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Abstract.

The renormalized stochastic differentials of the square of white noise are
defined in Boson Fock space representation. The linear independence
and the Itô multiplication table of these differentials are proved. The
module form of the associated quantum stochastic evolution is given
and unitarity conditions for its solution are obtained.

1. Introduction

The present paper brings to a conclusion a line of research carried
through the past ten years with the contributions of several people
and which has its roots in the development of the stochastic limit
of quantum theory (cf. [AcLuVo02] for a general exposition) which
led, in the early 1990’s, to an extension of both classical (Itô) [Ito51]
and quantum (Hudson–Parthasarathy) [HuPa84c] stochastic calculus.
The new approach was called white noise approach to stochastic cal-
culus [AcLuVo99] because it is based on Hida white noise analysis (cf.
[Hida92], [Kuo96]) and on the observation that both classical and quan-
tum stochastic calculus can be reduced to the analysis of the first power
of the standard quantum white noise bt, b

+
t plus the normally ordered

second power b+t bt.
Given this result the question whether is it possible to develop a sto-

chastic calculus for the higher powers of white noise, i.e. a ”nonlinear
stochastic calculus”, naturally arose and the programme of developing
such a calculus was first proposed in [AcLuVo95b].

The difficulty of the problem resides in the fact that, since white
noise is an operator valued distribution, the definition of its powers
requires a renormalization procedure. This difficulty was well known
in the physical literature where one can find many attempts of giving a
meaning to the powers of local quantum fields (which are nothing but
multiparameter white noises).

A similar problem also arises in classical probability with the at-
tempts to extend stochastic calculus beyond the frame of semi-martingales.
(cf. for example [RuGrVa01]).

Starting from 1995 several papers were devoted to the attempt of
realizing the program formulated in [AcLuVo95b] in the simplest non
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linear situation, i. e. the ”renormalized square of white noise” (RSWN)
and several partial results were obtained. These attempts were based
on the original proposal, in [AcLuVo95b], to renormalize the Itô ta-
ble inside the space of the first order white noise (i.e. the usual
Fock space over L2(R)), to write the equations in the normally or-
dered form and to interpret the higher powers of the fields as densely
defined sesquilinear forms. However they met serious difficulties to
achieve the fundamental goal of the theory, i.e. the unitarity condi-
tions: the results of [AcLuOb96], [AcBou01b], [AcBou01a], [AcBou01c],
[AcBou00a], clearly indicated that the formulation of these conditions
would be deeper and more complex than the corresponding result for
linear white noise, proved in the early ’80’s by Hudson and Parthasarathy.

The situation changed with the paper [AcLuVo99] where a new renor-
malization technique was introduced based on the following ideas:

(i) instead of the cut-off-and-take-limits procedure, used in the phys-
ical literature, and instead of renormalizing the Ito table as done in
[AcLuVo95b], one directly renormalizes the commutation relations them-
selves, and then looks for a Hilbert space representation of them.

(ii) instead of subtracting infinite constants, use the known identity
δ(t)2 = c δ(t) (cf. [AcLuOb96] for a proof).

This allowed to explicitly construct an analogue of the Fock represen-
tation for the RSWN (at the moment no such construction is available
for the higher order renormalized powers of white noise, which now
constitutes the boundary of the present theory). This result was the
staring point for several developments.

First Sniady [Snia99] extended the construction to the free case and
produced the first evidence of the existence of algebraic obstructions
preventing the possibility to produce a single Fock representation for
the combination of the first and the second power of white noise.

Almost simultaneously Accardi and Skeide [AcSk99b] recognized that
the representation space of the RSWN coincided with the ”finite differ-
ence Fock space” which was introduced 10 years before, in a completely
different context, and starting from completely different motivation, by
Feinsilver and Boukas [Fei87],[Bou91a].

Finally Accardi, Franz and Skeide in [AcFrSk00] identified the Lie
algebra of the RSWN to a current algebra over a central extension of
the Lie algebra of SL(2;R) and, using the Schürmann representation
theorem for independent increment processes on ∗–bialgebras [Schu93],
classified all the representations of this current algebra, enjoying a cer-
tain irreducibility property (for a new class of representations, cf. the
forthcoming paper [AcAmFr03]). Moreover they concretely realized
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the RSWN basic integrators as simple sums of first order integrators,
i.e of Hudson-Parthasarathy type.

In other words: the renormalized square of white noise (RSWN) can
be realized on a usual Fock space and the corresponding stochastic
differentials can be expressed as sums of usual, first order, white noises
acting on that space.

Another result of the paper, it was to realize that the one–parameter
family of classical processes, generated by the second order Weyl-Poisson
operators (Bt +B+

t + λB+
t Bt) with respect to the vacuum vector, can

be identified with the three non standard classes (i.e neither Gaussian
nor Poisson) arising in the Meixner classification theorem (cf. [Ac01c]
for more details on this point).

However, in their first order representation, the three basic integra-
tors of the RSWN integrators (cf. (2.7)-(2.9)) have not a closed Itô ta-
ble and this fact made it impossible to prove, in the paper [AcFrSk00],
the main result of the theory, i.e. the unitarity condition. In fact
the only thing one can get, from a naive application of the Hudson–
Parthasarathy first order Itô table to the RSWN, is an infinite chain
of coupled nonlinear operator equations on whose solution still now
nothing is known.

This made clear that, for the solution of the problem, the simple
application of the known formulae of first order stochastic calculus
were not sufficient and new ideas and techniques were needed. For
these reasons, in the three years after the paper [AcFrSk00], several
alternative attacks to the unitarity problem were developed.

Accardi, Hida and Kuo [AcHiKu01] tried to develop a direct ap-
proach to the Itô table of the RSWN, i.e without using the first order
representation (2.7)-(2.9). To this goal they introduced two quadratic
forms, the Hida derivative and its formal adjoint, in the representation
space of the RSWN. However, as remarked by Accardi, Boukas and
Kuo [AcBou01f], the introduction of this operator makes the future in-
crements of the basic integrators, linearly dependent over the past and
this creates difficulties in the deduction of the unitarity conditions.

The starting point of the paper [AcBou01e] was the remark that,
through the representation theorem of [AcFrSk00], the RSWN Ito al-
gebra can be represented as a proper sub–Ito algebra of a first order
Ito algebra on an appropriate representation space. This suggested the
idea that, if one were able to determine the structure coefficients of
this Ito algebra, in the sense of [AcPa85] section 6, then an infinite di-
mensional extension of the arguments in sections 6 and 10 of the paper
[AcFaQu89] might lead to the desired unitarity conditions.



6

These structure coefficients were determined in the paper [AcBou01e]
combining the technique of ”normal ordering in the sl(2,R)–Lie algebra
with an intensive use of the symbolic program ”Mathematica” and lead
to a finite set of conditions for unitarity.

The basic property that emerged from the calculation of these struc-
ture coefficients is that, even if the Ito algebra of the RSWN is infinite
dimensional, its Ito table is locally finite, in the sense that, in the
product of any two stochastic differentials, only a finite number of co-
efficients is nonzero.

In the present paper we use the above result to define a new mul-
tiplication on the coefficient algebra, which is associative because of
Theorem (2.1) of [AcQu88] (a direct proof of associativity seems to be
very difficult due to the combinatorics involved). The combination of
this new multiplication with the module approach to stochastic calcu-
lus allows to find a closed simple form of the unitarity condition (cf.
Theorem 1 which is our main result).

The greater complexity of the unitarity condition should not be a sur-
prise due to the intriniscally nonlinear character of the problem. In fact
the general conjecture that emerges from the results of of [AcFrSk00] is
that the calculus associated with the higher (≥ 2) powers of white noise
coincides with the calculus associated to a certain class of independent
increment processes. In the case of second powers this class has been
identified with the three non standard classes, i.e. neither Gaussian
nor Poisson, in Meixner’s classification theorem. For the higher powers
this is an important open challenge for quantum probability.

2. The SWN and normal order in ρ+(U(sl(2,R)))

Definition 1. The SWN Lie algebra is the three-dimensional simple
Lie algebra with basis B+, M , B− satisfying the commutation relations

[B−, B+] = M, [M,B+] = 2B+, [M,B−] = −2B−(2.1)

with involution

(B−)∗ = B+, M∗ = M(2.2)

It was shown in [AcFrSk00] that the mapping ρ+ defined by

ρ+(M) en = (2n+ 2) en(2.3)

ρ+(B+) en =
√

(n+ 1)(n+ 2) en+1(2.4)

ρ+(B−) en =
√
n(n+ 1) en−1(2.5)
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where en, n = 0, 1, 2, · · · is any orthonormal basis of l2(N), defines a
representation of the SWN Lie algebra on l2(N).

The proof of the following Lemma can be found in [AcBou01e].

Lemma 1. For all n, k, l,m = 0, 1, 2, ...

ρ+(B+nMkB−
l
) em = θn,k,l,m en+m−l(2.6)

where

θn,k,l,m = H(n+m− l)
√
m− l + n+ 1

m+ 1
2k(m− l + 1)n(m+ 1)(l)(m− l + 1)k(2.7)

H(x) =

 1 if x ≥ 0
is the Heaviside function

0 if x < 0


00 = 1, (B+)n = (B−)n = Nn = 0, for n < 0

and ”factorial powers” are defined by

x(n) = x(x− 1) · · · (x− n+ 1)

(x)n = x(x+ 1) · · · (x+ n− 1)

(x)0 = x(0) = 1.

Moreover, for α, β, γ, a, b, c ∈ {0, 1, 2, ...}

B+αMβB−
γ
B+aM bB−

c
=(2.8)∑γ

λ=0

∑γ−λ
ρ=0

∑γ−λ−ρ
σ=0

∑β
ω=0

∑b
ε=0 c

λ,ρ,σ,ω,ε
β,γ,a,b B+a+α−γ+λMω+σ+εB−

λ+c
(2.9)

where

cλ,ρ,σ,ω,εβ,γ,a,b =(2.10)(
γ
λ

)(
γ−λ
ρ

)(
β
ω

)(
b
ε

)
2β+b−ω−εSγ−λ−ρ,σa

(γ−λ)(a+ λ− 1)(ρ)(a− γ + λ)β−ωλb−ε(2.11)

and Sγ−λ−ρ,σ are the Stirling numbers of the first kind.

By (2.6) if n = l then the orthonormal basis vectors em are eigenvec-
tors of the self-adjoint operators B+nMkB−

n
with eigenvalues θn,k,n,m.

We fix the representation ρ+ of the universal enveloping algebra
U(sl(2;R)) of sl(2;R) so that we realize U(sl(2;R)) as acting on l2(N)
with the action given by (2.6).
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3. The SWN stochastic differentials

Let K = l2(N). The Boson Fock space Γ = Γ(L2(R+,K)) (see
[AcLuVo99], [Chebo00],[Par92]) can be defined as the Hilbert space
completion of the linear span of the exponential vectors ψ(f) under
the inner product

< ψ(f), ψ(g) >= e<f,g>(3.1)

where f, g ∈ L2(R+,K).
For f ∈ L2(R+,K) and an adjointable linear operator F on L2(R+,K)

the annihilation, creation and conservation operators A(f), A†(f) and
Λ(F ) respectively are defined on the exponential vectors of Γ by

A(f)ψ(g) =< f, g > ψ(g)(3.2)

A†(f)ψ(g) = ∂
∂ε
|ε=0ψ(g + εf)(3.3)

Λ(F )ψ(g) = ∂
∂ε
|ε=0ψ(eεFg)(3.4)

where F must be such that the exponential eεF is defined. In what
follows F will be unbounded of the form ρ+(B+nMkB−

l
) and the ex-

ponential will be defined, for ε sufficiently close to zero, by writing such
an operator as the sum of its real and imaginary part and defining the
exponential of each one with the use of the spectral resolution theorem
for functions of self-adjoint operators.

By (3.2)-(3.4)

A(f)∗ = A†(f), A†(f)∗ = A(f), Λ(F )∗ = Λ(F ∗).(3.5)

It was shown in [AcFrSk00] that the quantum stochastic differentials
of B+, M , and B− are connected with those of A, A†, and Λ by

dMt = dΛt(ρ
+(M)) + dt(3.6)

dB+
t = dΛt(ρ

+(B+)) + dA†t(e0)(3.7)

dB−t = dΛt(ρ
+(B−)) + dAt(e0)(3.8)

where on the right hand side of the above we have used the notation

dXt(y) = X(χ[t,t+dt]y).(3.9)

The Itô multiplication table for dA†t , dΛt, and dAt is
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· dA†t(f1) dΛt(F1) dAt(f1) dt

dA†t(f2) 0 0 0 0

dΛt(F2) dA†t(F2f1) dΛt(F2F1) 0 0
dAt(f2) < f2, f1 > dt dAt(F

∗
1 f2) 0 0

dt 0 0 0 0

The Itô multiplication table for dB+
t , dMt, and dB−t is not closed.

In fact it is clear that the basic differentials are dΛn,k,l(t), dAm(t) and
dA†m(t) defined in Definition 2 below (and of course dt).

Definition 2. For n, k, l,m ∈ {0, 1, ...}

dΛn,k,l(t) = dΛt(ρ
+(B+nMkB−

l
))(3.10)

dAm(t) = dAt(em)(3.11)

dA†m(t) = dA†t(em)(3.12)

The following proposition was proved in [AcBou01e]:

Proposition 1. For α, β, γ, a, b, c ∈ {0, 1, 2, ...}

dΛα,β,γ(t) dΛa,b,c(t) =
∑

cλ,ρ,σ,ω,εβ,γ,a,b dΛa+α−γ+λ,ω+σ+ε,λ+c(t)(3.13)

dΛα,β,γ(t) dA
†
n(t) = θα,β,γ,n dA

†
α+n−γ(t)(3.14)

dAm(t) dΛa,b,c(t) = θc,b,a,m dAc+m−a(t)(3.15)

dAm(t) dA†n(t) = δm,n dt(3.16)

where θα,β,γ,n, θc,b,a,m and cλ,ρ,σ,ω,εβ,γ,a,b are as in Lemma 1 and
∑

denotes
the finite sum

γ∑
λ=0

γ−λ∑
ρ=0

γ−λ−ρ∑
σ=0

β∑
ω=0

b∑
ε=0

All other products are equal to zero.

Proposition 2. The stochastic differentials of Definition 2 are linearly
independent in the sense that the weak equality

∑
α,β,γ D1,t,α,β,γ dΛα,β,γ(t)+(3.17) ∑

m D−,t,m dAm(t) +
∑

m D+,t,m dA
†
m(t) +D0(t) dt = 0

implies that the coefficient processes vanish on the exponential do-
main of H ⊗ Γ i.e on the linear span of {u ⊗ ψ(f) : u ∈ H, f ∈ K}.
Here D0 = {D0(t)}t≥0, D1 = {D1,t,α,β,γ : α, β, γ = 0, 1, ...}t≥0, D− =



10

{D−,t,m : m = 0, 1, ...}t≥0 and D+ = {D+,t,m : m = 0, 1, ...}t≥0 are
bounded operator processes acting on the system Hilbert space H.

Proof. Let Ω = ψ(0) be the normalized ground state exponential vector
which is sent to zero by the A and Λ noise processes. Applying the left
hand side of (3.17) to u⊗ Ω and taking the inner product with v ⊗ Ω
where u, v ∈ H we get

< D0(t)u⊗ Ω, v ⊗ Ω >= 0⇒< D0(t)u, v >= 0⇒ D0 = 0(3.18)

by the arbitrariness of t, u and v. Eliminating the dt term from (3.17)
and applying the new (3.17) to u⊗ Ω we obtain

∑
m D+,t,m dA

†
m(t)u⊗ Ω = 0⇒

∑
m D+,t,mu⊗ χ[t,t+dt]em = 0

⇒< D+,t,nu⊗ χ[t,t+dt]en,
∑

m D+,t,mu⊗ χ[t,t+dt]em >= 0 (for all n)

⇒ ||D+,t,nu⊗ χ[t,t+dt]en||2 = 0 (since < en, em >= δn,m)

⇒ ||D+,t,nu||2 dt = 0⇒ ||D+,t,nu||2 = 0⇒ D+ = 0

by the arbitrariness of t, u and n. Equation (3.17) now becomes

∑
α,β,γ D1,t,α,β,γ dΛα,β,γ(t) +

∑
m D−,t,m dAm(t) = 0.(3.19)

Taking the adjoint of (3.19) we have

∑
α,β,γ D

∗
1,t,α,β,γ dΛγ,β,α(t) +

∑
m D∗−,t,m dA

†
m(t) = 0(3.20)

and by repeating the above argument we find that D− = 0 and so
we are reduced to

∑
α,β,γ D1,t,α,β,γ dΛα,β,γ(t) = 0

⇒
∑

α,β,γ D1,t,α,β,γ dΛα,β,γ(t) dA
†
n(t) = 0 for all n

⇒
∑

α,β,γ D1,t,α,β,γθα,β,γ,n dA
†
α+n−γ(t) = 0 by Proposition 1

⇒
∑

α,β,γ D1,t,α,β,γθα,β,γ,m+γ−α dA
†
m(t) = 0 where m = α + n− γ

⇒ D1,t,α,β,γθα,β,γ,m+γ−α = 0 for all α, β, γ,m, t as shown before

⇒ D1,t,α,β,γ = 0⇒ D1 = 0.

�

Definition 3. Let T be a set and let {dMα(t) : α ∈ T} be a self-adjoint
family of stochastic differentials. We say that this family has a closed,
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constant, finite Itô table if, for any α, β ∈ T there exists a family of
complex numbers {Cγ

α,β : γ ∈ T} such that

dMα(t) dMβ(t) =
∑
γ

Cγ
α,β dMγ(t)(3.21)

where all but finitely many of the Cγ
α,β are zero.

The SWN stochastic differentials of (3.10)-(3.12) are a special case
of the following:

Definition 4. For x ∈ {B+αMβB−
γ

: α, β, γ = 0, 1, ...} and λ, µ ∈ R

dMt(x, λ) = dΛt(ρ
+(x)) + λ dt(3.22)

dB+
t (x, µ, em) = dΛt(ρ

+(x)) + µ dA†t(em)(3.23)

dB−t (x, µ, em) = dΛt(ρ
+(x∗)) + µ dAt(em)(3.24)

where (B+αMβB−
γ
)∗ = B+γMβB−

α
.

Proposition 3. In the notation of Definition 4

dB+
t (x1, µ1, em) dB+

t (x2, µ2, en) = dB+
t (x1x2,Θ(x1, n)µ2, e(x1, n))(3.25)

dB+
t (x1, µ, em) dMt(x2, λ) = dMt(x1x2, 0)(3.26)

dB+
t (x1, µ1, em) dB−t (x2, µ2, en) = dMt(x1x

∗
2, 0)(3.27)

dMt(x1, λ) dB+
t (x2, µ, en) = dB+

t (x1x2,Θ(x1, n)µ, e(x1, n)(3.28)

dMt(x1, λ1) dMt(x2, λ2) = dMt(x1x2, 0)(3.29)

dMt(x1, λ1) dB
−
t (x2, µ, en) = dMt(x1x

∗
2, 0)(3.30)

dB−t (x1, µ1, em) dB+
t (x2, µ2, en) = dB+

t (x∗1x2,Θ(x∗1, n)µ2, e(x
∗
1, n))+(3.31)

dB−t (x∗2,Θ(x∗2, n)µ1, e(x
∗
2,m))− dMt(x2,−µ1µ2δn,m)(3.32)

dB−t (x1, µ1, em) dMt(x2, λ) = dB−t (x∗2x1,Θ(x∗2,m)µ1, e(x
∗
2,m))(3.33)

dB−t (x1, µ1, em) dB−t (x2, µ2, en) = dB−t (x2x1,Θ(x2,m)µ1, e(x2,m))(3.34)

where for x = B+αMβB−
γ

we have used the notation Θ(x, n) =
θα,β,γ,n and e(x, n) = eα+n−γ, with θα,β,γ,n as in (2.7). Multiplication
by dt gives zero.

Proof. We will only prove equation (3.31). The proof of the remaining
equations is similar. By Definition 4 and Proposition 1 we have
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dB−t (x1, µ1, em) dB+
t (x2, µ2, en) =

(dΛt(ρ
+(x∗1)) + µ1 dAt(em))(dΛt(ρ

+(x2)) + µ2 dA
†
t(en)) =

dΛt(ρ
+(x∗1x2)) + µ2 dΛt(ρ

+(x∗1)) dA
†
t(en)+

µ1 dAt(em) dΛt(ρ
+(x2)) + µ1µ2 dAt(em) dA†t(en) =

dΛt(ρ
+(x∗1x2)) + µ2 dA

†
t(ρ

+(x∗1)en)+

µ1 dAt(ρ
+(x∗2)em) + µ1µ2δn,m dt =

dΛt(ρ
+(x∗1x2)) + µ2Θ(x∗1, n) dA†t(e(x

∗
1, n))+

µ1Θ(x∗2,m) dAt(e(x
∗
2,m)) + µ1µ2δn,m dt =

dB+
t (x∗1x2,Θ(x∗1, n)µ2, e(x

∗
1, n)) + dB−t (x∗2,Θ(x∗2, n)µ1, e(x

∗
2,m))−

dΛt(ρ
+(x2)) + µ1µ2δn,m dt =

dB+
t (x∗1x2,Θ(x∗1, n)µ2, e(x

∗
1, n)) + dB−t (x∗2,Θ(x∗2, n)µ1, e(x

∗
2,m))−

dMt(x2,−µ1µ2δn,m)

�

By Propositions 1 and 3 the families of the basic stochastic differen-
tials defined in Definitions 2 and 4 are examples of families of differen-
tials satisfying the condition of Definition 3.

4. Module form of the SWN Itô table

Definition 5. Let D(K) and B(H) denote, respectively, the spaces of
adjointable operators on K and bounded linear operators on H. The
tensor product B(H)⊗K is an inner product module with B(H)-valued
inner product defined on elementary tensors by

(a⊗ ξ|b⊗ η) = a∗b < ξ, η >(4.1)

On B(H)⊗K we define linear operators A and A† by

A(a⊗ ξ) = a⊗ A(ξ)(4.2)

A†(a⊗ ξ) = a⊗ A†(ξ)(4.3)

while on B(H)⊗D(K) we define a linear operator L by

L(a⊗ T ) = a⊗ Λ(T ).(4.4)
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Lemma 2. In the notation of Definition 5

A(a⊗ ξ)∗ = A†(a∗ ⊗ ξ)(4.5)

A†(a⊗ ξ)∗ = A(a∗ ⊗ ξ)(4.6)

L(a⊗ T )∗ = L(a∗ ⊗ T ∗)(4.7)

Proof. To prove (4.7) we notice that by (4.4) and (3.5)

L(a⊗ T )∗ = (a⊗ Λ(T ))∗ = a∗ ⊗ Λ(T ∗) = L(a∗ ⊗ T ∗).(4.8)

The proof of (4.5) and (4.6) is similar.
�

Definition 6. For α, β, γ, a, b, c ∈ {0, 1, 2, ...} let {Dα,β,γ}, {Ea,b,c} be
families of operators in B(H) and let D =

∑
α,β,γ Dα,β,γ⊗ρ+(B+αMβB−

γ
)

and E =
∑

a,b,c Ea,b,c⊗ρ+(B+aM bB−
c
). We define the ◦-product D◦E

of D and E by

D ◦ E =
∑
α,β,γ

∑
a,b,c

∑
cλ,ρ,σ,ω,εβ,γ,a,b Dα,β,γEa,b,c ⊗ ρ+(B+a+α−γ+λMω+σ+εB−

λ+c
)(4.9)

where
∑

and cλ,ρ,σ,ω,εβ,γ,a,b are as in Proposition 1 and Lemma 1 respec-
tively. We also define linear operators r and l on B(H) ⊗ D(K) with
values in the space of linear operators on B(H)⊗K by

r(D)T =
∑

n,α,β,γ Dα,β,γθα,β,γ,n−α+γTn−α+γ ⊗ en(4.10)

l(D)T =
∑

n,α,β,γ Tn+α−γθγ,β,α,n+α−γDα,β,γ ⊗ en(4.11)

where T =
∑

n Tn ⊗ en ∈ B(H) ⊗ K, n ∈ {0, 1, ...} and θ is as in
Lemma 1.

The operator I =
∑

a,b,c Ia,b,c⊗ρ+(B+aM bB−
c
), where Ia,b,c = δa,0δb,0δc,01,

is the ◦-product identity i.e I ◦ D = D ◦ I = D for all operators D
as in Definition 6. It is also a ◦-product unitary operator i.e I ◦ I∗ =
I∗ ◦I = I. Here 1 denotes the identity operator in B(H). The operator

W = W0 ⊗ ρ+(B+0
M0B−

0
) = W0 ⊗ ρ+(id), where W0 is a unitary

system space operator and ρ+(id) em = em, is also a ◦-product unitary
operator.

Definition 7. For Xt, Yt ∈ {At, A†t ,Λt} and a, b ∈ B(H) we define

d(a⊗Xt) = a⊗ dXt(4.12)

(a⊗ dXt)(b⊗ dYt) = ab⊗ dXt dYt(4.13)
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where dXt dYt is computed with the use of the Itô table for dAt, dA
†
t ,

and dΛt.

Proposition 4. Let

D+ =
∑

nD+,n ⊗ en(4.14)

D− =
∑

mD−,m ⊗ em(4.15)

D1 =
∑

α,β,γ D1,α,β,γ ⊗ ρ+(B+αMβB−
γ
)(4.16)

E1 =
∑

a,b,cE1,a,b,c ⊗ ρ+(B+aM bB−
c
)(4.17)

where n,m, α, β, γ, a, b, c ∈ {0, 1, 2, ...} and D+,n, D−,m, D1,α,β,γ, E1,a,b,c ∈
B(H). Then in the notation of (3.9) and Definitions 5 and 6

dAt(D−) dA†t(D+) = (D∗−|D+) dt(4.18)

dLt(D1) dLt(E1) = dLt(D1 ◦ E1)(4.19)

dLt(D1) dA†t(D+) = dA†t(r(D1)D+)(4.20)

dAt(D−) dLt(E1) = dAt(l(E1)D−)(4.21)

All other products of stochastic differentials (including dt) are equal
to zero.

Proof. By Proposition 1 and Definitions 5, 6, and 7

dAt(D−) dA†t(D+) =
∑

m,nD−,mD+,n ⊗ dAt(em)dA†t(en)

=
∑

m,nD−,mD+,n ⊗ δm,ndt =
∑

nD−,nD+,n ⊗ 1dt = (D∗−|D+) dt,

dLt(D1) dLt(E1) =∑
α,β,γ,a,b,c

∑
D1,α,β,γE1,a,b,c ⊗ dΛt(ρ

+(B+αMβB−
γ
))dΛt(ρ

+(B+aM bB−
c
)) =∑

α,β,γ,a,b,c

∑
cλ,ρ,σ,ω,εβ,γ,a,b D1,α,β,γE1,a,b,c ⊗ dΛt(ρ

+(B+a+α−γ+λMω+σ+εB−
λ+c

))

= dLt(D1 ◦ E1)

dLt(D1) dA†t(D+) =∑
α,β,γ,nD1,α,β,γD+,n ⊗ dΛt(ρ

+(B+αMβB−
γ
))dA†t(en) =∑

α,β,γ,nD1,α,β,γD+,nθα,β,γ,n ⊗ dA†t(eα+n−γ) =∑
α,β,γ,nD1,α,β,γD+,n−α+γθα,β,γ,n−α+γ ⊗ dA†t(en)

= dA†t(r(D1)D+)
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dAt(D−) dLt(D1) =∑
a,b,c,mD−,mE1,a,b,c ⊗ dAt(em)dΛt(ρ

+(B+aM bB−
c
)) =∑

a,b,c,mD−,mE1,a,b,cθc,b,a,m ⊗ dAt(ec+m−a) =∑
a,b,c,mD−,a+m−cE1,a,b,cθc,b,a,a+m−c ⊗ dAt(em) =

dAt(l(E1)D−)

By the Itô table for dA, dA†, and dΛ all other products are equal to
zero.

�

Proposition 5. The ”module” stochastic differentials dt, dAt, dLt and
dA†t are linearly independent, in the sense that

D0 dt+ dA†t(D+) + dLt(D1) + dAt(D−) = 0(4.22)

implies that

D0 = D+ = D1 = D− = 0(4.23)

where D0 is a bounded system operator and D+, D1, D− are as in
(4.14)-(4.16),

Proof. By (4.14)-(4.16) and (4.12), (4.22) implies

D0 dt+
∑

n D+,n dA
†
n(t) +

∑
a,b,c D1,a,b,c dΛa,b,c(t) +

∑
n D−,m dAm(t) = 0(4.24)

which, by Proposition 2, implies

D0 = D+,n = D1,α,β,γ = D−,m = 0(4.25)

for all n,m, α, β, γ. Thus

D0 = D+ = D1 = D− = 0(4.26)

�

5. Module form of the SWN unitarity conditions

Let D0, D+,n, D−,n, D1,a,b,c be for each n, a, b, c bounded operators
on the system space H identified with their ampliation to the tensor
product of H and the noise Fock space Γ. In view of Definitions 4 and
5 and Lemma 2, the quantum stochastic differential equation
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dUt = (D0 dt+
∑

n D+,n dA
†
n(t) +

∑
a,b,c D1,a,b,c dΛa,b,c(t)+(5.1) ∑

n D−,n dAn(t))Ut, U0 = 1

with adjoint

dU∗t = U∗t (D∗0 dt+
∑

n D
∗
+,n dAn(t) +

∑
a,b,c D

∗
1,c,b,a dΛa,b,c(t)+(5.2) ∑

n D
∗
−,n dA

†
n(t)), U∗0 = 1(5.3)

can be written in module form as

dUt = (D0 dt+ dA†t(D+) + dLt(D1) + dAt(D−))Ut, U0 = 1(5.4)

with adjoint

dU∗t = U∗t (D∗0 dt+ dAt(D∗+) + dLt(D∗1) + dA†t(D∗−)), U∗0 = 1(5.5)

where D+, D1, and D− are as in Proposition 4. Under suitable
summability assumptions on its coefficients (details will appear else-
where) equation (5.1) admits a unique solution.

Theorem 1. The solution of the module quantum stochastic differen-
tial equation (5.3) is unitary if and only if

<D0 = −1
2

(D∗−|D∗−)(5.6)

D+ = −r(W )D∗−(5.7)

D1 = W − I(5.8)

where 1 is the identity operator in B(H) ⊗ K, I is the ◦-product
identity, W is a ◦-product unitary operator such that r(W )r(W ∗) =
r(W ∗)r(W ) = 1 (then also l(W ∗)l(W ) = l(W )l(W ∗) = 1), D− is
arbitrary and <D0 denotes the real part of D0 . In this case equation
(5.3) takes the form

dUt = ((−1
2

(D∗−|D∗−) + iH) dt+ dAt(D−) + dA†t(−r(W ))D∗−)(5.9)

+dLt(W − I))Ut

where H is any self-adjoint operator.

Proof. By the definition of unitarity

U(t)U∗(t) = U∗(t)U(t) = 1 , U(0) = U∗(0) = 1(5.10)
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which is equivalent to

d (U(t)U∗(t)) = dU(t)U∗(t) + U(t) dU∗(t) + dU(t) dU∗(t) = 0(5.11)

and

d (U∗(t)U(t)) = dU∗(t)U(t) + U∗(t) dU(t) + dU∗(t) dU(t) = 0.(5.12)

By Proposition 4, (5.3) and (5.4), (5.11) is equivalent to

(D0 +D∗0 + (D+|D+)) dt+ dA†t(D∗− +D+ + r(D∗1)D+)+(5.13)

dLt(D1 +D∗1 +D∗1 ◦D1) + dAt(D∗+ +D− + l(D1)D
∗
+) = 0

while (5.10) is equivalent to

(D0 +D∗0 + (D∗−|D∗−)) dt+ dA†t(D+ +D∗− + r(D1)D
∗
−)+(5.14)

dLt(D1 +D∗1 +D1 ◦D∗1) + dAt(D∗+ +D− + l(D∗1)D−) = 0.

By Proposition 5, (5.12) and (5.13) are equivalent to

D0 +D∗0 + (D+|D+) = 0(5.15)

D∗− +D+ + r(D∗1)D+ = 0(5.16)

D1 +D∗1 +D∗1 ◦D1 = 0(5.17)

D∗+ +D− + l(D1)D
∗
+ = 0(5.18)

D0 +D∗0 + (D∗−|D∗−) = 0(5.19)

D+ +D∗− + r(D1)D
∗
− = 0(5.20)

D1 +D∗1 +D1 ◦D∗1 = 0(5.21)

D∗+ +D− + l(D∗1)D− = 0(5.22)

For D−, D+, D1 as in (5.5)-(5.7) the validity of (5.18) is obvious
while (5.14) follows from (5.18) and the fact that (D+|D+) = (D∗−|D∗−).
Conditions (5.20) and (5.16) can be written respectively as (I +D1) ◦
(I + D1)

∗ = I and (I + D1)
∗ ◦ (I + D1) = I both of which are true

by the ◦-unitarity of W . Condition (5.19) is straightforward from (5.6)
while (5.15) can be written as D∗− = −r(W ∗)D+ which is the same as
(5.6) since r(W )r(W ∗)D+ = D+. Finally (5.17) is the adjoin t of (5.15)
and (5.21) is the adjoint of (5.19) since, by Definition 6, l(D∗1)D− =
(r(D1)D

∗
−)∗ and l(D1)D

∗
+ = (r(D∗1)D+)∗.

�
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