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Recently, nonequilibrium steady states (NESS) are intensively studied by several
methods. In this article, NESS of a harmonic oscillator interacting with two free-
boson reservoirs at different temperatures and/or chemical potentials are studied
by the stochastic limit approach and the C* algebraic approach. Their interrelation
is investigated as well.

1 Introduction

The understanding of irreversible phenomena including nonequilibrium steady
states (NESS) is a longstanding problem of statistical mechanics. Various the-
ories have been developed so far1. One of promising approaches deals with in-
finitely extended dynamical systems2,3,4. Not only equilibrium properties, but
also nonequilibrium properties have been rigorously investigated. The latter
include analytical studies of nonequilibrium steady states, e.g., of harmonic
crystals5,6, a one-dimensional gas7, unharmonic chains8, an isotropic XY-
chain9, systems with asymptotic abelianness10,11, a one-dimensional quan-
tum conductor12, an interacting fermion-spin system13 and fermionic junction
systems14. Entropy production has been rigorously studied as well (see also
Refs.15-19 and the references therein).

The stochastic limit approach20,21 is a generalization of the scaling limit
theory22. There, the reduced density matrices obey Pauli’s master equa-
tion and the external degrees of freedom turn out to be quantum white
noises. Recently, this approach was extended to systems arbitrarily far from
equilibrium23,24 and would be a new promising tool to deal with nonequilib-
rium properties. However, the relation between the two appraches is not clear
and, in this paper, we compare them for a harmonic oscillator linearly cou-
pled with two harmonic reservoirs at different temperatures and/or chemical
potentials.

The paper is arranged as follows: In the next section, the model is de-
scribed. In Sec. 3, the results of the stochastic limit approach is reviewed. In
Sec. 4, nonequilibrium steady states (NESS) are derived with the aid of the

TasakiAccardiRev: submitted to World Scientific on March 5, 2005 1



C∗-algebraic approach. In Sec. 5, their weak coupling limits are investigated.
The last section is devoted to the summary.

2 Model

To illustrate the relation between the C∗-algebraic and stochastic limit ap-
proaches, we consider a harmonic oscillator linearly coupled with two har-
monic reservoirs24, which is a bosonic junction system.

The model is defined on a tensor product of a Hilbert space L2(R) and
two Fock spaces Hn (n = 1, 2), both of which are constructed from L2(R3):
H ≡ L2(R) ⊗ H1 ⊗ H2. In terms of standard annihilation operators a and
an,k satisfying canonical commutation relations:

[a, a†] = 1, [an,k, a†n′,k′ ] = δn,n′δ(k − k′) , (1)

the Hamiltonian is given by

H = H0 + λ
∑

n=1,2

Vn (2)

where

H0 = Ωa†a +
∑

n=1,2

∫
dkωka†n,kan,k , (3)

Vn =
∫

dk
(
g∗n(k)a†an,k + gn(k)aa†n,k

)
. (4)

In the above, ωk = |k|2, k-integrations are taken over R3 and the functions
gn(k) (n = 1, 2) are square integrable. Strictly speaking, the free field parts∫

dkωka†n,kan,k (n = 1, 2) should be understood as the second quantization of
the multiplicative self-adjoint operator ϕ(k) → ωkϕ(k) defined on the Fourier
transform of L2(R3) to the Fock spaces Hn (n = 1, 2).

At initial states, the two fields and the harmonic oscillator are assumed to
be independent of each other. Moreover, the two fields are assumed to obey
Gibbsian distributions with different temperatures β−1

1 , β−1
2 and chemical po-

tentials µ1, µ2. Namely, one has

ω0(a
†
n,kan′,k′) = δn,n′Nn(ωk)δ(k − k′) , (5)

where

N1(ωk) =
1

eβ1(ωk−µ1) − 1
, N2(ωk) =

1
eβ2(ωk−µ2) − 1

. (6)

In this paper, we only consider the case where Nn(ωk) (n = 1, 2) are bounded.
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Provided gn(−k) = gn(k)∗, the system is invariant under the time reversal
operation ι, which is an antilinear *-morphism such that ι2 is identity and it
satisfies

ι(a) = a , ι(an,k) = an,−k . (7)

Under the time evolution generated by H, the mass and energy are con-
served. Indeed, in the Heisenberg representation, one has

d

dt
a†a =

∑
n=1,2

Jn , (8)

where Jn (n = 1, 2) are given by

Jn = iλ

∫
dk

(
gn(k)a†n,ka− gn(k)∗a†an,k

)
, (9)

and they correspond to the mass flows from the reservoirs since formally
Jn = − d

dt

∫
dka†n,kan,k holds. Similarly, the energy conservation holds:

d

dt
Ωa†a =

∑
n=1,2

ΩJn , (10)

d

dt
Vn = Jε

n − ΩJn , (11)

where Jε
n (n = 1, 2) are given by

Jε
n = iλ

∫
dkωk

(
gn(k)a†n,ka− gn(k)∗a†an,k

)
, (12)

and they correspond to the energy flows from the reservoirs since formally
Jε

n = − d
dt

∫
dkωka†n,kan,k holds. From Eqs.(10) and (11), one finds that Jε

1,
ΩJ1, −ΩJ2 and −Jε

2 correspond, respectively, to the energy flows from the
first reservoir to the first joint, from the first joint to the oscillator, from the
oscillator to the second joint and from the second joint to the second reservoir.

3 Stochastic Limit Approach

Here we summarize the results of the stochastic limit approach obtained by
Accardi, Imafuku and Lu24.

In the stochastic limit approach20,21, one studies the rescaled evolution
operator in the interaction picture

U
(λ)
t/λ2 ≡ exp

(
itH0/λ2

)
exp

(−itH/λ2
)

, (13)
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which is shown to converge, in the sense of correlations under appropriate
assumptions on the model21, to the solution of

d

dt
Ut = −ihtUt, U(0) = 1 (14)

where

ht = lim
λ→0

1
λ

exp
(
itH0/λ2

) ∑
n=1,2

Vn exp
(−itH0/λ2

)
. (15)

In the present case, two steps are necessary to write down (14). Firstly,
in order to deal with the finite temperature situation, field operators an,k are
represented in terms of thermal fields {ξ(n)

k , ξ̃
(n)
k }21 as

an,k =
√

1 +Nn(ωk)ξ(n)
k +

√
Nn(ωk)ξ̃(n) †

k (16)

an,k
† =

√
1 +Nn(ωk)ξ(n) †

k +
√
Nn(ωk)ξ̃(n)

k (17)

where ξ
(n)
k and ξ̃

(n)
k satisfy the commutation relations:

[ξ(n)
k , ξ

(n′) †
k′ ] = δn,n′δ(k − k′) , [ξ̃(n)

k , ξ̃
(n′) †
k′ ] = δn,n′δ(k − k′) ,

and the initial state is represented as the vacuum state with respect to ξ
(n)
k

and ξ̃
(n)
k (n = 1, 2). Secondly, the stochastic limit is taken and one obtains

the evolution equation:

d

dt
Ut = −i

∑
n=1,2

{
a

(
c
(n) †
t + d

(n)
t

)
+ a†

(
c
(n)
t + d

(n) †
t

)}
Ut , (18)

where c
(n)
t and d

(n)
t are quantum white noises defined by

c
(n)
t = lim

λ→0

1
λ

∫
dk

√
1 +Nn(ωk)gn(k)ξ(n)

k e−i t
λ2 (ωk−Ω) (19)

d
(n)
t = lim

λ→0

1
λ

∫
dk

√
Nn(ωk)g∗n(k)ξ̃(n)

k e+i t
λ2 (ωk−Ω). (20)

Based on the evolution equation (18), Accardi, Imafuku and Lu24 studied
nonequilibrium steady states and found

(i) The reduced density matrix of NESS is given by a function of the system
Hamiltonian Ωa†a:

ρsys =
1
Z

e−β′Ωa†a (21)
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where the parameter β′ is given by

β′ =
1
Ω

log


γ(1) eβ1(Ω−µ1)

eβ1(Ω−µ1)−1
+ γ(2) eβ2(Ω−µ2)

eβ2(Ω−µ2)−1

γ(1) 1
eβ1(Ω−µ1)−1

+ γ(2) 1
eβ2(Ω−µ2)−1


 , (22)

and

γ(n) = π

∫
dk|gn(k)|2δ (ωk − Ω) . (23)

(ii) NESS carries nonvanishing mass and energy flows, which are consistent
with the second law of thermodynamics. Particularly, the mass flow is

〈Ĵ(+∞)〉 = 2
γ(1)γ(2)

γ(1) + γ(2)

(
1

eβ1(Ω−µ1) − 1
− 1

eβ2(Ω−µ2) − 1

)
, (24)

where the mass flow operator Ĵ is defined asa

Ĵ(t) =
1
2

d

dt

{
U−t(N2 −N1)U

†
−t

}
, (25)

with Nn (n = 1, 2) the number operator corresponding to
∫

dka†n,kan,k.

As the system Hamiltonian is time reversal symmetric and the flows are not,
the finding (i) implies that the reduced NESS is time-reversal symmetric,
while the second finding (ii) asserts that NESS is not. However, as we will
see, the two observations are both valid and imply the necessity of a careful
treatment of observables in the stochastic limit.

4 Nonequilibrium Steady States in C∗-algebraic Approach

In the C∗-algebraic approach, the Heisenberg time evolution is considered and
steady states are obtained as the weak limits of the initial states10. Although
the transports of fermionic junction systems were studied in detail by Fröhlich,
Merkli and Ueltschi14, the argument cannot be applied to the bosonic case.
To proceed, we additionally assume the followings:

(A) The initial state satisfies

|ω0(a\1a\2 · · · a\n)| ≤ n!Kn (26)

where a\j = a or a† and Kn(> 0) satisfies limn→∞Kn+1/Kn = 0.

aIn Ref. 24, 2Ĵ(t) was identified with the mass flow. However, because of the mass con-

servation (8), Ĵ(t) should be identified with the mass flow. See the arguments in the next
section.

TasakiAccardiRev: submitted to World Scientific on March 5, 2005 5



(B) The form factor gn(k) is a function of |k| and

γ(n)(ω)
π

=
∫

dk|gn(k)|2δ(ωk − ω) =
{

2π
√

ω|gn (
√

ω) |2 (ω ≥ 0)
0 (ω < 0)

, (27)

is in L2(R) and uniformly Hölder continuous with index α ∈ (0, 1), i.e.,
∣∣∣γ(n)(x)− γ(n)(y)

∣∣∣ ≤ K|x− y|α (∃K > 0)

(C) There exists no real solution for η(z) = 0, where

η(z) ≡ z − Ω− λ2
∑

n′=1,2

∫
dk′

|gn′(k′)|2
z − ωk′

, (28)

and 1/η−(ω) ≡ 1/η(ω − i0) (ω ∈ R) is bounded.

The assumptions (A) and (B) are posed in order to simplify the investigation,
while the first half of the assumption (C) plays an essential role as it guarantees
the existence of the steady states.

First we note that the Hilbert space H, where our model is defined, is a
boson Fock space over a Hilbert space

`2 ≡


f =




c
ψ1(k)
ψ2(k)


 : |c|2 +

∑
n=1,2

∫
dk|ψn(k)|2 < +∞



 ,

equipped with the inner product

(f, f̃) = c∗c̃ +
∑

n=1,2

∫
dkψn(k)∗ψ̃n(k) .

The CCR algebra A is, then, generated by Weyl operators (see Theorem 5.2.8
of Ref. 2 ):

W (f) = exp (iΦ(f)) (29)

where Φ is a map from the Hilbert space `2(3 f = ( c, ψ1, ψ2 )) to the
space (3 Φ(f)) of (unbounded) operators on H and is formally defined as
Φ(f) = ΦS(f) +

∑
n=1,2 Φb,n(f) with

ΦS(f) =
1√
2
{c∗a + ca†} (30)

Φb,n(f) =
∫

dk√
2

(
ψn(k)∗an,k + ψn(k)a†n,k

)
. (31)

TasakiAccardiRev: submitted to World Scientific on March 5, 2005 6



In the above, the overline stands for the closure. In other words, any
element of A can be approximated with arbitrary precision by a finite
linear combination of finite products of Weyl operators. On the other
hands, by repeatedly applying the identity (Theorem 5.2.4 of Ref. 2 ):
W (f)W (g) = W (f + g) exp (−iIm(f, g)), a product of Weyl operators
is found to reduce to a single Weyl operator. Therefore, any element of A
can be approximated with arbitrary precision by a finite linear combination
of Weyl operators and, in order to investigate the time evolution of the states,
it is enough to investigate the average values of the Weyl operators.

One, then, obtains the following proposition and corollary, which are
proved in the rest of this section.

Proposition: For the Weyl operator, we have

lim
t→+∞

ω0 {τt (W (f))} = exp

(
−1

2

∑
n=1,2

∫
dk |ϕn(k, f)|2

{
Nn(ωk) +

1
2

})

≡ ω+∞ (W (f)) (32)

where ϕn(k, f) is given by

ϕn(k, f) = ψn(k) +
λgn(k)
η−(ωk)



c + λ

∑

n′=1,2

∫
dk′

g∗n′(k
′)ψn′(k′)

ωk − ωk′ − i0



 . (33)

This implies that NESS ω+∞ exists and that it is quasi-free with a two-point
function:

ω+∞
(
Φ(f)2

)
=

∑
n=1,2

∫
dk |ϕn(k, f)|2

{
Nn(ωk) +

1
2

}
. (34)

Corollary
(i) The average values of the harmonic oscillator variables are

ω+∞(a†a) =
∑

n=1,2

∫
dk

λ2|gn(k)|2
|η+(ωk)|2 Nn(ωk) , ω+∞(aa) = 0 .

This implies that the reduced state is described by the density matrix:

ρλ
sys ≡

1
Zλ

e−βλΩa†a

βλ =
1
Ω

log

∑
n=1,2

∫
dk λ2|gn(k)|2

|η+(ωk)|2 {Nn(ωk) + 1}
∑

n=1,2

∫
dk λ2|gn(k)|2

|η+(ωk)|2 Nn(ωk)
(35)
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where Zλ is the normalization constant.
(ii) The average mass flow is

ω+∞(J1) = −ω+∞(J2)

= 2πλ4

∫
dk

∫
dk′

|g1(k)|2|g2(k′)|2
|η+(ωk)|2 δ(ωk − ωk′) {N1(ωk)−N2(ωk)} .

4.1 Time Evolution of Weyl Operators

Note that the Hamiltonian H is the second quantization of the Hamiltonian
h densely defined on `2:

hf ≡ h




c
ψ1(k)
ψ2(k)


 =




Ωc + λ
∑

n=1,2

∫
dkgn(k)∗ψn(k)

ωkψ1(k) + λg1(k)c
ωkψ2(k) + λg2(k)c


 .

The group τt of time-evolution automorphisms generated by H satisfies (cf.
the argument before Proposition 5.2.27 of Ref. 2 )

τt (W (f)) = W
(
eihtf

)
,

and, under the condition (C), one has

eihtf =




c(t)
ψ1(k, t)
ψ2(k, t)


 , (36)

where

c(t) =
∑

n=1,2

∫
dk

λg∗n(k)
η+(ωk)

eiωktϕn(k, f)

ψn(k, t) = eiωktϕn(k, f) +
∑

n′=1,2

∫
dk′

λ2gn(k)g∗n′(k
′)eiωk′ tϕn′(k′, f)

η+ (ωk′) (ωk′ − ωk + i0)

Then, since the two fields and the harmonic oscillator are independent at the
initial state, the average value of the Weyl operator at time t is evaluated as

ω0 (τt (W (f))) = ω0

(
exp

(
iΦS(eihtf)

)) ∏
n=1,2

ω0

(
exp

(
iΦb,n(eihtf)

))
(37)
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4.2 On the limit: limt→±∞ ω0

(
exp

(
iΦS(eihtf)

))

As shown in Appendix A, η+(ω) is continuous and ϕn(k, f) ∈ L2(R3) under
the assumption (B). Because of ωk = k2 and gn(k) = gn(

√
ω), c(t) can be

rewritten as

c(t) =
λ

2

∑
n=1,2

∫ ∞

0

dωeiωtvn(ω) , (38)

vn(ω) =
√

ωg∗n(
√

ω)
η+(ω)

[∫
dk̂ ϕn(k, f)

]

|k|=√ω

, (39)

where dk̂ stands for the angular integral. Since gn(k) and ϕn(k, f) are L2(R3),
one has

c̄n ≡
∫ ∞

0

dω |vn(ω)|

≤ sup
0<ω

2
|η+(ω)|

√∫
dk|gn(k)|2

√∫
dk|ϕn(k, f)|2 < +∞ ,

or vn ∈ L1(R+). Hence the Riemann-Lebesgue theorem25 leads to
limt→+∞ c(t) = 0.

The assumption (A) implies
∣∣ω0

(
ΦS(eihtf)m

)∣∣ ≤ m!(2|c(t)|)mKm , (40)

and, because |c(t)| ≤ λ(c̄1 + c̄2)/2 ≡ c̄,

∣∣ω0

(
exp

(
iΦS(eihtf)

))− 1
∣∣ ≤

∞∑
m=1

1
m!

∣∣ω0

(
ΦS(eihtf)m

)∣∣

≤
∞∑

m=1

(2|c(t)|)mKm ≤ |c(t)|
c̄

∞∑
m=1

(2c̄)mKm → 0 (as t → +∞) .

The sum in the right-hand-side is finite as a result of limj→+∞Kj+1/Kj = 0.

4.3 On the limit: limt→±∞ ω0

(
exp

(
iΦb,n(eihtf)

))

Since the initial state ω0 is quasi-free with respect to reservoir degrees of
freedom, we have

ω0

(
exp

(
iΦb,n(eihtf)

))
= exp

{−ω0

(
Φb,n(eihtf)2

)
/2

}
, (41)
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and

ω0

(
Φb,n(eihtf)2

)
=

∫
dk |ϕn(k, f)|2

{
Nn(ωk) +

1
2

}

+2λ2ReI(1)
n (t) + λ4I(2)

n (t) ,

where

I(1)
n (t) ≡

∫
dkϕn(k, f)∗gn(k)I(ωk; t)

{
Nn(ωk) +

1
2

}

I(2)
n (t) ≡

∫
dk|gn(k)|2|I(ωk; t)|2

{
Nn(ωk) +

1
2

}
,

I(ωk; t) =
∑

n′=1,2

∫
dk′

g∗n′(k
′)ei(ωk′−ωk)tϕn′(k′, f)

η+ (ωk′) (ωk′ − ωk + i0)
.

The time-dependent terms I
(j)
n (t) (j = 1, 2) are shown to vanish in the

limit of t → +∞ with the aid of the following Lemma. Its proof is given in
Appendix B.

Lemma 1 If wn ∈ L1(R+) ∩ L2(R+) (n = 1, 2), then

lim
t→+∞

∫ ∞

0

dωw∗1(ω)
∫ ∞

0

dω′
w2(ω′)ei(ω′−ω)t

ω − ω′ − i0
= 0 (42)

As easily seen, one has

I(1)
n (t) = −1

4

∑
m=1,2

∫ ∞

0

dωun(ω)∗
∫ ∞

0

dω′
vm(ω′)ei(ω′−ω)t

ω − ω′ − i0

where vm(ω) is given by (39) and

un(ω) =
√

ω g∗n(
√

ω)
{
Nn(ω) +

1
2

}[∫
dk̂ ϕn(k, f)

]

|k|=√ω

In the previous subsection, we have seen vm ∈ L1(R+). On the other hand,
∫ ∞

0

dω|vm(ω)|2 ≤ sup
ω>0

4
|η+(ω)|

(
sup
ω>0

γ(m)(ω)
π

) ∫
dk|ϕm(k, f)|2 < +∞

or vm ∈ L2(R+). Exactly in the same way, one has un ∈ L1(R+) ∩ L2(R+).
Hence, Lemma 1 implies I

(1)
n (t) → 0 (as t → +∞).
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Moreover, one has

I(2)
n (t) = 2π

∫ ∞

0

dω
√

ω
∣∣gn(

√
ω)

∣∣2
{
Nn(ω) +

1
2

}
|I(ω; t)|2

≤ sup
0<ω

γ(n)(ω)
π

sup
0<ω

{
Nn(ω) +

1
2

} ∫ +∞

−∞
dω |I(ω; t)|2

and∫ +∞

−∞
dω |I(ω; t)|2 =

π

2i

∑
n,m=1,2

∫ ∞

0

dω1

∫ ∞

0

dω2
vm(ω1)v∗n(ω2)
ω2 − ω1 − i0

ei(ω1−ω2)t .

Then, because of vm, vn ∈ L1(R+) ∩ L2(R+) and Lemma 1, we have

lim
t→+∞

∫ +∞

−∞
dω |I(ω; t)|2 = 0

and, thus, I
(2)
n (t) → 0 (for t → +∞).

In short, we derive

lim
t→+∞

ω0

(
Φb,n(eihtf)2

)
=

∫
dk |ϕn(k, f)|2

{
Nn(ωk) +

1
2

}
, (43)

which implies the desired results.

5 Weak coupling limits

In order to compare the results of the C∗-algebraic approach with those of
the stochastic limit approach, we consider weak limits of the former with the
aid of the following lemma:

Lemma 2 Suppose
∑

n=1,2 γ(n)(ω) is uniformly Hölder continuous on R,
square integrable on R+ and

∑
n=1,2 γ(n)(Ω) > 0, then, for any continuous

bounded function F (ω),

lim
λ→0

∑
n=1,2

∫
dk

λ2|gn(k)|2
|η−(ωk)|2 F (ωk) = F (Ω) (44)

Lemma 2 gives

lim
λ→0

∫
λ2|gn(k)|2
|η+(ωk)|2 Nn(ωk) = lim

λ→0

∑
m=1,2

∫
λ2|gm(k)|2
|η+(ωk)|2

|gn(k)|2Nn(ωk)∑
m′=1,2 |gm′(k)|2

=
γ(n)

γ(1) + γ(2)
Nn(Ω) ,
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where |gn(k)|2k2=Ω = |gn(
√

Ω)|2 = γ(n)/(2π2
√

Ω) is used. Then, Corollary (i)
leads to

lim
λ→0

ρλ
sys =

1
Z

e−β′Ωa†a

β′ = lim
λ→0

βλ =
1
Ω

log

∑
n=1,2 γ(n) {Nn(Ω) + 1}∑

n=1,2 γ(n)Nn(Ω)

Z = lim
λ→0

Zλ ,

which agrees with the the reduced distribution (21)-(22) derived by the
stochastic limit approach.

Next we consider the flows. From Corollary (ii), one finds that the limit
of λ → 0 leads to a contradictory result, i.e., the absence of the flow

lim
λ→0

ω+∞(J1) = 0 . (45)

This is, however, consistent with the physical situation: When the system-
reservoir interactions are vanishingly weak, the flows induced by them are
vanishingly small and the accumulation over a longer time interval is necessary
to have observable values. Indeed, well-defined weak-coupling limit of the flow
can be obtained after dividing them by a factor of λ2:

lim
λ→0

ω+∞(J1)/λ2 =
2γ(1)γ(2)

γ(1) + γ(2)
{N1(Ω)−N2(Ω)} . (46)

This limit agrees with NESS flow (24) derived by the stochastic limit approach.
Note that the division by λ2 precisely corresponds to the scaling of the time
variable: t → λ2t.

In short, the stochastic limit approach successfully gives the weak coupling
limits of NESS averages of approriately rescaled observables.

6 Summary and Discussion

We have compared the nonequilibrium steady states obtained by the stochas-
tic limit approach and the C∗-algebraic approach and have shown that the
stochastic limit approach does lead to the weak coupling limits of NESS av-
erages of appropriately rescaled observables.

We note that the apparent inconsistency of the results addressed at the
end of Sec.3 is not a problem. Indeed, as shown in Corollary (i), the exact re-
duced density matrix can be time-reversal symmetric even though the original
state is not.

TasakiAccardiRev: submitted to World Scientific on March 5, 2005 12



The reason of the time-reversal symmetry of the exact reduced density
matrix ρλ

sys can be understood as follows. From Corollary, the steady state
ω+∞ and, hence, the reduced state are invariant under the gauge transforma-
tion. As the reduced state is quasi-free, it can be expressed as an exponential
function of a bilinear form of the creation and annihilation operators of the
oscillator. On the other hand, a†a is the only quadratic operator which is
invariant under the gauge transformation. Therefore, the reduced density ma-
trix ρλ

sys should be an exponential function of a†a and, thus, is time-reversal
symmetric.

Here a remark is in order. Generally speaking, the reduced density matrix
is not time-reversal symmetric when the original state is not, but its weak
coupling limit is time-reversal symmetric24. For example, when one reduces
the state onto the subalgebra generated by a and

b ≡ 1
α

∫
dkg∗1(k)a1,k

(
α2 ≡

∫
dk|g1(k)|2 : the normalization constant

)
,

the reduced density matrix is given by

ρred =
1

Zred
exp

(−β1a
†a− β2b

†b− β12a
†b− β∗12b

†a
)

where Zred is the normalization constant and the real parameters β1, β2 and
a complex parameter β12 are related to the correlation matrix C as

(
β1 , β12

β∗12 , β2

)
= log(E + C−1) ,

C ≡
(

ω+∞(a†a) , ω+∞(a†b)
ω+∞(b†a) , ω+∞(b†b)

)
,

with E the 2×2 unit matrix. The matrix elements of C are given by

ω+∞(a†a) =
∑

m=1,2

∫
dk

λ2|gm(k)|2
|η+(ωk)|2 Nm(ωk)

ω+∞(b†a) =
∑

m=1,2

∫
dk

λ|gm(k)|2
αη+(ωk)

Nm(ωk)
{

δ1,m +
λ2

η−(ωk)

∫
dk′

|g1(k′)|2
ωk − ωk′ − i0

}

ω+∞(b†b) =
∑

m=1,2

∫
dk
|gm(k)|2

α2
Nm(ωk)

∣∣∣∣δ1,m +
λ2

η−(ωk)

∫
dk′

|g1(k′)|2
ωk − ωk′ − i0

∣∣∣∣
2

Since the symmetry of g1(k) leads to ι(b) = b, the reduced density matrix is
time-reversal symmetric if and only if β12 is real. As easily seen, this condition
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is equivalent to

β∗12 − β12 = ω+∞(b†a)− ω+∞(a†b) = −i
ω+∞(J1)

λα
= 0

where J1 stands for the mass flow operator (9). Therefore, when the steady
state admits nonvanishing flow, the reduced state ρred is not time-reversal
symmetric. However, in the weak coupling limit, the correlation matrix re-
duces to

lim
λ→0

C =
(

1/{eβ′Ω − 1} , 0
0 ,

∫
dk|g1(k)|2N1(ωk)/α2

)

which corresponds to the time-reversal symmetric reduced state:

ρ̃red =
1

Z̃red

exp
(
−β′Ωa†a− β̃2b

†b
)

where Z̃red is the normalization constant, β′ is given by (22) and

β̃2 = log
∫

dk|g1(k)|2 {N1(ωk) + 1}∫
dk|g1(k)|2N1(ωk)

.

The present results suggest that, when one considers the weak coupling
limit, it is necessary to classify observables into the ones such as a†a possessing
nonvanishing λ → 0 limits, the ones such as J1 which should be divided by
λ2 before taking the λ → 0 limit, and so on. The average values of the
former observables can be characterized by the reduced density matrix in the
weak coupling limit. However, we do not know reduced states which provide
the average values of the latter observables. This aspect will be investigated
elsewhere.
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Appendix A: On functions η+(ω), ϕn(k, f) and ψn(k, t)

Here we show that ϕn(k, f), ψn(k, t) ∈ L2(R3) and that η+(ω) − ω + Ω is
uniformly Hölder continuous and square integrable on the positive real line.

Since gn(k) is spherical symmetric, in terms of the function γ(n)(ω) defined
by (27), one has

η(ω + iε)− ω − iε + Ω = −λ2

π

∑
n=1,2

∫ ∞

0

dω′
γ(n)(ω′)

ω − ω′ + iε
.

Then, as γ(n)(ω) is square integrable and uniformly Hölder continuous (cf.
assumption B), Theorem 106 of Section 5.15 of Ref. 25 implies that the limit
of the right-hand side for ε → 0+ exists and is again square integrable and
uniformly Hölder continuous with the same index α as γ(n). Because of the
same theorem, one finds

lim
ω→+∞

γ(n)(ω) = 0 , (47)

lim
ω→+∞

{ω − Ω− η+(ω)} = lim
ω→+∞

λ2

2π

∑
n=1,2

∫ ∞

0

dω′
γ(n)(ω′)

ω − ω′ + i0
= 0 . (48)

Now we show that ϕn(k, f) given by (33) is square integrable. Since
ψn(k), gn(k) ∈ L2(R3) and 1/η−(ωk) is bounded, ϕn(k, f) ∈ L2(R3) follows
if

gn(k)
η−(ωk)

∫
dk′

g∗n′(k
′)ψn′(k′)

ωk − ωk′ − i0
(49)

is square integrable. On the other hand, if w(ω) ∈ L2(R+), then,

gn(k)w(ωk)
η−(ωk)

∈ L2(R3) .

Indeed, (47) implies sup0<ω γ(n)(ω) < +∞ and one has
∫

dk

∣∣∣∣
gn(k)w(ωk)

η−(ωk)

∣∣∣∣
2

=
1
π

∫ ∞

0

dω
γ(n)(ω)
|η+(ω)|2 |w(ω)|2

≤ 1
π

sup
ω>0

γ(n)(ω) sup
ω>0

1
|η+(ω)|2

∫ ∞

0

dω|w(ω)|2 < +∞
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Therefore, it is enough to show that the integral in (49):
∫

dk′
g∗n′(k

′)ψn′(k′)
ω − ωk′ − i0

=
1
2

∫ ∞

0

dω′
√

ω′g∗n′(
√

ω′)
ω − ω′ − i0

[∫
dk̂′ψn′(k′)

]

|k′|=
√

ω′

defines a square integrable function of ω ∈ R+. This is the case because of
Theorem 101 of Section 5.10 of Ref. 25 and
∫ ∞

0

dω′
∣∣∣∣
√

ω′g∗n′(
√

ω′)
∫

dk̂′ψn′(k′)
∣∣∣∣
2

≤ 4
π

sup
0<ω

γ(n′)(ω)
∫

dk|ψn′(k)|2 < +∞ .

Exactly in the same way, one can show that ψn(k, t) defined after (36) is in
L2(R3).

Appendix B: Proof of Lemma 1

We have
∫ ∞

0

dωw∗1(ω)
∫ ∞

0

dω′
w2(ω′)ei(ω′−ω)t

ω − ω′ − i0

= lim
ε→0+

∫ ∞

0

dωw∗1(ω)
∫ ∞

0

dω′
w2(ω′)ei(ω′−ω)t

ω − ω′ − iε

= lim
ε→0+

1
i
eεt

∫ ∞

0

dωw∗1(ω)
∫ ∞

0

dω′w2(ω′)
∫ ∞

0

dsei(ω′−ω+iε)(s+t)

= lim
ε→0+

1
i
eεt

∫ ∞

t

dse−εsw̃∗1(s)w̃2(s) =
1
i

∫ ∞

t

dsw̃∗1(s)w̃2(s) (50)

where w̃n(s) ≡ ∫∞
0

dωwn(ω) exp(iωs) stands for the Fourier transform.
In the above, the first equality holds because the ω′-integral exists for

w2 ∈ L2(R+) as an element of L2(R+) (cf. Theorem 101 of Section 5.10 of
Ref. 25 ).

The second and third equalities follow from Fubini’s theorem and the
absolute integrability of the integrand (remind that w1, w2 ∈ L1(R+)).

Since w1, w2 ∈ L2(R+), their Fourier transformations are square inte-
grable as well. Thus, w̃∗1(s)w̃2(s) is integrable and Lebesgue’s dominated
convergence theorem leads to the last equality.

The desired result also follows from the integrability of w̃∗1(s)w̃2(s):

lim
t→+∞

∫ ∞

0

dωw∗1(ω)
∫ ∞

0

dω′
w2(ω′)ei(ω′−ω)t

ω − ω′ − i0

= lim
t→+∞

1
i

∫ ∞

t

dsw̃∗1(s)w̃2(s) = 0 (51)
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Appendix C: Proof of Lemma 2

Let γ(ω) ≡ ∑
n=1,2 γ(n)(ω), then, since γ(Ω) > 0 and γ(ω) is continuous,

there exists κ > 0 such that γ(ω) ≥ γ(Ω)/2 for |ω − Ω| ≤ κ. As shown in
Appendix A, the integral involved in η+(ω)

I(ω) ≡ 1
π

∫ ∞

0

dω′
γ(ω′)

ω − ω′ + i0

is bounded and, thus, for sufficient small λ,

|Reη+(ω)− ω + Ω| = λ2|I(ω)| ≤ κ

2
.

Then, we divide the integral into four terms:
∫ ∞

0

dωF (ω)
λ2γ(ω)
|η+(ω)|2 =

∫ Ω+κ

Ω−κ

dωF (ω)
λ2γ(Ω)

(ω − Ω−∆λ)2 + λ4γ(Ω)2

+
∫ Ω−κ

0

dωF (ω)
λ2γ(ω)
|η+(ω)|2 +

∫ ∞

Ω+κ

dωF (ω)
λ2γ(ω)
|η+(ω)|2

+
∫ Ω+κ

Ω−κ

dωF (ω)

{
λ2γ(ω)
|η+(ω)|2 −

λ2γ(Ω)
(ω − Ω−∆λ)2 + λ4γ(Ω)2

}
. (52)

where ∆λ = λ2ReI(Ω).
In the standard way, one can easily show

lim
λ→0

∫ Ω+κ

Ω−κ

dωF (ω)
λ2γ(Ω)

(ω − Ω−∆λ)2 + λ4γ(Ω)2
= πF (Ω) . (53)

When ω ≤ Ω− κ, one has

|η+(ω)| ≥ |Reη+(ω)| ≥ Ω− ω − |Reη+(ω)− ω + Ω| ≥ Ω− ω − κ

2
and the second integral of (52) is evaluated as

∣∣∣∣∣
∫ Ω−κ

0

dωF (ω)
λ2γ(ω)
|η+(ω)|2

∣∣∣∣∣ ≤ λ2 sup
0<ω

|F (ω)| sup
0<ω

|γ(ω)|
∫ Ω−κ

−∞

dω

(Ω− ω − κ/2)2

=
2λ2

κ
sup
0<ω

|F (ω)| sup
0<ω

|γ(ω)| → 0 (for λ → 0)

The third integral of (52) can be evaluated in the same way:

lim
λ→0

∫ ∞

Ω+κ

dωF (ω)
λ2γ(ω)
|η+(ω)|2 = 0 .
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The last integral is rewritten as
∫ Ω+κ

Ω−κ

dωF (ω)

{
λ2γ(ω)
|η+(ω)|2 −

λ2γ(Ω)
(ω − Ω−∆λ)2 + λ4γ(Ω)2

}

= λ4

∫ Ω+κ

Ω−κ

dωF (ω)γ(ω)
2Reη+(ω)Re{I(ω)− I(Ω)}

|η+(ω)|2
[
(ω − Ω−∆λ)2 + λ4γ(Ω)2

]

+λ6

∫ Ω+κ

Ω−κ

dωF (ω)γ(ω)
2ReI(ω)Re{I(ω)− I(Ω)}+ |I(ω)|2 − |I(Ω)|2

|η+(ω)|2
[
(ω − Ω−∆λ)2 + λ4γ(Ω)2

]

+
∫ Ω+κ

Ω−κ

dωF (ω)
{

γ(ω)
γ(Ω)

− 1
}

λ2γ(Ω)
(ω − Ω−∆λ)2 + λ4γ(Ω)2

.

Then, because of |η+(ω)| ≥ λ2γ(ω) ≥ λ2γ(Ω)/2 and |Reη+(ω)|/|η+(ω)| ≤ 1,
one has ∣∣∣∣∣

∫ Ω+κ

Ω−κ

dωF (ω)

{
λ2γ(ω)
|η+(ω)|2 −

λ2γ(Ω)
(ω − Ω−∆λ)2 + λ4γ(Ω)2

}∣∣∣∣∣

≤
∫ Ω+κ

Ω−κ

dωH(ω)
λ2γ(Ω)

(ω − Ω−∆λ)2 + λ4γ(Ω)2
, (54)

where

H(ω) =
4γ(ω)
γ(Ω)3

|F (ω)|
∣∣2ReI(ω)Re{I(ω)− I(Ω)}+ |I(ω)|2 − |I(Ω)|2

∣∣

+
4γ(ω)
γ(Ω)2

|F (ω)| |Re{I(ω)− I(Ω)}|+ |F (ω)|
∣∣∣∣
γ(ω)
γ(Ω)

− 1
∣∣∣∣ .

Since H(ω) is continuous and H(Ω) = 0, (53) implies that the second integral
of (52) vanishes in the λ → 0 limit.

lim
λ→0

∣∣∣∣∣
∫ Ω+κ

Ω−κ

dωF (ω)

{
λ2γ(ω)
|η+(ω)|2 −

λ2γ(Ω)
(ω − Ω−∆λ)2 + λ4γ(Ω)2

}∣∣∣∣∣
≤ πH(Ω) = 0 .

In short, one obtains

lim
λ→0

∫ ∞

0

dωF (ω)
λ2γ(ω)
|η+(ω)|2 = πF (Ω) ,

and, thus,

lim
λ→0

∑
n=1,2

∫
dkF (ωk)

λ2|gn(k)|2
|η−(ωk)|2 = lim

λ→0

∫ ∞

0

dωF (ω)
λ2γ(ω)

π|η+(ω)|2 = F (Ω) .
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