commutation relation could help to solve dynamical problems in the special regimes.

The second point of view on the deformation is different. It deals with at hoc
modification of initial commutation relations [6, 7]. This idea is closely related with
noncommutative geometry [8, 9] Motivated by investigations of quantum group sym-
metries in two dimensional integrable models [10] a proposal of consideration of non-
commutative gauge symmetry on ordinary manifolds (”quantum group gauge theory”)
has been suggested in [11], see also [12, 13] for further discussions. Other approaches
to field theory on noncommutative spaces and harmonic analysis have been discussed
in [14, 16].

Especially simple relations

bth=1 (1.1)
appeared in the context of large N limit of matrix theories [3, 4]. in partucular, it is
shown that a noncommutative gauge theory based on quantum Boltzmann relations
(1.1) describes the large N limit in QCD. An attemps to find a phase integral description
of systems quantized via (1.1) has been made in ([17]). An extension of the algebra
(1.1) has been given in [18] as the algebra describing the interacting Fock space [19]
obtained in the stochastic limit for non—relativistic QED.

In this paper we will consider the first approach to deformation of CCR and will
consider a regime where a special deformation comes out.

In the previous paper we have prove [20] that the stochastic limit of interacting
fields, under the only constraint of momentum conservation leads to a generalization
of the algebra (1.1). We have obtained that the new algebra has as its generators the
master field B(p, k) depending on two momenta p and k and the operator density of
particles n(k) which satisfy the relations

B(p, k)B* (¢, k') = (1.2)

n(p'), B(p, k)] = (6(p' —p)) —0(p —p+k))B(p, k), (1.3)
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[n(p), n(p")] = 0 (1.4)

Here E(p, k) is the energy associated to the interaction vertex.

We call the relations (1.2)-(1.4) entangled (or interacting) commutation relations
because, on one hand they allow to calculate correlations of any order among the field
and, on the other hand they show that the master fields are not kinematically indepen-
dent. and, on the other hand they show that the master fields are not kinematically
independent.

In the construction of these operators we use the Van Hove time rescaling t — /)2,
A — 0 where X is the coupling constant. '. One can get a generalization of the algebra
(1.2)-(1.4) for the multiparticle master field B(p|k1, ..., k).

Algebra (1.2)—(1.3) was found in [20] on one-particle subspace. In [20] was men-
tioned that in the stochastic limit on n—particle states survyve the diagrams that lead
to (1.2)—(1.4). In this paper we perform this considerations explicitly. Namely, we will
prove that only disconnected diagrams survive that connected parts consists on one—
to—one half-planar components. Then we get an algebraic interpretation of surveving
diagrams.

We find that instead of algebra of one master field B(p, k) one has to introduce n
copies of master fields B;(p, k) its own field for each connected component.

The paper is organized as follows. In Sect. 2 there arae preliminary notations. In
Sect. 3 we remind the definition of the stochastic limit. Sect. 4 contains the proof of
the theorem about matrix elements of composite operators and in Sect. 5 we get an
algebraic interpretation of the theorem.

2 Notations and preliminaries

2.1 Space
We use the following notations. The boson Fock space F
F=@F., Fo=C, Fi=L*R (2.5)
n=0
Fn = (]:1®S)n

where the symbol ®, means the symmetric tenzor product. Elements ¢ € F are sets
of symmetric functions

{¢o, &1,...0n,...}, oo € L*(R™M)

such that

(6,6) = ¢l + 3 (. ba) < 0 (2.6)

ITo avoid a discussion of renormalization procedure we assume that there is an ultra-violet cut-off




Let

S, =S(R™JFn (2.7)
is the Schwarz space of well decrising at infinity symmetric functions. Denote
S=p 'S,.cF =g 'F.CcF (2.8)

where @/, means that we sum up only on finite sets, i.e. vectors from S and F° have
only finite number of non-zero components. The strong dual S’

is a direct product of space of symmetric tempered distributions. Creation and anni-
hilation operators define the following linear maps & — &’

(a(k)pn) (ks k1) = by (ki o k1, k) (2.10)

1 n+1

\/n_HZ5(/€—kj)gbn(kl,...,/%j,...knﬂ) (2.11)

here the symbol l%j means that k; is omitted.
In the case of several type of particles

(@ (k)pn) (k1 - Fong1) =

FelF, WF=@OF, OFR=c, YF=R) (@12
n=0

(i)]:n — ((i)]:f?s)n

Creation and annihilation operators a;(k), a;(k) satisfy the commutation relations
lai(k), a}(K")] = 0550 (k — k') (2.13)

Let v € S'(R¥M+7)). In this case the Wick monomial

I J
Vig = /U(ph ir...pnirlan a0 d0) [ a; (p1)dpy 11 @ (a-)dg. (2.14)

=1 r=1

is a linear operator V : S — §'.

We will use for V7 ; the Friedrichs graph representation. Each graph consists of one
vertex and [ lines going from the vertex on the left and J lines going on the right. The
fist I lines represent creation operators and the last J lines represent annihilation. In
what follows we will use the Wick theorem which represents a product of two Wick
monomials as a sum of normal monomials:

min{J,N}
VioWnu = VigWNn o+ Vig—o—Wnu. (2.15)
2. Ve
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The numerical kernal of the Wick monomial : V; ;Wi ps : is
U[,J®wN’M (216)

Vi;—o—Wx is a Wick monomial
7J N / b
t

I+N—t J+M—t
Vig—o—=Wnu = /( l:[ dpra*(pr)> : ( I1 d%“(Ql)) (v— o —w) (p1,-5q1---)

t I=1 t

(2.17)
with the following numerical kernal
¢
v—o—w| (p1,..;q...) :OﬁCJtVt!/l:[ldkr (2.18)
t r=

UI,J(pla ok, R g ~~QJ—t)wN,M(k?1, kDI, PIAN—15 QT—t415 --~QJ—t+M)

The equality (2.15) has a graphic representation as shown on (4).
file=acavst1.eps, width=450pt, angle=0

Figure 1: Friedrich diagrams: graph representation of (2.15)

We will usein the main text also the following notations. The line of the grath
is called the internal if it connects two vertecies of the graph. A graph is connected
graph if all its vertecies are connected by a set of internal lines otherwise it is called a
disconnected one. A connected graph is called one-particle redusible (1PI) if removing
one line it becomes a disconected.

We also consider fermions. The standard notations are the following. The fermion
Fock space F

oo
F=PF.. Fo=C, F=LRY (2.19)
n=0
a n = (]:— f@ a)n
where the symbol ®, means the asymmetric tenzor product. Elements v € F are sets
of antisymmetric functions

{o, U1, bn, ..}, b, € L*(R™M™)

such that
(0, 0) = |thol* + > (¥n, ¥n) < 00 (2.20)
Let A )
S, =S(R™JF, (2.21)
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is the Schwarz space of well decrising at infinity symmetric functions. Denote

S=@ 'S, cF =P 'F.cF (2.22)
where @), means that we sum up only on finite sets, i.e. vectors from § and FO have
only finite number of non-zero components. The strong dual &’ F ¢ & = [[S,’

is a direct product of space of antisymmetric tempered distributions. Creation and
annigilation fermionic operators are defined as a linear maps S — &’

( ( )¢n)<k17 - ) \/_wn(kh n— lak ) (2.23)

1 n+1

G hnen) = g D

770k — Ey)bn(kry oo by o kingn)  (2.24)

here the symbol /%j means that &; is omitted.
In the case of several type of fermionis particles

F=oPF, OF= @< ” —C, OF = L*RY (2.25)

0, = () foeyn
Creation and annihilation operators b} (k), b;(k) satisfy the anticommutation relations
{bi(k), b5 (K')} = 6i;0(k — k') (2.26)

Let v € Ly(RU*)). In this case the Wick monom

I
Vi = /v(pl,il---pf,izlql,jl---qJ,JJ H (p1)dp: Hbr qr)da, (2.27)
is a bounded linear operator V : F - F

2.2 Hamiltonian

We consider Hamiltonians of the form (??) where Hy is a free Hamiltonian
Hy = Z / wi(k)az (k) as(k)d™k (2.28)

and V is a sum of Wick monoms. Operator (2.28) is self-adjoin in F.
We consider two different types of Wick polinomials. The first type describes an
interaction in the case when there is no translation invariance

1
V= Z/ v(pr,iv...prisa gi - qu. gs) [ e (o dsza]T ) dg, (2.29)
=1

1,J>0 r=1
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were v(py ...pr|q1 - .. qy) are some smooth functions. Hermition condition is

v(pr...prlgr---qr) =0(q1 .- qslp1- - p1) (2.30)

In particular one can assume that

v(pr...pilay - - qs) € S(R™). (2.31)
Let F9(S) = @,,'S(R™™) N F,, Under assumtion (2.31) we have
Vi SH) - FUS).

The second type is described by the translation invariant Hamiltonian

V=> V= Z/@(phih cpn il g qu—1, du—t, ;) (2.32)
7 7

I J I J
0 (Z =Dy qv«) 11 @i (po)dp: 1 aj, (a-)dgr
i J i=1 j=1

Cleary the delta function causes the truble and there are singular terms in (2.32).
Namely, V7 opn,no € F unless ¢, = 0. This singularity is called a volume singularity. To
give a meaning to hamiltonian with interaction (2.32) one has to introduce a volume
cut-off then perform vacuum renormalization and vacuum dressing and only when
remove cut-off. This procedure defines the hamiltonian in a new space (see [?] for
details). To avoid this difficulty we will assume that for translation invariant interaction
there are no pure creation and annigilation terms. In higher dimensions there are other
singularities caused by the slow decrease of the kernel ¢ at infinity. These singularities
gives rise to the well known ultraviolet divergencies in quamtum field theory. In this
paper we assume also that there is ultraviolet cutoff.

For fermions the interaction has the form (2.29) with a* — b# and the hermitian
condition means now

v(pr-..prlar- - qs) = 0(qs - qilpr - .. p1) (2.33)

If one assumes that
v(pr- . prlar - q5) € S(RYH) (2.34)

then operator V is a bounded operator with VV* = V and the full hamiltonian H is
selfadjoind on D(Hy) and
H = =[|[V]] (2.35)

3 The Stochastic Limit

The stochastic limit is now widely used in the consideration of the long time/weak
coupling behaviour of quantum dynamical systems with dissipation, see for example

[5]-



Let be given a quantum system described by the Hamiltonian
H=H,+\V

where A is the coupling constant. The starting point of the stochastic limit is the
equation for the evolution operator in interaction picture

dUN (1)

s —iIAV (U (1)

where A .
V(t) — ethO Ve—ZtHo

The main idea is that there exist a new quantum field (master field) and a new evo-
lution operator U(t) (they both live on a space different from the original one) which
approximates the old one

UN(t) ~ UN)

and the approximation is meant in the sense of appropriately chosen matrix elements.
The above approximation suggests a natural interpretation of the van Hove rescaling
[?] A = 0, t — oo so that A\*t ~ constant = 7 (new time scale): it means that we
measure time in units of 1/A? where A\ measures the strength of the self-interaction.
By putting 7 = 1 we see that the van Hove rescaling is equivalent to the time rescaling
t — t/A\?, and therefore the limit A — 0 will capture the dominating contributions to
the dynamics in the new time scale (the error can be estimated to be of order A\?). It is
remarkable that in this limit the dominating contributions can be explicitly resummed
giving rise to a new unitary operator.

A simple change of variables shows that the time rescaling ¢ — ¢/\? is equivalent
to the following rescaling of the Schrodinger equation for the evolution operator:

dUN (/X)L )
—ar = VAR N (3.36)

The unitary operator U(t) is then obtained by taking the limit A — 0:

U(t) = lim UM (t/\?) (3.37)

A—0

and the corresponding limit equation is

du) .
— = —iV(t)U(t)

where

1 t
W”IE%AV(v>

For a number important models the interaction Hamiltonian has the form

V=A+A"



where A is a monomial in the creation and annihilation operators. The master field is
given by the asymptotic behaviour of the collective operator

and its Hermitian conjugate. Here

A(t) — eitHer—’itHo

The stochastic limit is meant in the sense of the convergence of correlation functions
< Aty JN)... A (t,/A) >. Here ¢; = +.

4 Theorem about matrix elements of composite op-
erators

Let us consider the Hamiltonian

Hy=Hy+\V

where the free Hamiltonian

Hy = [ ) W)e(p)dp + [wk)a* (K)a(k)dF.

{c(p), ¢ ()} =d(p =), la(k),a™ (k)] = 6(k — )

and the interaction Hamiltonian:
V= / Erdpg(k, p) (¢ (p)e(p — k)alk) + h.c.) (4.38)

Here g(k,p) is a test function and €(p) and w(k) are one-particle dispersion laws, for
example £(p) = p*/2, w(k) = |k|.
The rescaled collective fields in this case have the form

1 itHg itHg 1

Ap k1) = S e ct(palk)e(p — ke = e (p)a(k)e(p - k) PR (4.39)

AL k1) = o5 e (p — Rar (B)elp)e 5 = £¢(p — k)a* (B)e(p)e P00
(4.40)
where
E(p,k) =e(p) —w(k) —e(p — k) (4.41)

is the corresponding energy.



Let us consider the matrix (n,n") elements

nt

(0] ﬁ c(q;) H A5 (piy ki ti) T ¢ (4))10) (4.42)

j=1 i=1 7=1

To evaluate (4.42) we apply Wick’s theorem n connected component contains. Each
vertex contains 3 lines. The lines attached to vertex i are characterized by two momenta
(ki,p;). We find the momentum corresponding to the 3rd line using the momentum
conservation. Let a diagram consist on N connected parts. Denote numbers of external
lines coming in (coming out) n—connected part as A,(B,). We have ¥, A, = n~,
>, B, =nt. Let L, is a number of independent loops in n—connected part. We call
the diagram corresponding to (4.42) as diagram with (n~, n") external lines contains L
loops then only L, + A, + B,, — 1 independent momenta (L,, momenta for loop variables
and A, + B, — 1 momenta for the exterior lines).

To formulate the main theorem let us remaind the definition of half-planar dia-
grams.

DEFINITION 1. A diagram is calaled half-planar if can been drawn on a plane without
self-intersection of the lines in such way that one can select a basic linea (in our case
c-line) that all other lines are in upper half plane in the respect of the basic line.

THEOREM 1. The stochastic limit

n— v n+
lig(l)((ﬂ 11 Ca;) TT AS (pi, ki ti) TT C(45)10)
j=1 i=1 J=1

exist as distributions. In this limit survive only diagrams with n~ = n™ connected
parts. Each of these connected components disconnected in a sum of half-planar
diagrams.

For every vertex there is the corresponding energy exponent. These energies depend
on the momenta of the lines that enter to the given vertex,

Eft = Ez:t(kwpz)

via dispersion laws,

B* = [e(p) — e(p £ k) & w(k) (4.43)

In the proof of the theorem we will use the following lemma.

LEMMA 1. One has the following relation in the sense of distributions

1, :
/l\li}(l) ﬁeztE(p,k)/)‘ = 27‘(’6(15)5(E(p7 k))

The proof of the lemma is standard, see [21].
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Let us consider a diagram corresponding to the matrix element (4.42). The proof
of the theorem consists of three parts. First we prove that only diagrams consisting
of pairs of conjugated vertices don’t vanish in the limit A — 0. Definition of these
diagrams will be given below. Next we prove that such diagrams consist on connected
parts each of those contains one coming in and one coming out lines and moreover
these connected parts are in fact non-crossing or half-planar diagrams. And finally we
show that diagrams with N connected components being half-planar (non-crossing)
diagrams are described N copies of operataors satisfying by the entangled commutation
relations.

Generally, the sets of momenta corresponding to different vertices are different.
However, it may happens that the same set of momenta corresponds to two different
vertices. More precisely, momenta which come in the first vertex come out from the
second one and viceversa.

DEFINITION 2. We say that two incident vertices of a given connected diagram are
conjugated if the momenta coming in the first vertex come out from the second vertex,
i.e. the vertices have the same momenta but with the opposite orientation.

If the i—vertex has a conjugated vertex then we denote the latter by . A typical
example of diagrams containing at least one pair of conjugater vertices is a diagram
with a mass insertion such that this insertion contains a line that does not cross others
lines of the diagram (see Fig.2).

file=acavst2.eps, width=150pt, angle=0

Figure 2: Diagram with a pair of conjugated vertices

Another simple example if a diagram containing only conjugated vertices is a dis-
connected diagram with two connected parts each of them is the second order mass
insertion (Fig.3).

file=acavst3.eps, width=100pt, angle=0

Figure 3: Disconnected diagram with two pairs of conjugated vertices

On fig. 4 we present a diagram with a pair of conjugated vertices.
Let us prove the main
file=acavst4.eps, width=350pt, angle=0

Figure 4: Diagram with a pair of conjugated vertices
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LEMMA 2. If a connected diagram doesn’t consist only from pairs of conjugated
vertices then it vanishes in the limit A\ — 0 (in the sense of distributions).

Proof. To a given diagram, representing a matrix element (4.42) being integrated
over tq,...,t, with test functions, corresponds the expression that schematically can
be written as

A+B-1
Alv / ¢ L BN ot pq) T dpa qul H dt; (4.44)
a =
here by ¢ we mean ty,...,t,, by p we mean py,...,pa, pj,...,0s and ¢ denotes the
set of independent momenta associated with the diagram under consideration. F; are
given by (4.43) and ¢(t, p, q) is a test function.

To evaluate the asymptotic behaviour of this expression when A — 0 we will
make the change of variables corresponding to the conjugated vertices. Suppose that
the number of vertices v should be even, v = 2n. Suppose also that there are ng
pairs of conjugated vertices which are denoted {1, %y, ...,%py, in,}. Let us divide the

set of all vertices {1,...,2n} into two disjoint subsets {i1, 42, ..., 4ng,fng+1, -, in} and
{21,22, .. Zn0,2n+n0+17 .. .i2,} such that in every subset there are no conjugated ver-
tices. We denote the corresponding set of time variables {t;,,...t;, } by tM and the set
{t;,, ..t ng tinings1s i, } by @),

Now we perform the following change of variables

(M, 2y = (7,12 (4.45)
) =@ 4 \2r,

or more precisely

(t(l),t(2)) = (t1,...,tan) — (7, t(2)) =(m,..., T ;i =1...,n0; ti,,, ¥ =no+1,.

]

(4.46)
ti; =t;, + N1, 1<) <ng (4.47)
ti]- = tin+j + )\27']' , MNng < j <n (448)
After this the integral (4.44) takes the following form
/ ZZJ 1 i E Z] Z:OI(E"LJ' +E‘gj )tgj/)\Q . ei Z:;L:noJrl(Eij +Ein+j)tin+j/>\2
n no n
ot + N1, t% p.q) - [[dr [Tdt;, T1 dti,., [Tdp-1]da (4.49)
j=1  j=1  j=no+1
By definition of conjugated vertices F;; + E%j = 0 and we left with
/ ei Z?q 7 Eij ei Z;‘L:noﬂ(Eij +Bi, i, /A2
2 2 (2 - . -
ot + X7t p.q) - [T dr [T dty, I1 b, TIdp-TIda  (4.50)
j=1  j=1  j=no+1
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Here t®? + \27 schematically represents the dependence of the half of the ¢-variables
on \. When A\ — 0 we can neglect the dependence of ¢ on A and the integration over
7 gives the product of §(Ej,)

/ 11 (5(El-j)eiz?moﬂ(EiﬁElnﬂ) i/ o(t,t,p,q H dti,.. [1dp]1da (4.51)
j=1

Jj=no+1

Note that the second exponent in the expression (4.50) vanishes since the energies
in the conjugated vertices are equal.

Suppose that in the diagram there are non-conjugated vertices, i.e. n # ng. When
A — 0 the expression (4.51) goes to zero since, according to our assumption the set
of momenta in vertices i; and 4, 79 < j < n do not coincide and therefore the
functions E;, + Ej . as functions of momenta don’t vanish and therefore according the
Riemann-Lebesgue lemma we get zero in the limit A — 0.

In the case when n = ng the exponent in (4.51) vanishes and generally we get the
NoN—zero answer:

/<H5 ) ({ti, 3 At 1o o) [T dp [T da (4.52)

Suppose now v = 2n+1. In this case the given diagram cannot be divided into pains by
trivial raison and therefore its contribution goes to zero with A — 0. More explicitly.
For the case of odd v, v = 2n—1, we once again select n vertices and make the following
change of variables

(t1,...,top_1) = (Tl,...,Tn;tgj,j: 1,...,n0;t;

In4r?

r=1,...,n—1—ng) (4.53)

with the 7; as before (see (4.47)).

t.

= Znﬂ—l—)\ 7 np+1<j<n-1
tin = )\27',1
The difference with the case of even v is that we get an extra factor A in front of the
integral
)\/Gi Z?lejEij ei Eygl(E"j'FEij)t%j/)\Qei ;:ioﬂ(E"j"‘Einﬂ)tinH/)‘2

¢(t + A7, t,p,q) [ [ dpdg H dt, H dt;,,., (4.54)

Jj=no

Here we use the same schematical notations as in (??). When A — 0 we neglect the
A—dependence of ¢ and we get a product of é—functions. The second exponent goes
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out. The third exponent disappears in the case then nyg = n — 1, but since we have an
extra factor A the expression (4.54) always goes to zero as A — 0.
The lemma is proved.

LEMMA 3. If a diagram with (n~,n") external lines consists only from pairs of
conjugated vertices then n~ = nt and the diagram has on n* connected parts. Each
connected diagram has (1,1) external lines and is half-planar, i.e. it can be drown in
the half-plane without self intersections.

We will not present here the simple proof of this lemma.

Now the theorem follows from the above three lemma.

5 Entangled Commutation Relations

5.1 Stochastic limit for N point correlators between one-particle
states

The following theorem has been proved in [AcArVo].
THEOREM 2. The stochastic limait
: _ - - + _ p+
}\%AA<p7k7t> =B (pv k7t)7 }\E}%A)\ (p7 k7t) =B (p7k7t)
exists in the sense of the convergence of the matriz elements (€¢; = +)

/l\ig(l] < 0le(q)AS (p1, k1, t1) - A (Pny ki, tr) e (¢1)]0 >=

(U, c(q) B (p1, ki, 1) ... B (P by t) e ()W) (5.55)
as distributions and the limiting operators B~ = B and B™ satisfy the entangled com-
mutation relations

B(p,k, )BT (p/, K, ¢) = 2m6(t — ¢')o(p — p")o(k — k') - 6(E(p, k))n(p) (5.56)
[n(p"), B¥(p, k. )] = (£) (0" —p) =6 —p+ k) BF(p, k. 1) (5.57)
[n(p),n(p")] =0 (5.58)

Here W is the vacuum in the new Hilbert space, B(p,k,t)I]; ¢ (q;)¥o = 0. We use
the same notations for the creation and annihilation operators of c- particles in the
original and in the new Hilbert spaces. n(p) is the operator density of the c-particles,

n(p) = c*(p)e(p).
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If we set
B(p, k,t) = b(t) ® B(p, k)

where

b(t)bt (') = 2m6(t — 1)
then we get the relations (1.2)
B(p, k)BT (¥, k') = n(p)d(E(p, k))d(p — p')o(k — k')

The more general theorem will be proved in the next section. Note that to get
non-zero in the RHS of (5.56) we have to chose suitable dispersion relations, so that
there are non-trivial solutions of equation E(p, k) = 0.

5.2 Stochastic limit for N point correlators between n parti-
cles states

In this section the main result of this paper will be proved.
Let us consider the matrix element

N
(@, [T A5 o) (5.59)
i=1
where A, and A} are given by (4.39) and (4.40) and

Cp = [Ic(F)0>: @ =[] (£I0>,
j=1

) = [ RFEaR o) = [ elk)f (k)dk

Lemma 2 claims that if diagram corresponding to (5.59) doesn’t consist only of
pairs of conjugated vertices then its contribution vanishes in the limit A — 0 (in the
sense of distributions). One can see that to select diagrams corresponding to (nl) such
that all their vertices form pairs of conjugated vertices one has to consider diagrams
that satisfy the following requirements:

a)n=m

b) For n # 1 diagram must be disconnected and it must include n connected parts.
Each connected part corresponds to N; point correlator of composite operators
between one particle stats and

c¢) Each connected part contains only pairs of conjugated vertices.
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To describe all diagrams satisfying above requirements it is suitable to do the fol-
lowing. Let us first apply the Wick theorem to represent the product A ’s of in normal
form in respect only of operators ¢ and ¢

N
H Af = Z K, en(a,a™, e ch) (5.60)
=1 o

here : :. means the normal product in respect of operators ¢ and ¢*, and summation on
p involves all terms that appear in the process of an application of the Wick theorem.
Applying the Wick theorem to

I EEALAET

(2

We have N
[Tt ITAS I (fi) = (5.61)
i i=1 j=1

=ii;(ﬂwﬂjmmj@?m0¢

1=0 r=0 j=1

symbol § means that we take into account the diagram with [ contraction (c-lines).

For example,
AT A =Ky 4+ Ko (5.62)

Kij- = / dpdp' dkdk o™ (k)c* (p — k) () e(p)e(p’ — K )a(k)v(p, k)v(p'K)

Kavo = [ dpdkak'c* (p = K)a* (K)a(K )e(p — K')o(p, K)o(p, k)

(see fig. 5)
file=acavstb.eps, width=450pt, angle=0

Figure 5: Friedrich diagrams representation of (5.62)

For the product of AA' we have
ANAY = Ky + Ko (5.63)
K= /dpdp/dkdk:’v(p, ko(p', ket (p)c™ (p' — K )e(p — k)e(p')a(k)a™ (k)
Koy = / dpdkdk'v(p, KYo(p — k + k', k)t ()e(p — k + K)a(k)a(k)
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file=acavst6.eps, width=450pt, angle=0
Figure 6: Friedrich diagrams representation of (5.63)

(see fig. 5)
To select the non—zero vacuum avarage of (5.61) that consist of diagrams satisfying
requirements a), b) and ¢) we take the factorized products

AV - CA C AT © > 5.64
Z H < 1 1 A T A Tc(flz) ( )
ZJ =N1=1

Now (5.64) is a sum of products of Wick monomials containing a and a™ operators.

To select only diagrams with pairs of conjugated vertices we perform the following.
In 7—component

C aci C R
C(fl/)TA)\J T )\J Tc(fl)

we substitute instead of a® operators the products of the Boltzmannian operators b5,

white noise operators b;(t) and “square root” of energy d—function. b5 satisfy the
relations

bi(k)bi (K') = 6,00(k — k')

and white noise operators b;(t) satisfy the relations,

Diagrams corresponding to (5.59) that survive under limit A — 0 consist on n
continuous c-lines connected one annihilator operator, some number of vertices and one
creator operators. These c-lines enter in different connected parts of one disconnected
diagram. Beside c-lines diagrams contain a—lines, that connecte only vertices that are
crossed by the same c-line. Each of connected part is representing by a half-planar
diagram.

Above consideration proves the following

THEOREM 3. The stochastic limit of the matrix element (nl) can be represented as
follows

i TT et T 45 T 00 =

=1 j=1
=0wm > 2. Ole(f))B .. B e (fp)]0)-
PEPn “partitions”

{0le(f3) B ... &2 (fp2))[0) - (Ole( ;) BT ... B0 e (fp)) 0)

Here P, is the group of transpositions and the sum over “partitions” includes the
sum over all subsets (i1,...,0%) (J1,- s Jk) - (L, ooy l,) of {1,..., N} preserving
the order ki +ky+ ...+ k, = N.
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Conclusion

The theorem from the previous section describes the stochastic limit of composite oper-
ators states. It gives the second quantized generalization on multiparticle of interacting
commutation relations from the previous works [5, 20]. It would be interesting to find
an operator expression of the obtained fomula as well as a corresponding path integral
representation.
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