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1 What is quantum probability

Quantum Probability (QP) is a new branch of mathematics interconnecting
classical probability, functional analysis, pure algebra, quantum physics and
information and communication engineering.

The mid seventies is the period that marks the beginning of QP as an
autonomous discipline. Since then this cross disciplinary nature has accom-
panied the development of QP and still now it is one of its points of strength,
making it an original new trend in contemporary mathematics as well as one
of the earliest pioneers of non-commutative mathematics: a field now flourish-
ing with the more recent development of quantum groups, non-commutative
geometry, quantum computer, . . .

The developments in this area are taking place at such an high pace
and such a broad horizon to make impossible any attempt of a detailed
synthesis in a single paper. In what follows I shall give a quick historical
survey of QP pointing out some of the main problems which have driven
these developments and of the main applications to quantum physics.

The early period

Several notions, tools and single results, now stably entered in the domain
of QP, were developed simultaneously with the birth of quantum mechanics.
However these developments occurred independently one another, in several
different fields such as functional analysis, the foundations of quantum theory,
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signal processing, quantum optics, operator algebras, quantum field theory,
. . . and the design to build QP as a unifyed discipline was absent in these
early papers.

Important probabilistic ideas are present in the work of practically all
the main contributors to quantum theory, in particular Heisenberg, Born,
Jordan and, later on, Feynman but, from the point of view of mathematical
formalization, the algebraic approach to probability theory can be traced
back to von Neumann’s classical monograph [voN32]. Even if von Neumann
never used or precisely defined the term algebraic probability space, this notion
begun to emerge in his monograph as a natural linguistic framework to unify
classical and quantum probability and the environment for this unification
was first identified by him in the theory of Hilbert spaces and later enlarged
into the theory of operator algebras. In particular the following ideas, now
generally accepted, were present, in a more or less implicit form, in von
Neumann’s monograph (cf. [AcOb99] for an exposition in contemporary
language):

- a *–algebra of operators on some Hilbert space is the quantum analogue
of the measurable functions on a probability space. Here and in the following,
unless the contrary is explicitly stated, algebra means associative algebra with
identity over the complex numbers.

- a state (positive linear functional with ϕ(1) = 1) on this algebra is the
analogue of the integral with respect to a probability measure. In particular
the trace, on the bounded operators on a Hilbert space, plays the role of the
Lebesgue measure on R or of the counting measure on N

- a self-adjoint operator, or observable, is the analogue of a random vari-
able (so random variables are embedded into a non-commutative algebra)

- for non-commuting observables on a Hilbert space H there is no natural
way to define a joint probability distribution with respect to an arbitrarily
given quantum state inside the same Hilbert space.

von Neumann’s goal was to describe the mathematical formalism used in
quantum theory and no attempt was made in his monograph to deduce it.

After the publication of his monograph, von Neumann devoted much ef-
forts to the generalization of the quantum formalism and the results of these
efforts were, from one side the birth of the theory of operator algebras, now
an established mathematical discipline, and from the other side the birth
of continuous geometry and quantum logics, both generalizations of classi-
cal projective geometry. Inspired by Birkhoff and von Neumann’s quantum
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logics, Mackey made the first mathematical attempt to deduce the quantum
formalism. He listed a set of plausible axioms [Ma76], which should be sat-
isfied by any statistical theory, and deduced from these axioms that to any
such theory one can associate an orthocomplemented lattice (or quantum
logic), whose elements represent the events. In Mackey’ s scheme quantum
theory was characterized, among the statistical theories, by the property that
its lattice of events is isomorphic to the lattice of the closed sub-spaces of
a Hilbert space. The attempts to justify this property in terms of plausible
physical assumptions, led to a large literature on quantum logics which, even
if not completely successful in its main goal, i.e. to explain the conceptual
and physical origins of the quantum formalism, produced two interesting
mathematical results:

(i) an infinite dimensional extension of the coordinatization theorem of pro-
jective geometry [Pir76]

(i) Gleason’s theorem (for a statement and an elementary proof of Gleason’s
theorem cf. Cooke and Keane’s article in [QPII] or [Par92]). The long
standing problem of extending Gleasons’s theorem to an arbitrary von
Neumann algebra, was solved by Paskiewicz [Pas85] (cf. Kruszynski’s
survey in [QPI] for an exposition of the basic ideas of the proof).

On the physical front, the program to extend the standard quantum the-
ory in order to include a description of quantum dissipative phenomena begun
to emerge from two different motivations:

i) the attempt to deduce quantum kinetic equations (Pauli, van Hove),
which lead to the master equations.

ii) The attempts to describe the phenomenon of signal damping in quantum
optics and quantum communication theory, which led to the introduc-
tion, by Lax, of quantum white noise and quantum Brownian motion
(cf. [Ac90] for an historical survey).

Both these lines of research will find their natural formulation and solution
in the stochastic limit of quantum theory (see below).

The 70’s

During the late Sixties and early Seventies the rigorous theory of equi-
librium classical statistical mechanics on lattice systems, originated in the
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pioneering works of van Hove and Bogolyubov, was developed by Dobrushin,
Minlos, Ruelle, . . . and the problem of extending these achievements to quan-
tum spin systems naturally arose and was first considered by Araki and oth-
ers. Moreover methods of classical probability were introduced in the theory
of bosonic fields through the pioneering works of Symanzik and Nelson and
the hope to obtain similar results for fermionic fields naturally lead to the
problem of extending these probabilistic notions to the non commutative
domain.

Because of these problems it became urgent to fill the gaps left open by
von Neumann’s probabilistic scheme, namely to develop the non commutative
analogues of the notions of:

- stochastic process, in particular Markov processes

- conditional expectation,

- statistical dependence, in particular Markovianity

- Markovian semigroups

- statistical independence

- central limit theorems

Without these notions the development of a new probability
theory could not go beyond some rather superficial analogies.

In the period between 1973 and 1980 the solution of these problems begun
to emerge from the joint and often independent work of several researchers.

It is not easy to separate the historical developments of these problems be-
cause their histories, although different, are continuously intersecting. The
first four of these problems are strictly connected. In fact the notion of
Markov process presupposes, for its formulation as well as for the explicit
construction of quantum Markov chains, that of stochastic process and of con-
ditional expectation and in its turn should imply a natural notion of Markov
semigroup.

The general notion of algebraic stochastic process was introduced in
[Ac74], [Ac75] and further generalized and completed with a reconstruction
theorem in [AFL82]. The problem to give a general formulation of the Markov
property, to deduce from it the construction of non trivial examples of quan-
tum Markov process (chains in the discrete case) and to prove that they are
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canonically associated to quantum Markovian semigroups (irreversible gen-
eralizations of the Schrödinger evolution), was solved in [Ac74]. The papers
[Ac76], [Ac78a] studied, and solved in some particular cases, the converse
problem, later became known under the name of dilation problem, i.e.: given
a quantum Markovian semigroup which additional information do we need
to construct a quantum Markov process such that the Markovian semigroup,
canonically associated to it, is the given one? In the classical case only the
initial distribution is needed. In the quantum case this is true only at the
cost of obtaining a weak (i.e. non conservative) process [BhP95].

The structure of the generators of a quantum Markovian semigroup was
clarified in the finite dimensional case [GKS76] and, slightly later, in the
norm bounded case [Li76].

From the mathematical point of view the most interesting new feature
emerging from the construction of quantum Markov chains was the necessity
to generalize the notion of quantum conditional expectation introduced by I.
Segal in the case of a trace and in a general C∗–algebra by Umegaki [Ume54].
A Umegaki conditional expectation on C∗–algebra is a norm one projection
onto a sub–C∗–algebra. This notion is very important in many applications
to operator algebras and quantum probability. However, for the purposes of
quantum probability, in particular for the construction of quantum Markov
chains, it is too restrictive and in some cases only product states are com-
patible with such conditional expectations. This is at odd with the classical
case and quite unsatisfactory from a probabilistic point of view because the
role of conditioning is precisely that of describing statistical dependences,
i.e. deviations of a state from a product one. For these reasons a notion of
generalized conditional expectation was needed in which the projection prop-
erty was lost. This is the mathematical counterpart of the main difference
between classical and quantum physics: in classical physics a measurement
does not disturb the system on which it is done and therefore to perform
twice the same measurement of a discrete observable in an very short time
interval is equivalent to perform a single measurement (projection property).
In quantum physics things go otherwise.

In [Ac74] only type I von Neumann algebras were considered. The solu-
tion of the quantum conditioning problem in the general case had to wait for
some years [AcCe82] and had immediate implications not only in quantum
probability but also on the theory of operator algebras [Pe84], [Pe88] and
in algebraic quantum field theory. For example, the canonical conditional
expectation, introduced in this paper, played a crucial role in the solution
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of the Stone-Weierstrass conjecture and in the theory of standard split W*-
inclusions [Lo84].

When a Umegaki conditional expectation exists, the theory of quantum
Markov processes becomes just a rephrasing of the classical one and was de-
scribed in [Ac78b]. Although less exciting from a theoretical point of view,
this subclass of quantum Markov processes, the expected processes, is im-
portant because almost all the examples of quantum Markov processes in
continuous time considered up to now belong to this class.

The first general and purely algebraic quantum central limit theorems,
under the assumption of boson or fermion statistical independence, were ob-
tained by von Waldenfels and Giri [GivW78], [vWa78] who also discovered
a surprising connection between these results and the canonical commuta-
tion and anti–commutation relations of quantum mechanics. These results
initiated the algebraic investigation of the notion of statistical independence
which lead to several algebraic generalizations of this notion far beyond the
original notions of bosonic and fermionic independence (cf. [Schü93] for a
survey). This line of research will find a new vigor and enrichment in the
90’s (cf. below).

In these years, the experiments of Aspect et al. on the verification of
Bell’s inequalities, contributed to a revival of interest on the foundational
and interpretational problems of quantum theory, in particular the problem
of hidden variables. This problem has many mathematically inequivalent
formulations in the physical literature, but most of them have in common
the attempt to construct a classical probabilistic model for quantum theory
and therefore it also contributed to focus the attention of researchers on the
role of probability in quantum theory. The notion of statistical invariant
[Ac81a], [AcFe82] was an outcome of this debate.

This notion provided the first intrinsic, i.e. model independent, distinc-
tion between classical and quantum probability just as the analogue notion
of geometrical invariant allows the same distinction between classical and
non euclidean geometry.

The name statistical invariant also underlines the difference between this
notion and the old von Neumann result about non existence of joint proba-
bilities inside the original Hilbert space. von Neumann’s result is model
dependent because by enlarging the Hilbert space one can construct un-
countably many joint probabilities. On the contrary, as a corollary of the
theory of statistical invariants, one can prove that there are sets of experi-
mentally measurable statistical data (conditional probabilities, correlations,
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. . .) which cannot be deduced from a single set of joint probabilities (Kol-
mogorov model). With this mathematical result the problem of deciding
between the classical and the quantum probabilistic model is reduced to an
experimental one. In particular some inequalities satisifed by some statis-
tical data, related to experiments in quantum theory, such as the two slit
type experiments (Heisenberg–Feynman) or the Einstein–Podolsky–Rosen
type experiments (Bell [Bll64]), which were at the origin of an interesting
and still active debate about the foundations of quantum theory acquire a
simple mathematical interpretation as necessary conditions for the existence
of a Kolmogorov probabilistic model for these statistical data. For a survey
of this debate cf. the book [Ac97].

The experimental violation of these inequalities [AspDR82] can thus be
interpreted as the experimental proof that the framework of classical proba-
bility is too narrow for the needs of contemporary physics and a more general
and powerful formalism is needed. The goal of quantum probability is to de-
velop such a formalism.

In this spirit one could say that, as relativity reduces the structure of the
laws of space to a physical problem, quantum probability does the same for
the laws of chance.

The 80’s

The basic results in this decade concern the following topics:

- Quantum stochastic calculus

- Construction of quantum Markov processes through quantum stochastic
calculus

- Quantum filtering and prediction

- Deduction of the mathematical model of classical and quantum probability
from physically meaningful axioms

- Quantum conditioning: general case

- Quantum information theory and quantum entropy

- The stochastic limit

- Free independence

7



The problem of constructing quantum Markov processes was reduced,
through the quantum Feynman–Kac formula [Ac78b], to the construction of
unitary Markovian cocycles. However the techniques used to this goal were
still relying on standard operator theoretical methods.

The situation changed with the introduction of quantum stochastic cal-
culus by Hudson and Parthasarathy [HuPa84] and their proof of the fact
that this is a new, purely quantum probabilistic, technique allowing to con-
struct unitary Markovian cocycles and therefore quantum Markov processes.
The quantum Brownian motion, at the basis of the new calculus, was already
known in the physical literature, but the quantum Poisson process was a new
contribution of these authors and provides an important new mathematical
tool for the description of physical systems.

The generality and flexibility of the new method, its potential applications
to physics, its connections with classical probability, motivated an intense
activity so that the overwhelming fraction of papers produced in this decade
turns out to be in one way or another related to quantum stochastic calculus.

A synthesis of the mathematical aspects of stochastic calculus before the
late 80’s is contained in the monograph [Par92] and additional material on
specific topics can be found in the QP series, in the series ”Seminaire de Prob-
abilites”, Springer LNM, starting from 1984/85 as well as in Meyer’s mono-
graph [Mey93]. In fact, through the effective championing of P.A. Meyer, the
ideas of quantum stochastic calculus and some ideas of QP begun to spread
among classical probabilists.

Quantum stochastic calculus is also a basic ingredient of another impor-
tant achievement of this decade: Belavkin’s quantum filtering and prediction
theory [Bel85]. This allows to exploit the whole information of the stochastic
process contained in the unitary Markovian cocycle, solution of a SDE, in
contrast to the partial information contained in the generator of the Marko-
vian semigroup (master equation). In concrete physical models, for example
atoms interacting with a radiation field, this makes a big difference because
the latter only allows to estimate decay times and energy shifts in atomic
levels, while the former also includes measurable informations on field quan-
tities such as intensity or photon counting statistics [Bar86]. Nowadays the
basic ingredients of quantum filtering are, more or less explicitly, present in
all models of quantum measurement based on classical or quantum stochastic
calculus. A characterization of the flows that can be obtained by the filtering
procedure was obtained in [Bel97].

A characterization of the generators of general strongly continuous Marko-
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vian semigroups, is still missing. The best presently available results, which
cover several cases of importance for the applications, are due Chebotarev
and Fagnola, who derived criteria of existence, uniqueness, unitarity of so-
lutions for classical and quantum generators [CheFa93] , based on some in-
equalities which in many important cases can be directly verified.

A necessary step to make quantum stochastic calculus an applicable tool
for quantum physics was to explain the dynamical origins of the quantum
Brownian motion and of the quantum Poisson process. In other words, the
definition of these processes involves several quantities such as the variance,
the state space and, in the case of Poisson process, the choice of a unitary
operator. The problem was to deduce the structure of these quantities from
the basic Hamiltonian laws of quantum theory so to overcome the purely
phenomenological level of the models used in the, now numerous, applications
of quantum stochastic calculus to physics. This is a typical problem of non
equilibrium quantum statistical mechanics.

The solution of this problem was obtained by the stochastic limit of quan-
tum theory, a research program which started from the papers [AcFrLu87],
[AcFrLu90] and proceeded through an increasingly complex series of phys-
ical models. The main result of these papers was to show the mechanism
through which quantum stochastic differential equations arise as limits of
usual Schrödinger equations. The problem was first solved for quantum dif-
fusions, i.e. processes driven by quantum Brownian motion. The, much
more difficult, problem of the determination of the dynamical origins of the
quantum Poisson process was solved in [AcLu91a],[AcLu91b].

Also of these years is the solution of another traditional problem on the
foundations of quantum theory, namely the deduction of the mathematical
model of classical and quantum probability from a set of simple, plausible
and physically meaningful axioms [Ac82].

The problems of quantum information theory were related to the notion
of relative entropy in von Neumann algebras [OHT81] and led to the notions
of compound channel, generalizing the classical technique of coupling of two
stochastic processes, and of mutual information [Oh83] with applications to
quantum communication processes [OhWa85]. A complete, and pleasant to
read, account of quantum entropy is the monograph [OhPe93]: the final part
of the volume is particularly recommended for the wealth of intuitions and
of possible developments.

In 1983 Voiculescu discovered the notion of free independence [Voic91] (cf.
the monograph [VoDyNi92] for a survey) by abstracting the properties of the
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generators of the GNS representation, with respect to the trace, of the group
algebra of the free group with N generators and proved the corresponding
central limit theorem identifying the limit distribution as the Wigner semi–
circle law.

Speicher [Sp90] proved that the quantum probabilistic techniques, devel-
oped in von Waldenfels original papers to prove the quantum central limit
theorems, can be applied without essential modifications to prove several
generalizations of Voiculescu’s original result. Moreover, taking advantage of
the functorial character of the realization of a semi–circle random variable in
terms of creation and annihilation operators on the Boltzmannian (full) Fock
space, Kümmerer and Speicher introduced the free Brownian motion and the
associated notion of free stochastic integrals [KüSp92]. Motivated by this
result Fagnola proved, in the note [Fag90], how this notion of stochastic inte-
gration can be embedded in the general framework proposed in [AcFaQu90]
as an attempt to unify the proliferating notions of stochastic integrals in the
same sense as, in classical probability, the general notion of semi–martingale
prevents the necessity of developing ex novo a different theory of stochastic
integration for each class of semi–martingales.

After its discovery, free independence was realized to describe the statis-
tics of N ×N random matrices in the limit N → ∞, a problem investigated
by Wigner in the 50’s in connection with some phenomenological models of
nuclear physics and which underwent a revival in the 80’s because of its con-
nections with the so–called large N limit in euclidean quantum field theory,
in which one introduces a fictitious spin parameter in a real physical model
and then studies the approximations of this model when the number of spin
dimensions tends to infinity. In particular the logarithmic energy, introduced
by Voiculescu [Voic94] as a free analogue of entropy, was shown by Ben Arous
and Guionnet [BAGu97] to control the large deviations of the large N limit
of Gaussian ensambles. In this direction the best presently known results are
due to Petz and Hiai [HiPe98].

Thus Voiculescu’s results provide still another example of how ideas and
techniques of quantum probability can throw light on deep results of classical
probability.

The 90’s

Like most of the developments of QP in the 80’s were related in some
way to the development of stochastic calculus, much of the developments in
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the 90’s were somehow related to the circle of ideas originated in free proba-
bility. In particular a multiplicity of free analogues of classical probabilistic
results on addition of independent random variable and on the combinatorial
relations between moments and cumulants, were established (cf. [Sp98] for
a survey).

One important new feature emerged with free independence, with respect
to boson, fermion and q–deformed independence (with q 6= 0), that is the
role of the non crossing diagrams.

A surprising fact, because not suspected even in the heuristic physical
literature, is that precisely these diagrams survive in the stochastic limit of
quantum electrodynamics without dipole approximation [AcLu92]. However,
due to the strong nonlinearity, the vacuum distribution of the field operator
after the stochastic limit (master field, in the field teoretical terminology;
quantum noise in the quantum optics terminology) is not the semi–circle law
but a nonlinear deformation of it. The attempts to explain this fact lead
to the introduction of the notion of interacting Fock space, which is now
considered to be the natural candidate to replace the usual Fock space in
the case of interacting fields (for a multiplicity of examples supporting this
statement cf. [AcLuVo97b]). The fact that the Boson (resp. Fermi) Fock
space can be obtained as central limit of some kind of quantum Bernoulli
processes was known since the 80’s [AcBa87] (resp. [Lu89]). The analogue
result for a particular case of interacting Fock spaces, the chronological Fock
space, was obtained in by De Giosa and Lu [LuDeG95]. The proof that the
vacuum distribution of the field operator was the arcsine distribution was
obtained successively by Lu [Lu95], [Lu96] and, independently, by Muraki
[Mur96a], [Mur96b]. In [Lu97] it was proved that the class of the vacuum
distribution of the field operator in an interacting Fock space may depend on
the test function. This is a new phenomenon with respect to what happens
in the usual (or q–deformed) Fock spaces where only the parameters of this
distribution depend on the test function. Recently a new method for the
derivation of the above mentioned central limit theorem has been found by
Liebscher [Liebs97]. Liebscher’s method gives as a bonus the representation
of the resulting quantum noise in terms of usual stochastic integrals.

This notion of interacting Fock space is intimately related to another new
feature emerged in the stochastic limit of QED: the state space of the com-
bined system atom + master field should be described by a Hilbert module
rather than a Hilbert space. This is the mathematical counterpart of the
physical phenomenon that, due to the nonlinearity, the degrees of freedom
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of the atom and of the field become entangled after the limit. In the re-
cent physical literature the term entanglement is used simply as synonym of
superposition in a tensor product space (cf. however a new, mathematical
formulation of this concept, due to Belavkin and Ohya and related to a new
notion of quantum entropy introduced by these authors [BeOh99]). What we
mean here is different, namely that, even if before the limit atom and field
observables commute, after the limit they develop nontrivial commutation
relations (in fact an operator generalization of the free commutation rela-
tions). In the case of QED Skeide [Ske96] proved that the interacting Fock
space structure can be deduced from the Hilbert module structure alone. If
this result is a general phenomenon, or if it is specific to the QED Hilbert
module, is an open problem.

Several algebraic generalizations of the notion of free independence were
studied by Bozejko and Speicher [BoSp91] but neither the statistical meaning
of the conditions nor, in most cases, the corresponding central limit distri-
butions were very transparent in these papers also because of the presence
of partitions of any order, not only pair partitions, in the expressions of
momenta for the limit distributions.

Accardi, Hashimoto and Obata [Aho98] proved that, by considering the
GNS representation of free groups, not with respect to the trace but to
an arbitrary Haagerup function, one is naturally lead to a new notion of
independence, singleton independence, which manifests some new qualitative
properties with respect to the usual notions of independence:

(i) the singleton condition is not satisfied

(ii) not only the non crossing pair partitions, but also some singletons give
contributions to the limit distribution.

Moreover, using a previous results of Hashimoto [Has97], they identified
the limit distributions obtained in this way as the one parameter family of
Ullman distributions. Shortly after Accardi and Bozejko [AcBo98] combined
Bozejko’s continuous fraction convolution with the notion of interacting Fock
space and proved that any probability measure on R, with all moments, can
be obtained as the vacuum distribution of the field operator in an interacting
Fock space so that the combinatorics of the momenta is expressed uniquely in
terms of singletons and pair partitions. This phenomenon was called Gaus-
sianization of the given probability measure because in classical probability
this combinatorics is characteristic of Gaussian distributions.
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The interest of physicists for the quantum Markov chains increased in
the early 1990’s with the understanding, by Fannes, Nachtergaele, Werner
[FNW92a], [FNW92b], [FNW94], that the valence bond states, introduced
and studied by famous theoretical physicists in the attempt of explaining the
phenomenon of high temperature superconductivity, are a particular class
precisely of those quantum Markov chains which were introduced for purely
mathematical reasons in the 70’s. In the case of infinite tensor products of
matrix algebras (the general definition of quantum Markov chains does not
require this restriction) these authors gave an alternative characterization of
quantum Markov chains which motivated the name finitely correlated state
frequently used to denote this important class of quantum Markov chains.
They proved furthermore that the mixing Markov chains corresponding to
the valence bond models are pure states. This is rather unexpected in view
of the fact that the notion of quantum Markov states was introduced as an
analogue of Gibbs measure. A very interesting recent result is due to Matsui
[Mat98] who proved that a mixing translation invariant state is a zero energy
ground state for a translation invariant nearest neighbor Hamiltonian if and
only if it is a pure quantum Markov chain and, if the Hamiltonian satisfies
an additional non degeneracy condition, even a finitely correlated state. A
nearest neighbor Hamiltonian on a one–dimensional lattice is a formal sum
of self–adjoint operators, each of which is localized on two consecutive sites
of the lattice (such an Hamiltonian has a rigorous meaning as a derivation on
the algebra of quasi–local observables and, by a theorem of Sakai, it generates
a quantum dynamics). A zero energy state for such an Hamiltonian is a state
giving mean zero to each of these operators separately and not only, as a usual
ground state, to their sum.

Another development of these years, in a completely different direction,
i.e. the white noise appraoch to classical and quantum stochastic calculus,
is likely to be one of the most exciting frontiers of current research both in
classical and quantum probability.

This approach too arose from the stochastic limit of quantum theory. The
idea is the following: we know that, in the stochastic limit, the Schrödinger
equation becomes a stochastic differential equation. On the other hand the
formal limit of this equation is a white noise Hamiltonian equation. At this
point the conjecture that the two equations coincide is a natural one. Now,
using one of the basic principles of the stochastic limit (the time consecu-
tive principle) one can put the white noise equation in normal order. One
can prove that this normally ordered equation and the stochastic differential
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equation have the same matrix elements (in the number and the exponential
vectors). Since we know that the stochastic equation has a unique unitary
solution, it follows that the same is true for the corresponding white noise
equation and that the two solutions coincide. Notice that all what said above
remains true even in the case of classical stochastic equations. This means
that the attempt to develop a stochastic calculus for classical white noise
naturally leads to the introduction of quantum probabilistic techniques.

For a full development of a white noise approach to stochastic calculus,
an important link was still missing: how to express the Ito formula in white
noise terms. This gap was filled in the paper [AcLuVo97a] where the symbolic
table

δ(0)dt = 1 ; (normal order)dt2 = 0 (1)

were shown to play, in white noise stochastic calculus, the same role played,
in classical stochastic calculus, by the symbolic formulation of the Ito table

dw2 = dt ; dwdt = 0

In both cases these symbolic notations acquire a rigorous meaning through
limit procedures.

The advantage of the formulation (1) of the Ito table, with respect to the
traditional one, is that apparently it does not include an explicit dependence
on the process involved (classical or quantum white noise, number process,
Poisson noise): in fact this dependence enters in the specification of the
corresponding limit relations. This naturally suggests the possibility to use
formula (1) also in the computation of formal Ito tables corresponding to
higher powers of white noise. This was done in [AcLuVo97a] where it was
also shown that already for the square of the white noise the table (1) has
to be integrated with a renormalization procedure, thus leading to the notion
of renormalized Itô table. The first explicit unitary solution of a singular
equation driven by the renormalized square of the white noise was obtained
in [AcVo97].

In connection with the square of white noise a totally unexpected fact
was recently discovered: introducing a renormalization procedure different
from the one usually considered in physics, one can construct a Lie algebra
canonically associated to the renormalized square of (Boson) white noise and
one can prove that this Lie algebra admits a natural representation in an
interacting Fock space [ALV99]. It turns out [AcSk99] that this new type of
interacting Fock space is canonically isomorphic to the finite difference Fock

14



space introduced by Boukas [Bou88], [Bou91] as representation space of an
infinite dimensional generalization of the finite difference algebra previously
introduced by Feinsilver [Fei87] as a purely mathematical generalization of
the Weyl algebra of the Heisenberg commutation relations. Furthermore this
algebra is related to a current representation of the Lie algebra of SL(2,R)
and this suggests an interesting connection between the square of white noise
and the theory of automorphic functions, which is currently under investiga-
tion.

The natural framework for the development of a white noise stochas-
tic calculus, as a generalization of both classical and quantum stochastic
calculus, is that of Hida distributions [HKPS93], [Ob94] and its recent gener-
alizations [Kuo96]. In this direction several results were obtained by Obata
[Ob95], [Ob97a], [Ob97b], [Ob99]. Among them, in particular, the first exis-
tence uniqueness and unitarity condition for a first order white noise equa-
tion [ChJiOb98] (corresponding to the same result for quantum stochatic
differential equations) as well as an intriguing connection between the new
distribution spaces which have been recently introduced as generalizations
of Hida distributions and the interacting Fock space which was originally
introduced for completely different reasons.

Conclusions

In the present survey, for reasons of space, we have concentrated our at-
tention only on the highlights of the development of QP and a substantial
part of results, of interest either for pure mathematics of for their applica-
tions to physics, could not even be mentioned. However even such a broad
line overview might be helpful to convey to a reader, non expert in the field,
the impression of a new branch of mathematics which, in the relatively few
years of its existence, has been able to produce relevant and non trivial con-
tributions to the solution of open problems arising in a multiplicity of differ-
ent fields ranging from the boundary between mathematics and philosophy,
e.g. the foundations of probability or the interpretation of quantum theory,
to some very technical branches of mathematics such as operator algebras,
functional integration, the theory of classical stochastic processes, . . ., and
arriving to concrete applications to physical problems which were not lim-
ited to an elegant rephrasing of things known to physicists, or to the proof of
some statement conjectured by them, but have brought to the fore some new
effects or phenomena which were not even conjectured in the physical liter-
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ature (the domination of the non–crossing diagrams in the stochastic limit
of quantum electrodynamics or of the Anderson model, their re–summation
to a unitary operator, the breaking of the standard commutation relations
due to nonlinear interactions and the emergence interacting commutation
relations, the subsequent emergence of non classical – i.e. neither Bose nor
Fermi – statistics, the phenomenon of super–bosonization, . . .). The reader
interested in these physical applications may look at the book [AcLuVo99b].
A sufficiently faithful photograph of the development of the theory until the
early 90’s can be found in the QP series listed below and, for more recent de-
velopments, one may refer to the new journal: Infinite dimensional analysis,
quantum probability and related topics edited by World Scientific.
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