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Abstract. It is shown that many important features of nested fractals,
such as the Hausdorff dimension and measure, the geodesic distance
induced by the immersion in R™ (when it exists), and the self-similar
energy can be recovered by the description of the fractal in terms of
spectral triples. We describe in particular the case of the Vicsek square,
showing that all self-similar energies can be described through a defor-
mation of the square to a rhombus.
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0. Introduction

In this note, we review some notions relative to a noncommutative description
of some fractals which goes back to [5] for the case of the Cantor set, and
to [8] for a wide class of fractals, specialising the analysis to the class of
nested fractals [10, 15, 12, 13], which allows a more precise study of the
various properties that can be recovered via the (noncommutative) geometric
treatment.

Nested fractals are described here via a discrete spectral triple, consist-
ing of the algebra of (continuous) functions on the fractal acting on the ¢2
space H on the oriented edges of the fractal, where the Dirac operator D on
H maps an oriented edge to its opposite, multiplied by the inverse length of
the edge itself.

The tools of noncommutative geometry [5] may associate with these
data a notion of dimension, an integral on the elements of the algebra, a
distance on the state space of the algebra, and also an energy form.

This work was completed under the program GDRE GREFI-GENCO, with the support
by INAAM and CNRS.
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FIGURE 1. Nested fractals

We prove in Sections 1 and 2 that, for nested fractals, the noncommuta-
tive dimension coincides with the Hausdorff dimension and the noncommu-
tative integral coincides (up to a multiplicative constant) with the integral
w.r.t. the Hausdorff measure. Less stringent results in this direction were
proved in [8] for a wider class of fractals. We recall here that the noncommu-
tative dimension d is given by the abscissa of convergence of the zeta function
z(s) = Tr(|D|~*), while the integral of f is given by the residue in d of the
zeta function z¢(s) = Tr(f|D|~*).

As for the distance, in the case of the Sierpinski gasket, we stated (with-
out proof) in [8] that the geodesic distance induced by the natural immersion
of the gasket in the plane is also recovered via the discrete spectral triple.
The same result was proved in [3] with a completely different spectral triple.

A noncommutative energy form for fractals was first considered in [4] for
the case of the gasket, with a spectral triple given by a deformation of those
considered in [3], and was proved to coincide with the unique self-similar
energy on the gasket up to a constant. In that paper a residue formula for
a suitable zeta function was used, and the abscissa of convergence, which
we called energy dimension, was shown to be different from the Hausdorff
dimension.

Recently, we could prove that this is a general result, when the discrete
spectral triple is considered on nested fractals, see [9] for the proof. More
precisely the energy dimension §, or the abscissa of convergence of the zeta
function Z¢(s) = Tr(|[D, f]|*|D|~%), is always given by 2 — %ggi for finite
energy funcions, where p is the scaling factor for the energy, and A is the
(unique) scaling factor for the contractions. Moreover, the residue in § of

Zs(s) always coincides with a self similar energy of f on the fractal.

We discuss these results in Section 3, describing in particular the case of
the Vicsek square, for which the self-similar energy is not unique. Since our
triples are completely determined by the geometry, or better by the embed-
ding of the fractal in R™, we expected to be able to recover only one of such
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energies (up to multiplicative constants), in particular the one which is in-
variant under all symmetries of the square. We prove here that all self-similar
energies for the Vicsek are recovered by our methods, if we are allowed to
replace the squared Vicsek with a rhombic Vicsek, where some symmetries
are violated.

In Section 4 we report on another recent result of ours, namely the fact
that the geodesic distance induced by the natural immersion of the nested
fractal in R™ coincides with a suitable noncommutative distance induced by
the discrete spectral triple. More precisely, Connes noncommutative distance
is induced by the semi-norm given by the norm of the commutator of the
Dirac operator with an element of the algebra, a function on the fractal in
our case. Our variant of the noncommutative distance consists of replacing
the norm with a norm up to compacts, namely with a norm in the Calkin
algebra. For these reasons such distance does not always coincide with the
noncommutative distance considered by Connes, however it does for the gas-
ket. The proof of this result will be given in [9].

1. Nested fractals

Let Q := {w; :i=1,...,k} be a family of contracting similarities of R", i.e.
there are \; € (0,1) such that ||w;(z) — w;(y)|| = \il|lx — yl|, =,y € RN. The
unique non-empty compact subset K of RY such that K = Ule w;(K) is
called the self-similar fractal defined by {w;}i=1, . For any i € {1,...,k},
let p; € RY be the unique fixed-point of w;, and say that p; is an essential
fixed-point of Q if there are ¢/, j,7' € {1,...,k}, ¢ # ¢, such that w;(p;) =
wjs (pir). Denote by V) the set of essential fixed-points of €, and we assume
that it has at least two elements, and let Ey := {(p,q) : p,q € Vo, p # q}. For
any n € N, set X, := {0 : {1,...,n} = {1,...,k}}, wo := wy(1) 0" 0 Wo(n),
Vo € Y, Vi = Uses, wo(Vo), and wy := id, 3y := {0}, ¥ = UX  X,.
Then, V,,_1 C V,,, Vn € N. Sets of the form w,(Vp), for o € %,,, are called
combinatorial n-cells. For any n € N, define E, := {(w,(p),ws(q)) : 0 €
Yn,0,q € Vo,p # ¢}, and, for any 0 € X,,, ¢ € {1,...,k}, denote by o -i €
Y41 the map defined by o -i(j) = o(j), j € {1,...,n}, 0 -i(n+1) = 4. The
couple (K, ) is said to be a nested fractal in the sense of Lindstrgm [10] if

(1) \y; =\ forallie{l,...,k},

(2) there is an open bounded set U C RY, such that U¥_,w;(U) C U, and
w;(U)Nw;(U) =0, for all i, j € {1,...,k}, i # j (open set condition),

(3) the graph (V4, E7) is connected, that is, for any p,q € Vi, there are
Po,---,Ps € Vi, such that py = p, ps = ¢, and (p;_1,p;) € E1, for all
1=1,...,s,

(4) if 0,0’ € Xy, 0 # o', then w, (V) # wer (Vp), and we(K) Nwe (K) =
we (Vo) Nwer (Vo) (nesting property),

(5) if p,q € Vo, p # ¢, then the symmetry with respect to II,, := {z € RV :
Iz = pll = ||z — ¢||} maps combinatorial n-cells to combinatorial n-cells,
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for any n € NU {0}, and maps an n-cell lying on both sides of II,, to
itself (symmetry property).

The following definitions are taken from [12, 13], with slight modifica-
tions.
If V is a finite set, let us denote by C (V') the set of functions from V to
R, and by 2 the set of functionals & : C(Vy) — R such that
(1) there exists c,q = cqp > 0, Y(p, ¢) € Ey, for which, Vf € C(V}), one has

8[f] = Z(p,q)eEo CPQ(f(p) - f(q))Q?
(2) E[f] =0 <= f is constant.

Define, for € € 2, n € N, the functionals
Su(@)f] ==Y Elfow,],  VfeC(Vy),

oeEY,
My (E)[f] := inf{Sn(E)[g] : g € C(V),glv, = [}, VI e C(Vo).

Definition 1.1. A functional € € & is said an eigenform, with eigenvalue
p>0,if My(€) = pé.

Lindstrgm proved that there is an eigenform € € 9. Note that all eigen-
forms have the same eigenvalue p, which satisfies p € (0,1), see [15], Propo-

sition 3.8. It is known that & [f] == limy 00 p~™Sn (8)[f] defines a Dirichlet

form on the fractal K. Define .Z := {f € C(K) : Ex[f] < 00}
Theorem 1.2. Let € € 9. Then there exists
Exolf] = nh_)rrgo P~ Sn(E)[f]s feZz.

Moreover, there is an eigenform &' € 9 such that
_ 3 —n !/
€oc = lim p7"5,(&)[f].
Proof. See [13], Theorem 4.11, and Remark 4.1. O

2. Singular traces and spectral triples on self-similar fractals

Let us recall that (A,J, D) is called a spectral triple when A is an algebra
acting on the Hilbert space H, D is a self adjoint operator on the same
Hilbert space such that [D,a] is bounded for any a € A, and D has compact
resolvent. In the following we shall assume that 0 is not an eigenvalue of D,
the general case being recovered by replacing D with Dy, (py+. Such a triple
is called d*-summable, d € (0,00), when |D|~% belongs to the Macaev ideal
Lhee = {a: Sala) oo}, where S, (a) := >.}_; ur(a) is the sum of the first

n largest elgelrcl)%/;lues (counted with multiplicity) of |al.

The noncommutative version of the integral on functions is given by the
formula Tr,,(a|D|~%), where Tr,(a) := lim,, Lfgg(z) is the Dixmier trace, i.e.
a singular trace summing logarithmic divergences. By the arguments below,
such integral can be non-trivial only if d is the Hausdorff dimension of the

spectral triple, but even this choice does not guarantee non-triviality.
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Definition 2.1. [7] Let (A, H, D) be a spectral triple, Tr,, the Dixmier trace.
(i) We call a-dimensional Hausdorff functional the map a — T'r,(a|D|~*);
(#i) we call (Hausdorff) dimension of the spectral triple the number

d(A, 3, D) =inf{d > 0:|D|~% € Ly™} =sup{d > 0: |D|~¢ ¢ L1},

where £4°° = {a : 924 _; 0},

logn

Theorem 2.2. [7] d := d(A,H, D) is the unique exponent, if any, such that
the d-dimensional Hausdorff functional is non-trivial.

In general, a self-similar fractal (in R™) is described by a finite set of
similitudes wy, . . . wg, with scaling parameters A1, ... A\g, A; < 1, as the unique

compact set K such that
k

Jwi(x) =K.
i=1
A standard way to construct spectral triples on such fractals is the following:
e Select a subset S C K together with a triple T, = (7., H,, D,) on C(5).
e Set Ty = (W@,%@,D@) on G(K), where F@(f) = 7To(f|5'), Ho = Ho,
Dy = D,.
e Set T, := (m,,Hy, Do) on C(K), with 7, (f) = mg(fow,), Dy = A\, 1Dy,
Ao = ITZ Aog-
e Set T =P, T, on C(K) and consider the *-algebra A = {f € C(K) :
[D, f] is bdd}.
Definition 2.3. [Discrete triple on nested fractals] Assume K to be a nested
fractal in R™, and construct a triple T, = (7., H,, D,) on C(V}) as follows:

Ho = P F(0e), =(f)= P (f(8+) f(g)) D, = Tle) D (? (1)>

ecFy ec kg ecEy
Then construct the triples T, and T = @_ T, as above.

Theorem 2.4. The zeta function Zp of (A, H, D), i.e. the meromorphic ex-
tension of the function s € C — Tr(|D|~*), is given by

2 l(e)®
Z;D(S) _ ZSEEO ( )
1—kAs
Therefore, the dimensional spectrum of the spectral triple is
271
S im — dl1 Pa— : 7 C.
d { (+10gkn> nez}cC

As a consequence, the metric dimension dp of the spectral triple (A, 3, D),
namely the abscissa of convergence of its zeta function, is dp = d = %,

Zp has a simple pole in dp, and the measure associated via Riesz the-
orem with the functional f — ¢ f coincides with a multiple of the Hausdorff
measure Hy (normalized on K ):

vol(f)E/devol = tr,(f|D|7%) = 2

log1/A

> () /K fdH; e C(K).

eeFy
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Proof. The non vanishing eigenvalues of | D, | are exactly {W}ee Eo» each
one with multiplicity 2.

Hence Tr(|Dy| %) = 2X%171 32 £(e)® and for Res > d we have

ecEyp
Te(|D|~*) ZTr Do) =2 t(e)* Y Nl
ecEy o
=2 e > D AT
e€Eg n>0|o|=n
=2 e’ > KN =2 U(e)*(1— kAT
ecEy n>0 ecEy

Therefore, we have 84, = {d (1 + 137;2 n) :n € Z} C C. Now we prove that

the volume measure is a multiple of the Hausdorff measure Hy.

Clearly, the functional vol(f) = tr,,(f|D|~%) makes sense also for bounded
Borel functions on K, and we recall that the logarithmic Dixmier trace may
be calculated as a residue (cf. [5]): tr,(f|D|™¢) = Ress—q Tr(f|D|~*), when
the latter exists. Then, for any multi-index 7,

tro(xc, [D|™) = Ress—a Tr(xc,|D| ™)
= lim (s —d) Tr(xc,|D|™?)
s—dt

= lim (S—d)ZTr(XC, o wy|Dy| %),

s—dt

and we note that yc, o w, is not zero either when ¢ < 7 or when o > 7. In
the latter case, xc. o w, = 1. Observe that Tr(xc, |Ds| %) < Tr(|Dy| %) =
2) 51l Yeem, te)® — 2)4le| e, t(e)® when s — dF, hence lim (s —

s—dt

d) Tr(xc,|Des|~%) = 0. Therefore we may forget about the finitely many
o < 71, and get

tro(xe. [D| ™) = lim (s —d) > Tr(|Do| ™)
o>T
= 1 9k \s(IT1+m)
i (s Z > e

eeEy

—d
_ oydlr] e
=2 ) ) sl—l>rg+1—k>\5
eckEy

2
S — ¢ e) Hy(C
K log 1/A ; (e)° logl//\ Z al

e 0

7|

This implies that, for any f € C(K) for which f < x¢., vol(f) < ﬁ > e te)® ()

therefore points have zero volume, and vol(x. ) = vol(xc,), where C. de-
notes the interior of C,. As a consequence, for the simple functions given
by finite linear combinations of characteristic functions of cells or vertices,
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vol(p) = ﬁ D ek, ¢(e) [ ¢ dHy. Since continuous function are Riemann
integrable w.r.t. such simple functions, the thesis follows. ([

3. On the recovery of the Dirichlet energy

We propose the following expression for the energy form on a spectral triple
(similar expressions were used in some previous papers [2, 16, 4]):

€[a) = Try, |[D, a]]*|D|~°,
or the residue form of the same formula:
Res,—s Tr(|D|~*/?([D, f]|* |D|~*/?).

This is motivated by the fact that, in noncommutative geometry, §a =
Tr,, a|D|~% describes the integral and that [D,a] is a replacement for the
gradient of a.

Hover, while for smooth manifolds § coincides with the dimension, for
singular structures such as fractals the metric dimension d is in general dif-
ferent from the energy dimension § [4]. Moreover, elements with finite energy
are not Lipschitz, namely [D, a] is not bounded, but |[D, a]|?|D| ™% is in the
domain of the Dixmier trace. Our main theorem here is the following.

Theorem 3.1 ([9]). Let K be a nested fractal with scaling parameter A and
eigenvalue p for the eigenform, with the spectral triple described above. The
formula Res,—s Tr(|D|~/2|[D, f]|? |D|~*/?) recovers a self-similar energy, with

_ o9 _ logp
6=2 Tog X"

The proof is a direct consequence of the results in [13] mentioned in
Theorem 1.2.

3.1. An example of non uniqueness

When the fractal has a unique self-similar energy form, the Theorem above
provides such unique form. We now discuss the case of the Vicsek fractal,
where uniqueness does not hold. More precisely, there exists a unique energy
form which is invariant under all the symmetries of the square. Removing
such invariance request, self-similar energies for the Vicsek snowflake (up to
a scalar multiple) are parametrized by the conductances (1,1,1,1, F, F~1),
[11]. Such energies can be recovered with our approach via metric deforma-
tions, namely we consider 5 similitudes with scaling parameter 1/3, whose
fixed points coincide with the 4 vertices of a rhombus and with the center of
the rhombus itself. This means that with our construction the 1-parameter
family of energies for the Vicsek arise from a 1-parameter family of geomet-
ric deformations. We assume the side of the rhombus has length 1, and the
smaller angle is 20 < 7/2, so that the diagonals measure 2sin and 2 cos ¥,
and the ratio between the lengths of the diagonals is tan ¢.
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FIGURE 2. Rhomboidal Vicsek snowflake

Theorem 3.2. Let K be the fractal described above, with the spectral triple as
in Definition 2.3. Then the self-similar energy provided by Theorem 3.1 coin-
cides (up to a multiple) with that associated with the conductances (1,1,1,1, F, F~1),

24 V1 4+ tanZ
2+ V1 +tan 29

Proof. For the Vicsek we have A = 1/3, p = 1/3. Therefore the constants c.
giving the energy E[f] = 3 cp, cel(f,€)|* are: a = c¢. = 1 for the sides of
the rhombus, ¢, = g = (2sin¥)~! = 1/2V1 +tan=2 4 for the longer diago-
nal, c. = f = (2cos¥)~t = 1/2v/1 +tan? ¥ for the shorter one. According
to a computation of De Cesaris [6], the constants (A4, A, A, A, F,G) for the
eigenform and the constants (a, a, a, a, f, g) giving rise to the same energy are
related by

_la+Pla+g) L_ (@+f)?*  _ (a+g)’
2a+f+gqg ' 2a+ f+g’ 2a+f+g
Therefore the normalized F' is

F_a+g  1+1/2VT+tan’d 2+ V1 +tan’d

A a+f 1+1/2V1+tan 29 2+ VI+tan 29

where F' =

4. On the recovery of the geodesic distance induced by the
Euclidean structure

Let us recall that, for a given spectral triple (A, H, D), the distance between
states on the C*-algebra A is given by [5]

dp(e,¥) = sup{|p(a) —¢(a)| : a € A, [[[D,a]|| <1}.
When A is the algebra of continuous functions on a compact Hausdorff space
K, we may take the states to be delta-functions, thus getting the distance
between points:
dp(z,y) = sup{|f(z) — f(y)l : f € C(K), [[D, f]l| <1}.

In many concrete cases, the seminorm L(a) = ||[D,al]]| is a Lip-norm in
the sense of Rieffel [14], namely it induces the weak*-topology on the state
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space. When A = C(K), this property amounts to the fact that the distance
dp induces the original topology on K.
Assume now K to be a nested fractal in R"™ with property

(A) for any pair z,y of points in K there exists a rectifiable curve in R"
joining x with y.

Set dgeo(,y) = inf{l(y)|y : [0,1] — K is rectifiable and v(0) = z,v(1) = y}.

We call such a distance the Euclidean geodesic distance on K.

Definition 4.1 (An essential Lip-norm for spectral triples). Let us consider
the quotient map p : B(H) — B(H)/X to the Calkin algebra. Then, given a
spectral triple T := (A, H, D), we consider the seminorm

Less(a) :== |lp([D,a])||,  a€A. (4.1)
The seminorm Legs induces a distance dess on K: for z,y € K,
dess(z,y) = sup{|f(z) — f(y)| : [ € C(K), Less(f) < 1} (4.2)

Theorem 4.2. The noncommutative distance d.ss on K coincides with the
geodesic distance dgeo on K induced by the Euclidean structure in R". If any
edge of level n is the union of edges of level n + 1, the Connes’ distance dp
for the triple T coincides with the essential distance, hence with the geodesic
distance.

Remark 4.3. (a) Let us observe that for the standard triples on (possibily non-
commutative) smooth manifolds the spectrum of [D, a| has no non-essential
parts, hence the seminorm Legs coincides with the usual seminorm ||[D, a||.
(b) As mentioned at the beginning, our spectral triples are based here on the
complete graph with vertices Vj. Therefore the last hypothesis of the Theorem
is satisfied e.g. for the generalized Sierpinski triangles in the plane obtained
by contractions of 1/p, or by the higher-dimensional gaskets inscribed in n-
simplices. However it is not satisfied for the poly-gaskets (N > 3), nor for the
Lindstrom or Vicsek snowflakes. As a consequence, the use of the essential
seminorm is necessary in order to recover the Euclidean geodesic distance on
K with the discrete triples.
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